RESUMEN
Phosphorus (P) is a crucial structural component of living systems and central to modern bioenergetics. P cycles through terrestrial geochemical reservoirs via complex physical and chemical processes. Terrestrial life has altered these fluxes between reservoirs as it evolved, which is why it is of interest to explore planetary P flux evolution in the absence of biology. This is especially true, since environmental P availability affects life's ability to alter other geochemical cycles, which could then be an example of niche construction. Understanding how P reservoir transport affects environmental P availability helps parameterize how the evolution of P reservoirs influenced the emergence of life on Earth, and potentially other planetary bodies. Geochemical P fluxes likely change as planets evolve, and element cycling models that take those changes into account can provide insights on how P fluxes evolve abiotically. There is considerable uncertainty in many aspects of modern and historical global P cycling, including Earth's initial P endowment and distribution after core formation and how terrestrial P interactions between reservoirs and fluxes and their rates have evolved over time. We present here a dynamical box model for Earth's abiological P reservoir and flux evolution. This model suggests that in the absence of biology, long term planetary geochemical cycling on planets similar to Earth with respect to geodynamism tends to bring P to surface reservoirs, and biology, including human civilization, tends to move P to subductable marine reservoirs.
Asunto(s)
Planeta Tierra , Fósforo , Evolución Planetaria , Humanos , PlanetasRESUMEN
Establishing when, and from where, carbon, nitrogen and water were delivered to Earth is a fundamental objective in understanding the origin of habitable planets such as Earth. Yet, volatile delivery to Earth remains controversial1-5. Krypton isotopes provide insights on volatile delivery owing to their substantial isotopic variations among sources6-10, although pervasive atmospheric contamination has hampered analytical efforts. Here we present the full suite of krypton isotopes from the deep mantle of the Galápagos and Iceland plumes, which have the most primitive helium, neon and tungsten isotopic compositions11-16. Except for 86Kr, the krypton isotopic compositions are similar to a mixture of chondritic and atmospheric krypton. These results suggest early accretion of carbonaceous material by proto-Earth and rule out any combination of hydrodynamic loss with outgassing of the deep or shallow mantle to explain atmospheric noble gases. Unexpectedly, the deep-mantle sources have a deficit in the neutron-rich 86Kr relative to the average composition of carbonaceous meteorites, which suggests a nucleosynthetic anomaly. Although the relative depletion of neutron-rich isotopes on Earth compared with carbonaceous meteorites has been documented for a range of refractory elements1,17,18, our observations suggest such a depletion for a volatile element. This finding indicates that accretion of volatile and refractory elements occurred simultaneously, with krypton recording concomitant accretion of non-solar volatiles from more than one type of material, possibly including outer Solar System planetesimals.
Asunto(s)
Carbono/análisis , Planeta Tierra , Evolución Planetaria , Sedimentos Geológicos/química , Criptón/análisis , Atmósfera/química , Ecuador , Evolución Química , Helio/análisis , Islandia , Isótopos/análisis , Meteoroides , Neón/análisis , Neutrones , Nitrógeno/análisis , Tungsteno/análisis , Xenón/análisisRESUMEN
The most crucial role played by minerals was in the preconcentration of biomolecules or precursors of biomolecules in prebiotic seas. If this step had not occurred, molecular evolution would not have occurred. Thiocyanate is an important molecule in the formation of biomolecules as well as a catalyst for prebiotic reactions. The adsorption of thiocyanate onto ferrihydrite was carried out under pH and ion composition conditions in seawater that resembled those of prebiotic Earth. The seawater used in this work had high Mg2+, Ca2+ and SO42- concentrations. The most important result of this work was that ferrihydrite adsorbed thiocyanateata pH value (7.2 ± 0.2) that usually does not adsorb thiocyanate. The high adsorptivity of Mg2+, Ca2+ and SO42-onto ferrihydrite showed that seawater ions can act as carriers of thiocyanate to the ferrihydrite surface, creating a huge outer-sphere complex. Kinetic adsorption and isotherm experiments showed the best fit for the pseudo-second-order model and an activation energy of 23.8 kJ mol-1forthe Langmuir-Freundlich model, respectively. Thermodynamic data showed positive ΔG values, which apparently contradict the adsorption isotherm data and kinetic data that was obtained. The adsorption of thiocyanate onto ferrihydrite could be explained by coupling with the exergonic SO42- adsorption onto ferrihydrite. The FTIR spectra showed no difference between the C≡N stretching peaks of adsorbed thiocyanate and free thiocyanate, corroborating the formation of an outer-sphere complex. All the results demonstrated the importance of the artificial seawater composition for the adsorption of thiocyanate and for understanding prebiotic chemistry.
Asunto(s)
Compuestos Férricos/química , Origen de la Vida , Tiocianatos/química , Adsorción , Evolución PlanetariaRESUMEN
Probably one of the most important roles played by minerals in the origin of life on Earth was to pre-concentrate biomolecules from the prebiotic seas. There are other ways to pre concentrate biomolecules such as wetting/drying cycles and freezing/sublimation. However, adsorption is most important. If the pre-concentration did not occur-because of degradation of the minerals-other roles played by them such as protection against degradation, formation of polymers, or even as primitive cell walls would be seriously compromised. We studied the interaction of two artificial seawaters with kaolinite, bentonite, montmorillonite, goethite, ferrihydrite and quartz. One seawater has a major cation and anion composition similar to that of the oceans of the Earth 4.0 billion years ago (ASW 4.0 Ga). In the other, the major cations and anions are an average of the compositions of the seawaters of today (ASWT). When ASWT, which is rich in Na+ and Cl-, interacted with bentonite and montmorrilonite structural collapse occurred on the 001 plane. However, ASW 4.0 Ga, which is rich in Mg2+ and SO42-, did not induce this behavior. When ASW 4.0 Ga was reacted with the minerals for 24 h at room temperature and 80 °C, the release of Si and Al to the fluid was below 1 % of the amount in the minerals-meaning that dissolution of the minerals did not occur. In general, minerals adsorbed Mg2+ and K+ from the ASW 4.0 Ga and these cations could be used for the formation of polymers. Also, when the minerals were mixed with ASW 4.0 Ga at 80 °C and ASWT at room temperature or 80 °C it caused the precipitation of CaSO4â2H2O and halite, respectively. Finally, further experiments (adsorption, formation of polymers, protection of molecules against degradation, primitive cell wall formation) performed under the conditions described in this paper will probably be more representative of what happened on the prebiotic Earth.
Asunto(s)
Planeta Tierra , Evolución Planetaria , Minerales/química , Agua de Mar/química , Adsorción , TemperaturaRESUMEN
New comments are proposed for the subfamily Ananterinae (sensu Pocock). The worldwide pattern of distribution of the elements associated with this subfamily, as well as aspects of their ecology, are discussed. The biogeographic patterns presented by extant and fossil elements of this subfamily confirm not only the characteristics of a group presenting a typical Gondwanian distribution, but also correspond to older Pangaean patterns. One new remarkable species is described in the genus Ananteris Thorell. This new species is also the first record of the genus for Peru.
Asunto(s)
Escorpiones/clasificación , Adaptación Biológica , Animales , Evolución Biológica , Planeta Tierra , Ecología , Evolución Planetaria , Fósiles , Perú , Densidad de Población , Escorpiones/anatomía & histología , Escorpiones/fisiología , Especificidad de la EspecieRESUMEN
The Titanosauria were much diversified during the Late Cretaceous, but paleobiological information concerning these sauropods continues to be scarce and no studies have been conducted utilizing modern methods of community analysis to infer possible structural patterns of extinct assemblages. The present study sought to estimate species richness and to investigate the existence of structures in assemblages of the South American Titanosauria during the Late Cretaceous. Estimates of species richness were made utilizing a nonparametric estimator and null models of species co-occurrences and overlapping body sizes were applied to determine the occurrence of structuring in this assemblages. The high estimate of species richness (n = 57) may have been influenced by ecological processes associated with extinction events of sauropod groups and with the structures of the habitats that provided abundant support to the maintenance of large numbers of species. The pseudocommunity analysis did not differ from that expected by chance, indicating the lack of structure in these assemblages. It is possible that these processes originated from phylogenetic inertia, associated with the occurrence of stabilized selection. Additionally, stochastic extinction events and historical factors may also have influenced the formation of the titanosaurian assemblages, in detriment to ecological factors during the Late Cretaceous. However, diagenetic and biostratinomic processes, influenced by the nature of the sedimentary paleoenvironment, could have rendered a random arrangement that would make assemblage structure undetectable.
Asunto(s)
Biota , Dinosaurios/clasificación , Animales , Tamaño Corporal , Conducta Competitiva , Bases de Datos Factuales , Dinosaurios/anatomía & histología , Ecosistema , Evolución Planetaria , Fósiles , Filogenia , Selección Genética , América del Sur , Especificidad de la Especie , Estadísticas no ParamétricasRESUMEN
As the Pacific-Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My.
Asunto(s)
Evolución Planetaria , Geología , Modelos Teóricos , México , TomografíaRESUMEN
This review examines the evidence suggesting that the anaerobic biosynthesis of cobalamin (vitamin B12) evolved during early stages of cell evolution and was quickly recruited in the pathway leading to deoxyribonucleotides, the building blocks of DNA genomes. Biochemical evolution preceding the synthesis of the heme group and related molecules is discussed within the framework of geological evolution in which the appearance and accumulation of an oxygen-rich atmosphere stands as one of the major events in the evolution of the planet and the biosphere.
Asunto(s)
Corrinoides/metabolismo , Hemo/metabolismo , Animales , Corrinoides/genética , ADN/genética , ADN/metabolismo , Evolución Molecular , Evolución Planetaria , Hemo/genética , Humanos , Vitamina B 12/genética , Vitamina B 12/metabolismoRESUMEN
Among the World's most challenging environments for plant life is the Atacama Desert, an arid zone extending over 1300 km and from sea level to 2000/3000 m altitude along the southwestern Andean foothills. Plants there and in the adjacent Mediterranean zone exhibit striking adaptations, and we here address the question whether in a species-rich clade such adaptations arose in parallel, at different times, or simultaneously. Answering this type of question has been a major concern of evolutionary biology over the past few years, with a growing consensus that lineages tend to be conservative in their vegetative traits and niche requirements. Combined nuclear and chloroplast DNA sequences for 112 species of Oxalidales (4900 aligned nucleotides) were used for a fossil-calibrated phylogeny that includes 43 of the 54 species of Chilean Oxalis, and species distribution models (SDMs) incorporating precipitation, temperature, and fog, and the phylogeny were used to reconstruct ancestral habitat preferences, relying on likelihood and Bayesian techniques. Since uneven collecting can reduce the power of SDMs, we compared 3 strategies to correct for collecting effort. Unexpectedly, the Oxalis flora of Chile consists of 7 distant lineages that originated at different times prior to the last Andean uplift pulse; some had features preadapting them to seasonally arid or xeric conditions. Models that incorporated fog and a "collecting activity surface" performed best and identified the Mediterranean zone as a hotspot of Oxalis species as well as lineage diversity because it harbors a mix of ancient and young groups, including insufficiently arid-adapted species. There is no evidence of rapid adaptive radiation.
Asunto(s)
Ecosistema , Evolución Molecular , Magnoliopsida/genética , Modelos Biológicos , Filogenia , Proteínas de Plantas/genética , Núcleo Celular/genética , Chile , Proteínas de Cloroplastos/genética , Evolución Planetaria , Magnoliopsida/clasificación , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
For the first time we have investigated the natural ecosystem engineering capacity of stromatolitic microbial assemblages. Stromatolites are laminated sedimentary structures formed by microbial activity and are considered to have dominated the shallows of the Precambrian oceans. Their fossilised remains are the most ancient unambiguous record of early life on earth. Stromatolites can therefore be considered as the first recognisable ecosystems on the planet. However, while many discussions have taken place over their structure and form, we have very little information on their functional ecology and how such assemblages persisted despite strong eternal forcing from wind and waves. The capture and binding of sediment is clearly a critical feature for the formation and persistence of stromatolite assemblages. Here, we investigated the ecosystem engineering capacity of stromatolitic microbial assemblages with respect to their ability to stabilise sediment using material from one of the few remaining living stromatolite systems (Highborne Cay, Bahamas). It was shown that the most effective assemblages could produce a rapid (12-24 h) and significant increase in sediment stability that continued in a linear fashion over the period of the experimentation (228 h). Importantly, it was also found that light was required for the assemblages to produce this stabilisation effect and that removal of assemblage into darkness could lead to a partial reversal of the stabilisation. This was attributed to the breakdown of extracellular polymeric substances under anaerobic conditions. These data were supported by microelectrode profiling of oxygen and calcium. The structure of the assemblages as they formed was visualised by low-temperature scanning electron microscopy and confocal laser microscopy. These results have implications for the understanding of early stromatolite development and highlight the potential importance of the evolution of photosynthesis in the mat forming process. The evolution of photosynthesis may have provided an important advance for the niche construction activity of microbial systems and the formation and persistence of the stromatolites which came to dominate shallow coastal environments for 80% of the biotic history of the earth.
Asunto(s)
Sedimentos Geológicos/microbiología , Fotosíntesis , Microbiología del Agua , Bahamas , Evolución Biológica , Ecosistema , Evolución Planetaria , Fósiles , Sedimentos Geológicos/química , Geología , Luz , Microscopía Confocal , Oxígeno , PaleontologíaAsunto(s)
Astronomía/tendencias , Ciencia , Argentina , Evolución Planetaria , Física , InvestigadoresRESUMEN
The existence of life based on carbon chemistry and water oceans relies upon planetary properties, chiefly climate stability, and stellar properties, such as mass, age, metallicity, and galactic orbits. The latter can be well constrained with present knowledge. We present a detailed, up-to-date compilation of the atmospheric parameters, chemical composition, multiplicity, and degree of chromospheric activity for the astrobiologically interesting solar-type stars within 10 parsecs of the Sun. We determined their state of evolution, masses, ages, and space velocities, and produced an optimized list of candidates that merit serious scientific consideration by the future space-based interferometry probes aimed at directly detecting Earthsized extrasolar planets and seeking spectroscopic infrared biomarkers as evidence of photosynthetic life. The initially selected stars number 33 solar-type within the total population (excluding some incompleteness for late M-dwarfs) of 182 stars closer than 10 parsecs. A comprehensive and detailed data compilation for these objects is still lacking; a considerable amount of recent data has so far gone unexplored in this context. We present 13 objects as the nearest "biostars," after eliminating multiple stars, young, chromospherically active, hard x-ray- emitting stars, and low metallicity objects. Three of these "biostars"-- Zeta Tucanae, Beta Canum Venaticorum, and 61 Virginis -- closely reproduce most of the solar properties and are considered as premier targets. We show that approximately 7% of the nearby stars are optimally interesting targets for exobiology.
Asunto(s)
Evolución Planetaria , Exobiología/métodos , Medio Ambiente Extraterrestre , Modelos Teóricos , Planetas , Sistema SolarRESUMEN
The Amazonian forest is, due to its great size, carbon storage capacity and present-day variability in carbon uptake and release, an important component of the global carbon cycle. Paleo-environmental reconstruction is difficult for Amazonia due to the scarcity of primary palynological data and the mis-interpretation of some secondary data. Studies of lacustrine sediment records have shown that Amazonia has known periods in which the climate was drier than it is today. However, not all geomorphological features such as dunes, and slope erosion, which are thought to indicate rainforest regression, date from the time of the Late Glacial Maximum (LGM) and these features do not necessarily correspond to episodes of forest regression. There is also uncertainty concerning LGM carbon storage due to rainforest soils and biomass estimates. Soil carbon content may decrease moderately during the LGM, whereas rainforest biomass may change considerably in response to changes in the global environment. Biomass per unit area in Amazonia has probably been reduced by the cumulative effects of low CO2 concentration, a drier climate and lower temperatures. As few paleo-vegetation data are available, there is considerable uncertainty concerning the amount of carbon stored in Amazonia during the LGM, which may have corresponded to 44-94% of the carbon currently stored in biomass and soils.
Asunto(s)
Carbono/metabolismo , Árboles/metabolismo , Biomasa , Radioisótopos de Carbono/análisis , Evolución Planetaria , Agua Dulce , Sedimentos Geológicos/química , América del Sur , Árboles/crecimiento & desarrollo , Clima TropicalRESUMEN
Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as 'random' changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity-reducing 'ecological monopolies'. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources.
Asunto(s)
Ecosistema , Selección Genética , Animales , Evolución Planetaria , Humanos , Insectos , Modelos Económicos , ÁrbolesRESUMEN
A mixture of possible Martian volcanic gases were reproduced and irradiated by a high-energy infrared laser to reproduce the effects of lightning on the production of prebiotic molecules. The analysis of products were performed by a gas chromatograph interfaced in parallel with a FTIR-detector and a quadrupole mass spectrometer equipped with an electron impact and chemical ionization modes. The main products identified were hydrocarbons and an uncharacterized yellow film deposit. Preliminary results indicate the presence of hydrogen cyanide among the resultant compounds.
Asunto(s)
Evolución Química , Relámpago , Marte , Erupciones Volcánicas , Evolución Planetaria , Exobiología , Medio Ambiente Extraterrestre/química , Hidrógeno/química , Cianuro de Hidrógeno/síntesis química , Rayos Láser , Metano/química , Nitrógeno/química , Agua/químicaRESUMEN
We present measurements for the production of nitrogen oxides (NO and N2O) in CO2-N2 mixtures that simulate different stages of the evolution of the atmospheres of the Earth, Venus and Mars. The nitrogen fixation rates by two different types of electrical discharges, namely lightning and coronae, were studied over a wide range in CO2 and N2 mixing ratios. Nitric oxide (NO) is formed with a maximum energy yield estimated to be ~1.3 x 10(16) molecule J-1 at 80% CO2 and ~1.3 x 10(14) molecule J-1 at 50% CO2 for lightning and coronae discharges, respectively. Nitrous oxide (N2O) is only formed by coronae discharge with a maximum energy yield estimated to be ~1.2 x 10(13) molecule J-1 at 50% CO2. The pronounced difference in NO production in lightning and coronae discharges and the lack of formation of N2O in lightning indicate that the physics and chemistry involved in nitrogen fixation differs substantially in these two forms of electric energy.
Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Electricidad , Relámpago , Óxido Nítrico/síntesis química , Fijación del Nitrógeno/efectos de la radiación , Óxido Nitroso/síntesis química , Planeta Tierra , Evolución Planetaria , Medio Ambiente Extraterrestre/química , Marte , VenusAsunto(s)
Antropología Cultural , Humanidades , Conocimiento , Evolución Cultural , Evolución Planetaria , Filosofía Médica , Lógica Difusa , Modelos Educacionales , VidaAsunto(s)
Conocimiento , Evolución Planetaria , Antropología Cultural , Evolución Cultural , Filosofía Médica , Humanidades , Lógica Difusa , Vida , Modelos EducacionalesRESUMEN
Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.