Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.799
Filtrar
3.
Sci Rep ; 14(1): 20809, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242725

RESUMEN

We investigated the effect of repeated sessions of anodal transcranial direct current stimulation (a-tDCS) on subjective and objective measures of recovery, cognitive and sport-specific performance in professional soccer players following a soccer match simulation (SMS). Sixteen soccer players participated in this randomized, crossover, and sham-controlled study. They completed baseline assessments of well-being, total quality recovery (TQR), electromyographic activity (EMG) of the thigh muscles, countermovement jump (CMJ), and cognitive and Loughborough soccer passing test (LSPT) skills. Then, the participants engaged in an SMS routine (2 × 45 min, 15-min intervals). There was no significant difference in rating of perceived exertion (RPE) during the SMS in the anodal (17.25 ± 0.85) and sham (16.93 ± 0.92) conditions (p = 0.19). Following the SMS, the participants were randomized to receive three sessions of a-tDCS (2 mA, 20 min, +F3/-F4) targeting the left dorsolateral prefrontal cortex (DLPFC) or sham immediately after, 24 h, and 48 h after the SMS. Finally, the same outcome measures were evaluated 24 and 48 h following the SMS. A two-way repeated-measures ANOVA showed that a-tDCS stimulation improved passing skills (decreased time to perform the LSPT and number of errors; all ps < 0.01; d = 0.56-2.9) and increased the feeling of well-being (p = 0.02; d = 2.8), with no effect on TQR, cognitive performance, CMJ performance, and EMG. Therefore, the results of the present study indicate, for the first time, that repeated a-tDCS could be used as an adjunct method to accelerate soccer players' well-being and technical performance recovery, particularly after congested matches and/or training sessions. These findings may also be applicable to other team sports with characteristics similar to soccer (e.g., futsal, handball, basketball, etc.).


Asunto(s)
Rendimiento Atlético , Fútbol , Estimulación Transcraneal de Corriente Directa , Humanos , Fútbol/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Rendimiento Atlético/fisiología , Masculino , Adulto Joven , Adulto , Estudios Cruzados , Electromiografía , Cognición/fisiología , Atletas
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 724-731, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218598

RESUMEN

Transcranial electrical stimulation (TES) is a non-invasive neuromodulation technique with great potential. Electrode optimization methods based on simulation models of individual TES field could provide personalized stimulation parameters according to individual variations in head tissue structure, significantly enhancing the stimulation accuracy of TES. However, the existing electrode optimization methods suffer from prolonged computation times (typically exceeding 1 d) and limitations such as disregarding the restricted number of output channels from the stimulator, further impeding their clinical applicability. Hence, this paper proposes an efficient and practical electrode optimization method. The proposed method simultaneously optimizes both the intensity and focality of TES within the target brain area while constraining the number of electrodes used, and it achieves faster computational speed. Compared to commonly used electrode optimization methods, the proposed method significantly reduces computation time by 85.9% while maintaining optimization effectiveness. Moreover, our method considered the number of available channels for the stimulator to distribute the current across multiple electrodes, further improving the tolerability of TES. The electrode optimization method proposed in this paper has the characteristics of high efficiency and easy operation, potentially providing valuable supporting data and references for the implementation of individualized TES.


Asunto(s)
Encéfalo , Electrodos , Estimulación Transcraneal de Corriente Directa , Estimulación Transcraneal de Corriente Directa/instrumentación , Estimulación Transcraneal de Corriente Directa/métodos , Humanos , Encéfalo/fisiología , Simulación por Computador , Algoritmos
5.
J Neurosci Res ; 102(9): e25378, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39225477

RESUMEN

This study investigated whether the electric field magnitude (E-field) delivered to the left dorsolateral prefrontal cortex (L-DLPFC) changes resting-state brain activity and the L-DLPFC resting-state functional connectivity (rsFC), given the variability in tDCS response and lack of understanding of how rsFC changes. Twenty-one healthy participants received either 2 mA anodal or sham tDCS targeting the L-DLPFC for 10 min. Brain imaging was conducted before and after stimulation. The fractional amplitude of low-frequency fluctuation (fALFF), reflecting resting brain activity, and the L-DLPFC rsFC were analyzed to investigate the main effect of tDCS, main effect of time, and interaction effects. The E-field was estimated by modeling tDCS-induced individual electric fields and correlated with fALFF and L-DLPFC rsFC. Anodal tDCS increased fALFF in the left rostral middle frontal area and decreased fALFF in the midline frontal area (FWE p < 0.050), whereas sham induced no changes. Overall rsFC decreased after sham (positive and negative connectivity, p = 0.001 and 0.020, respectively), with modest and nonsignificant changes after anodal tDCS (p = 0.063 and 0.069, respectively). No significant differences in local rsFC were observed among the conditions. Correlations were observed between the E-field and rsFC changes in the L-DLPFC (r = 0.385, p = 0.115), left inferior parietal area (r = 0.495, p = 0.037), and right lateral visual area (r = 0.683, p = 0.002). Single-session tDCS induced resting brain activity changes and may help maintain overall rsFC. The E-field in the L-DLPFC is associated with rsFC changes in both proximal and distally connected brain regions to the L-DLPFC.


Asunto(s)
Estudios Cruzados , Corteza Prefontal Dorsolateral , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Adulto Joven , Corteza Prefontal Dorsolateral/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Mapeo Encefálico
6.
CNS Neurosci Ther ; 30(9): e70033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267282

RESUMEN

AIMS: Ischemic stroke is a major cause of disability and mortality worldwide. Transcranial direct current stimulation (tDCS) and isoflurane (ISO) preconditioning exhibit neuroprotective properties. However, it remains unclear whether tDCS enhances the protective effect of ISO preconditioning on ischemic stroke, and the underlying mechanisms are yet to be clarified. METHOD: A model of middle cerebral artery occlusion (MCAO), a rat ischemia-reperfusion (I/R) injury model, and an in vitro oxygen-glucose deprivation/re-oxygenation (O/R) model of ischemic injury were developed. ISO preconditioning and tDCS were administered daily for 7 days before MCAO modeling. Triphenyltetrazolium chloride staining, modified neurological severity score, and hanging-wire test were conducted to assess infarct volume and neurological outcomes. Untargeted metabolomic experiments, adeno-associated virus, lentiviral vectors, and small interfering RNA techniques were used to explore the underlying mechanisms. RESULTS: tDCS/DCS enhanced the protective effects of ISO pretreatment on I/R injury-induced brain damage. This was evidenced by reduced infarct volume and improved neurological outcomes in rats with MCAO, as well as decreased cortical neuronal death after O/R injury. Untargeted metabolomic experiments identified oxidative phosphorylation (OXPHOS) as a critical pathological process for ISO-mediated neuroprotection from I/R injury. The combination of tDCS/DCS with ISO preconditioning significantly inhibited I/R injury-induced OXPHOS. Mechanistically, Akirin2, a small nuclear protein that regulates cell proliferation and differentiation, was found to decrease in the cortex of rats with MCAO and in cortical primary neurons subjected to O/R injury. Akirin2 functions upstream of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). tDCS/DCS was able to further upregulate Akirin2 levels and activate the Akirin2/PTEN signaling pathway in vivo and in vitro, compared with ISO pretreatment alone, thereby contributing to the improvement of cerebral I/R injury. CONCLUSION: tDCS treatment enhances the neuroprotective effects of ISO preconditioning on ischemic stroke by inhibiting oxidative stress and activating Akirin2-PTEN signaling pathway, highlighting potential of combination therapy in ischemic stroke.


Asunto(s)
Infarto de la Arteria Cerebral Media , Isoflurano , Ratas Sprague-Dawley , Daño por Reperfusión , Estimulación Transcraneal de Corriente Directa , Animales , Isoflurano/farmacología , Masculino , Daño por Reperfusión/prevención & control , Ratas , Estimulación Transcraneal de Corriente Directa/métodos , Precondicionamiento Isquémico/métodos , Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/farmacología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Anestésicos por Inhalación/farmacología
7.
BMC Musculoskelet Disord ; 25(1): 703, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227806

RESUMEN

BACKGROUND: Keen Osteoarthritis (KOA) is a common chronic disabling disease characterized by joint pain and dysfunction, which seriously affects patients' quality of life. Recent studies have shown that transcranial direct current stimulation (tDCS) was a promising treatment for KOA. PURPOSE: Investigate the effects of tDCS on pain and physical function in patients with KOA. METHODS: Randomized controlled trials related to tDCS and KOA were systematically searched in the PubMed, Embase, Medline, Cochrane Library, CINHL, and Web of Science databases from inception to July 23, 2024. The pain intensity was evaluated using the visual analog scale or the numeric rating scale, and the pain sensitivity was assessed using conditioned pain modulation, pressure pain threshold, heat pain threshold, or heat pain tolerance. The physical function outcome was evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index or the Knee injury and Osteoarthritis Outcome Score. Statistical analysis was performed using Review Manager 5.4. RESULTS: Seven studies with a total of 503 participants were included. Compared to sham tDCS, tDCS was effective in reducing the short-term pain intensity (SMD: -0.58; 95% CI: -1.02, -0.14; p = 0.01) and pain sensitivity (SMD: -0.43; 95% CI: -0.70, -0.16; p = 0.002) but failed to significantly improve the long-term pain intensity (SMD: -0.26; 95% CI: -0.59, 0.08; p = 0.13) in KOA patients. In addition, tDCS did not significantly improve the short-term (SMD: -0.13; 95% CI: -0.35, 0.08; p = 0.22) and long-term (SMD: 0.02; 95% CI: -0.22, 0.25; p = 0.90) physical function in patients with KOA. CONCLUSIONS: The tDCS can reduce short-term pain intensity and sensitivity but fails to significantly relieve long-term pain intensity and improve the physical function in patients with KOA. Thus, tDCS may be a potential therapeutic tool to reduce short-term pain intensity and pain sensitivity in patients with KOA.


Asunto(s)
Osteoartritis de la Rodilla , Dimensión del Dolor , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Osteoartritis de la Rodilla/terapia , Osteoartritis de la Rodilla/fisiopatología , Resultado del Tratamiento , Dimensión del Dolor/métodos , Artralgia/terapia , Artralgia/diagnóstico , Artralgia/fisiopatología , Artralgia/etiología , Umbral del Dolor , Manejo del Dolor/métodos , Calidad de Vida , Articulación de la Rodilla/fisiopatología
8.
J Transl Med ; 22(1): 843, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272101

RESUMEN

BACKGROUND: Multiple Sclerosis (MS) is an autoimmune disease associated with physical disability, psychological impairment, and cognitive dysfunctions. Consequently, the disease burden is substantial, and treatment choices are limited. In this randomized, double-blind study, we conducted repeated prefrontal electrical stimulation in 40 patients with MS to evaluate mental health variables (quality of life, sleep difficulties, psychological distress) and cognitive dysfunctions (psychomotor speed, working memory, attention/vigilance), marking it as the third largest sample size tDCS research conducted in MS to date. METHODS: The patients were randomly assigned (block randomization method) to two groups of sham (n = 20), or 1.5-mA (n = 20) transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (F3) and right frontopolar cortex (Fp2) with anodal and cathodal stimulation respectively (electrode size: 25 cm2). The treatment included 10 sessions of 20 min of stimulation delivered every other day. Outcome measures were MS quality of life, sleep quality, psychological distress, and performance on a neuropsychological test battery dedicated to cognitive dysfunctions in MS (psychomotor speed, working memory, and attention). All outcome measures were evaluated at the pre-intervention and post-intervention assessments. Both patients and technicians delivering the stimulation were unaware of the type of stimulation being used. RESULTS: Repeated prefrontal real tDCS significantly improved quality of life and reduced sleep difficulties and psychological distress compared to the sham group. It, furthermore, improved psychomotor speed, attention, and vigilance compared to the sham protocol. Improvement in mental health outcome variables and cognitive outperformance were interrelated and could predict each other. CONCLUSIONS: Repeated prefrontal and frontopolar tDCS ameliorates secondary clinical symptoms related to mental health and results in beneficial cognitive effects in patients with MS. These results support applying prefrontal tDCS in larger trials for improving mental health and cognitive dysfunctions in MS. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06401928.


Asunto(s)
Salud Mental , Esclerosis Múltiple , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Método Doble Ciego , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/terapia , Esclerosis Múltiple/psicología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Calidad de Vida , Pruebas Neuropsicológicas , Trastornos del Conocimiento/terapia
9.
Psychiatry Res Neuroimaging ; 344: 111879, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217671

RESUMEN

Negative symptoms are often found in youth at clinical high risk (CHR) for psychosis. The present study explored the feasibility of using tDCS in conjunction with CBT in the treatment of negative symptoms in 5 youths at CHR. We sought to determine whether the protocol was feasible given the requirement for repeated visits over a three-week period, and to determine if measures of neurobiological change could be included, both acutely and following three weeks of stimulation. The results from this study suggest that the protocol is feasible for these youth, and the inclusion of MRI scanning sessions yielded good quality data.


Asunto(s)
Estudios de Factibilidad , Trastornos Psicóticos , Estimulación Transcraneal de Corriente Directa , Humanos , Trastornos Psicóticos/terapia , Trastornos Psicóticos/diagnóstico por imagen , Masculino , Adolescente , Estimulación Transcraneal de Corriente Directa/métodos , Femenino , Imagen por Resonancia Magnética , Adulto Joven , Terapia Cognitivo-Conductual/métodos , Resultado del Tratamiento , Riesgo
10.
BMJ Open ; 14(9): e083986, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260860

RESUMEN

INTRODUCTION: Poststroke shoulder pain is a common complication that severely affects the recovery of upper limb motor function. Acupuncture has positive analgesic effects in treating poststroke shoulder pain, and studies have demonstrated the efficacy of transcranial direct current stimulation (tDCS) in treating patients with this pain. However, whether acupuncture combined with tDCS has a superior rehabilitation effect on poststroke shoulder pain is currently unknown. We aimed to observe the effect of the combined intervention on poststroke shoulder pain and explore its possible central analgesic mechanism. METHODS AND ANALYSIS: This study describes a randomised controlled trial using assessor blinding. A total of 135 poststroke patients with shoulder pain will be randomly assigned in a 1:1:1 ratio to the tDCS group, acupuncture group and combined group (acupuncture plus tDCS). All three groups will undergo conventional rehabilitation treatment. Participants in the tDCS group will receive tDCS stimulation on the M1 area for 20 min, while the acupuncture group will receive 20 min of acupuncture. The combined treatment group will receive both. All treatments will be performed five times per week for 4 weeks. The primary outcome indicator in this study is the Visual Analogue Scale pain score. Secondary outcome indicators include shoulder mobility, Shoulder Pain and Disability Index, Fugl-Meyer Motor Function Scale, Modified Barthel Index Scale, Self-Rating Anxiety and Depression Scale and functional MRI. All scale results will be assessed at baseline and at 2 weeks and 4 weeks, and during follow-up at 1 month, 3 months and 6 months postdischarge. A repeated analysis of variance will be conducted to observe the group×time interaction effects of the combined intervention. Moreover, functional MRI will be applied to explore the central analgesic mechanism. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Ethics Committee of the Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine (2023KY-039-001). The results of the study will be published in a peer-reviewed journal and presented at scientific conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300078270.


Asunto(s)
Terapia por Acupuntura , Dolor de Hombro , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Dolor de Hombro/terapia , Dolor de Hombro/etiología , Estimulación Transcraneal de Corriente Directa/métodos , Terapia por Acupuntura/métodos , Accidente Cerebrovascular/complicaciones , China , Terapia Combinada , Masculino , Femenino , Dimensión del Dolor , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Adulto , Rehabilitación de Accidente Cerebrovascular/métodos , Anciano , Resultado del Tratamiento
11.
Adv Exp Med Biol ; 1456: 129-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261427

RESUMEN

The exploration of brain stimulation methods offers a promising avenue to overcome the shortcomings of traditional drug therapies and psychological treatments for major depressive disorder (MDD). Over the past years, there has been an increasing focus on transcranial electrical stimulation (tES), notably for its ease of use and potentially fewer side effects. This chapter delves into the use of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), which are key components of tES, in managing depression. It begins by introducing tDCS and tACS, summarizing their action mechanisms. Following this introduction, the chapter provides an in-depth analysis of existing meta-analyses, systematic reviews, clinical studies, and case reports that have applied tES in MDD treatment. It also considers the role of tES in personalized medicine by looking at specific patient groups and evaluating research on possible biomarkers that could predict how patients with MDD respond to tES therapy.


Asunto(s)
Trastorno Depresivo Mayor , Estimulación Transcraneal de Corriente Directa , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/fisiopatología , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Medicina de Precisión/métodos , Resultado del Tratamiento , Encéfalo/fisiopatología
12.
Alzheimers Res Ther ; 16(1): 203, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267112

RESUMEN

BACKGROUND: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.


Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Hipocampo , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Método Doble Ciego , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Electroencefalografía/métodos , Resultado del Tratamiento , Persona de Mediana Edad , Ritmo Gamma/fisiología , Pruebas Neuropsicológicas , Cognición/fisiología
13.
J Neuroeng Rehabil ; 21(1): 157, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267118

RESUMEN

Many studies over the recent decades have attempted the modulation of motor learning using brain stimulation. Alternating currents allow for researchers not only to electrically stimulate the brain, but to further investigate the effects of specific frequencies, in and beyond the context of their endogenous associations. Transcranial alternating current stimulation (tACS) has therefore been used during motor learning to modulate aspects of acquisition, consolidation and performance of a learned motor skill. Despite numerous reviews on the effects of tACS, and its role in motor learning, there are few studies which synthesize the numerous frequencies and their respective theoretical mechanisms as they relate to motor and perceptual processes. Here we provide a short overview of the main stimulation frequencies used in motor learning modulation (e.g., alpha, beta, and gamma), and discuss the effect and proposed mechanisms of these studies. We summarize with the current state of the field, the effectiveness and variability in motor learning modulation, and novel mechanistic proposals from other fields.


Asunto(s)
Aprendizaje , Destreza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Aprendizaje/fisiología , Destreza Motora/fisiología , Corteza Motora/fisiología
14.
BMC Neurol ; 24(1): 314, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232643

RESUMEN

BACKGROUND: Working memory (WM) impairment is a common phenomenon after stroke; however, its management in rehabilitation is less researched. This systematic review and meta-analysis aimed to provide a quantitative synthesis of the impact of computerised cognitive training (CCT) and transcranial direct current stimulation (tDCS) on WM span in post-stroke individuals. METHODS: The literature search in PubMed, Embase, Scopus, and Cochrane Library focused on randomized controlled trials testing the effect of CCT and tDCS on treated stroke patients as compared to untreated controls. Neuropsychological instruments such as Digit Span Forward/Backward and Visual Span Forward Tests defined the outcome of WM span. After extracting study characteristics and quality assessment using the Cochrane Risk of Bias Tool, we conducted a meta-analysis and meta-regression using standardised mean differences. RESULTS: The search yielded 4142 articles, nine of which (N = 461) fulfilled the inclusion criteria. In the case of CCT, we found significant improvement in Digit Span Backward Test (Z = 2.65, P = 0.008; 95% CI [0.10, 0.67]) and Visual Span Forward Test performance (Z = 3.05, P = 0.002; 95% CI [0.15, 0.69]), while for tDCS, we could not find a sufficient number of studies for the analysis. Furthermore, no significant moderating factor was found in the meta-regression. CONCLUSIONS: In conclusion, CCT appears to be a suitable choice to enhance WM span performance after stroke. However, further research is needed to investigate the effect of tDCS due to the limited number of studies. TRIAL REGISTRATION: The meta-analysis was conducted according to PRISMA (Preferred Reporting of Systematic Reviews and Meta-Analyses) standards with a PROSPERO registration protocol (ID: CRD42023387182).


Asunto(s)
Memoria a Corto Plazo , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Memoria a Corto Plazo/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Terapia Cognitivo-Conductual/métodos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/rehabilitación , Trastornos de la Memoria/terapia , Entrenamiento Cognitivo
16.
Artículo en Inglés | MEDLINE | ID: mdl-39196738

RESUMEN

The hybrid brain-computer interface (BCI) is verified to reduce disadvantages of conventional BCI systems. Transcranial electrical stimulation (tES) can also improve the performance and applicability of BCI. However, enhancement in BCI performance attained solely from the perspective of users or solely from the angle of BCI system design is limited. In this study, a hybrid BCI system combining MI and SSVEP was proposed. Furthermore, transcranial alternating current stimulation (tACS) was utilized to enhance the performance of the proposed hybrid BCI system. The stimulation interface presented a depiction of grabbing a ball with both of hands, with left-hand and right-hand flickering at frequencies of 34 Hz and 35 Hz. Subjects watched the interface and imagined grabbing a ball with either left hand or right hand to perform SSVEP and MI task. The MI and SSVEP signals were processed separately using filter bank common spatial patterns (FBCSP) and filter bank canonical correlation analysis (FBCCA) algorithms, respectively. A fusion method was proposed to fuse the features extracted from MI and SSVEP. Twenty healthy subjects took part in the online experiment and underwent tACS sequentially. The fusion accuracy post-tACS reached 90.25% ± 11.40%, which was significantly different from pre-tACS. The fusion accuracy also surpassed MI accuracy and SSVEP accuracy respectively. These results indicated the superior performance of the hybrid BCI system and tACS would improve the performance of the hybrid BCI system.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Imaginación/fisiología , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Adulto Joven , Voluntarios Sanos , Desempeño Psicomotor/fisiología , Mano/fisiología , Reproducibilidad de los Resultados , Potenciales Evocados Visuales/fisiología , Potenciales Evocados Motores/fisiología
17.
J Psychiatr Res ; 178: 378-387, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208534

RESUMEN

BACKGROUND: Non-invasive brain stimulation (NIBS), including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), and transcranial direct current stimulation (tDCS), is an emerging intervention that has been used to treat various mental illnesses. However, previous studies have not comprehensively compared the efficacies of various NIBS modalities in alleviating anxiety symptoms among patients with generalized anxiety disorder (GAD). Therefore, this study conducted a systematic review and meta-analysis to assess the efficacy of NIBS for patients with GAD. METHODS: A systematic search of four major bibliographic databases (Embase, PubMed, Web of Science and The Cochrane Library) was conducted from inception dates to November 26, 2023 to identify eligible studies. The data were analyzed using a random-effects model. RESULTS: Seven randomized controlled trials (RCTs) were included in the meta-analysis. Significant differences were found in changes in Hamilton anxiety rating scale (HARS) scores, study-defined response, and remission between the intervention and control groups. Moreover, the intervention groups experienced a significantly higher frequency of headaches. CONCLUSION: The results revealed that interventions improved GAD compared to control groups. cTBS and rTMS exhibited better treatment efficacy than tDCS, which did not appear to have a significant therapeutic effect. Longer follow-up periods and larger sample sizes are required in future RCTs. TRIAL REGISTRATION: This meta-analysis was conducted in accordance with PRISMA guidelines and registered at PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, CRD42023466285).


Asunto(s)
Trastornos de Ansiedad , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Trastornos de Ansiedad/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Evaluación de Resultado en la Atención de Salud , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
Sci Rep ; 14(1): 20162, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39215020

RESUMEN

The benefits of learning a motor skill extend to improved task-specific cognitive abilities. The mechanistic underpinnings of this motor-cognition relationship potentially rely on overlapping neural resources involved in both processes, an assumption lacking causal evidence. We hypothesize that interfering with prefrontal networks would inhibit concurrent motor skill performance, long-term learning and associated cognitive functions dependent on similar networks (transfer). We conducted a randomised, double-blinded, sham-controlled brain stimulation study using transcranial direct current stimulation (tDCS) in young adults spanning over three weeks to assess the role of the prefrontal regions in learning a complex balance task and long-term cognitive performance. Balance training combined with active tDCS led to higher performance variability in the trained task as compared to the sham group, impacting the process of learning a complex task without affecting the learning rate. Furthermore, active tDCS also positively influenced performance in untrained motor and cognitive tasks. The findings of this study help ascertaining the networks directly involved in learning a complex motor task and its implications on cognitive function. Hence, opening up the possibility of harnessing the observed frontal networks involved in resource mobilization in instances of aging, brain lesion/injury or dysfunction.


Asunto(s)
Cognición , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Cognición/fisiología , Masculino , Femenino , Método Doble Ciego , Adulto , Adulto Joven , Destreza Motora/fisiología , Aprendizaje/fisiología
19.
Eur J Neurosci ; 60(5): 5086-5110, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39120435

RESUMEN

This systematic review and meta-analysis assesses independently the acute effects of anodal and cathodal motor cortex transcranial direct current stimulation (tDCS) on athletic performance in healthy adults. Besides, it evaluates the unique and conjoint effects of potential moderators (i.e., stimulation parameters, exercise type, subjects' training status and risk of bias). Online database search was performed from inception until March 18th 2024 (PROSPERO: CRD42023355461). Forty-three controlled trials were included in the systematic review, 40 in the anodal tDCS meta-analysis (68 effects), and 9 (11 effects) in the cathodal tDCS meta-analysis. Performance enhancement between pre- and post-stimulation was the main outcome measure considered. The anodal tDCS effects on physical performance were small to moderate (g = .29, 95%CI [.18, .40], PI = -.64 to 1.23, I2 = 64.0%). Exercise type, training status and use of commercial tDCS were significant moderators of the results. The cathodal tDCS effects were null (g = .04, 95%CI [-.05, .12], PI = -.14 to .23, I2 = 0%), with a small to moderate heterogeneity entirely due to sampling error, thus impairing further moderator analysis. These findings hold significant implications for the field of brain stimulation and physical performance, as they not only demonstrate a small to moderate effect of acute tDCS but also identify specific categories of individuals, devices and activities that are more susceptible to improvements. By addressing the multidimensional factors influencing the mechanisms of tDCS, we also provide suggestions for future research.


Asunto(s)
Rendimiento Atlético , Corteza Motora , Estimulación Transcraneal de Corriente Directa , Estimulación Transcraneal de Corriente Directa/métodos , Humanos , Corteza Motora/fisiología , Rendimiento Atlético/fisiología , Adulto
20.
PLoS One ; 19(8): e0298991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39186573

RESUMEN

In this randomized, double-blind, sham-controlled trial of Cerebellar Stimulation for Aphasia Rehabilitation (CeSAR), we will determine the effectiveness of cathodal tDCS (transcranial direct current stimulation) to the right cerebellum for the treatment of chronic aphasia (>6 months post stroke). We will test the hypothesis that cerebellar tDCS in combination with an evidenced-based anomia treatment (semantic feature analysis, SFA) will be associated with greater improvement in naming untrained pictures (as measured by the change in Philadelphia Picture Naming Test), 1-week post-treatment, compared to sham plus SFA. We will also evaluate the effects of cerebellar tDCS on naming trained items as well as the effects on functional communication, content, efficiency, and word-retrieval of picture description, and quality of life. Finally, we will identify imaging and linguistic biomarkers to determine the characteristics of stroke patients that benefit from cerebellar tDCS and SFA treatment. We expect to enroll 60 participants over five years. Participants will receive 15, 25-minute sessions of cerebellar tDCS (3-5 sessions per week) or sham tDCS combined with 1 hour of SFA treatment. Participants will be evaluated prior to the start of treatment, one-week post-treatment, 1-, 3-, and 6-months post-treatment on primary and secondary outcome variables. The long-term aim of this study is to provide the basis for a Phase III randomized controlled trial of cerebellar tDCS vs sham with concurrent language therapy for treatment of chronic aphasia. Trial registration: The trial is registered with ClinicalTrials.gov NCT05093673.


Asunto(s)
Afasia , Cerebelo , Estimulación Transcraneal de Corriente Directa , Humanos , Afasia/rehabilitación , Afasia/terapia , Afasia/etiología , Método Doble Ciego , Estimulación Transcraneal de Corriente Directa/métodos , Cerebelo/fisiopatología , Masculino , Femenino , Rehabilitación de Accidente Cerebrovascular/métodos , Persona de Mediana Edad , Calidad de Vida , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Adulto , Resultado del Tratamiento , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA