Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.381
Filtrar
1.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39245849

RESUMEN

Definitions of human pain acknowledge at least two dimensions of pain, affective and sensory, described as separable and thus potentially differentially modifiable. Using electroencephalography, we investigated perceptual and neural changes of emotional pain modulation in healthy individuals. Painful electrical stimuli were applied after presentation of priming emotional pictures (negative, neutral, positive) and followed by pain intensity and unpleasantness ratings. We found that perceptual and neural event-related potential responses to painful stimulation were significantly modulated by emotional valence. Specifically, pain unpleasantness but not pain intensity ratings were increased when pain was preceded by negative compared to neutral or positive pictures. Amplitudes of N2 were higher when pain was preceded by neutral compared to negative and positive pictures, and P2 amplitudes were higher for negative compared to neutral and positive pictures. In addition, a hierarchical regression analysis revealed that P2 alone and not N2, predicted pain perception. Finally, source analysis showed the anterior cingulate cortex and the thalamus as main spatial clusters accounting for the neural changes in pain processing. These findings provide evidence for a separation of the sensory and affective dimensions of pain and open new perspectives for mechanisms of pain modulation.


Asunto(s)
Electroencefalografía , Emociones , Dolor , Humanos , Masculino , Femenino , Emociones/fisiología , Dolor/psicología , Dolor/fisiopatología , Adulto Joven , Adulto , Potenciales Evocados/fisiología , Percepción del Dolor/fisiología , Encéfalo/fisiología , Estimulación Eléctrica , Estimulación Luminosa/métodos , Dimensión del Dolor , Mapeo Encefálico
2.
Proc Natl Acad Sci U S A ; 121(37): e2411293121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236235

RESUMEN

The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' postsaccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.


Asunto(s)
Movimientos Sacádicos , Campos Visuales , Percepción Visual , Humanos , Movimientos Sacádicos/fisiología , Adulto , Percepción Visual/fisiología , Femenino , Masculino , Campos Visuales/fisiología , Estimulación Luminosa/métodos , Adulto Joven , Sensibilidad de Contraste/fisiología
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 684-691, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218593

RESUMEN

This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects' brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.


Asunto(s)
Realidad Aumentada , Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Evocados Visuales , Humanos , Potenciales Evocados Visuales/fisiología , Estimulación Luminosa , Interfaz Usuario-Computador , Algoritmos
4.
Cogn Sci ; 48(9): e13498, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39283263

RESUMEN

Visual working memory (VWM) refers to the temporary storage and manipulation of visual information. Although visually different, objects we view and remember can share the same higher-level category information, such as an apple, orange, and banana all being classified as fruit. We study the influence of category information on VWM, focusing on the question of whether stimulus category coherence (i.e., whether all to-be-remembered items belong to the same semantic category) influences VWM performance. This question is addressed in two behavioral experiments using a change-detection paradigm and a rational analysis using an ideal observer based on a Bayesian model. Both experimental participants and the ideal observer often, but not always, performed numerically better on coherent trials (i.e., when all stimuli belonged to the same category). We hypothesize that the influence of category coherence information on VWM may be task-dependent and/or stimulus-dependent. In conditions when category coherence information is highly valuable for task performance, as indicated by the ideal observer, then participants tended to make use of it. However, when the ideal observer suggested this information was not crucial to performance, participants did not. In addition, both participants and the ideal observer showed a bias toward responding "same," and often showed a stronger influence of category coherence on change trials. The consistencies between participant and ideal observer responses suggest participants often behaved as they did because these behaviors are optimal (or approximately so) for maximizing task performance. This may help explain conflicting results reported in the scientific literature.


Asunto(s)
Teorema de Bayes , Memoria a Corto Plazo , Percepción Visual , Humanos , Memoria a Corto Plazo/fisiología , Percepción Visual/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Estimulación Luminosa
5.
Sci Adv ; 10(37): eadm7385, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39259799

RESUMEN

Color discrimination is fundamental to human behavior. We find bananas by coarsely searching for yellow but then differentiate nuances of yellow to pick the best exemplars. How does the brain adjust the resolution of color selectivity to our changing needs? Here, we analyze the brain magnetic response in the human visual cortex to show that color selectivity is adaptively set by coarse- and fine-resolving processes running in parallel at different hierarchical levels. Those include a gain enhancement in the higher-lever cortex of color units tuned away from the target to resolve very similar colors and a coarsely resolving gain enhancement in the mid-level cortex of units tuned to the target. Our findings suggest that attention operates on a form of multiresolution representation of color at different levels in the visual hierarchy, which keeps selectivity adaptive to a changing resolution context.


Asunto(s)
Percepción de Color , Corteza Visual , Humanos , Corteza Visual/fisiología , Percepción de Color/fisiología , Masculino , Femenino , Adulto , Estimulación Luminosa , Imagen por Resonancia Magnética , Mapeo Encefálico , Color
6.
Nat Commun ; 15(1): 7964, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261491

RESUMEN

Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.


Asunto(s)
Movimientos Oculares , Fijación Ocular , Retina , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/fisiología , Retina/fisiología , Movimientos Oculares/fisiología , Masculino , Fijación Ocular/fisiología , Macaca mulatta , Teorema de Bayes , Algoritmos , Potenciales de Acción/fisiología , Estimulación Luminosa , Modelos Neurológicos
7.
Cephalalgia ; 44(9): 3331024241276501, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279320

RESUMEN

BACKGROUND: It is still debatable whether the mechanisms underlying photophobia are related to altered visual cortex excitability or specific abnormalities of colour-related focal macular retino-thalamic information processing. METHODS: This cross-sectional study examined Ganzfeld blue-red (B-R) and blue-yellow (B-Y) focal macular cone flash ERG (ffERG) and focal-flash visual evoked potentials (ffVEPs) simultaneously in a group of migraine patients with (n = 18) and without (n = 19) aura during the interictal phase, in comparison to a group of healthy volunteers (HVs) (n = 20). We correlate the resulting retinal and cortical electrophysiological responses with subjective discomfort from exposure to bright light verified on a numerical scale. RESULTS: Compared to HVs, the amplitude and phase of the first and second harmonic of ffERG and ffVEPs were non-significantly different in migraine patients without aura and migraine patients with aura for both the B-R and the B-Y focal stimuli. Pearson's correlation test did not disclose correlations between clinical variables, including the photophobia scale and electrophysiological variables. CONCLUSIONS: These results do not favour interictal functional abnormalities in L-M- and S-cone opponent visual pathways in patients with migraine. They also suggest that the discomfort resulting from exposure to bright light is not related to focal macular retinal-to-visual cortex pathway.


Asunto(s)
Electrorretinografía , Potenciales Evocados Visuales , Trastornos Migrañosos , Fotofobia , Células Fotorreceptoras Retinianas Conos , Humanos , Fotofobia/fisiopatología , Femenino , Masculino , Adulto , Potenciales Evocados Visuales/fisiología , Estudios Transversales , Trastornos Migrañosos/fisiopatología , Células Fotorreceptoras Retinianas Conos/fisiología , Persona de Mediana Edad , Estimulación Luminosa/métodos , Adulto Joven
8.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39233375

RESUMEN

Our understanding of the neurobiology underlying cognitive dysfunction in persons with cerebral palsy is very limited, especially in the neurocognitive domain of visual selective attention. This investigation utilized magnetoencephalography and an Eriksen arrow-based flanker task to quantify the dynamics underlying selective attention in a cohort of youth and adults with cerebral palsy (n = 31; age range = 9 to 47 yr) and neurotypical controls (n = 38; age range = 11 to 49 yr). The magnetoencephalography data were transformed into the time-frequency domain to identify neural oscillatory responses and imaged using a beamforming approach. The behavioral results indicated that all participants exhibited a flanker effect (greater response time for the incongruent compared to congruent condition) and that individuals with cerebral palsy were slower and less accurate during task performance. We computed interference maps to focus on the attentional component and found aberrant alpha (8 to 14 Hz) oscillations in the right primary visual cortices in the group with cerebral palsy. Alpha and theta (4 to 7 Hz) oscillations were also seen in the left and right insula, and these oscillations varied with age across all participants. Overall, persons with cerebral palsy exhibit deficiencies in the cortical dynamics serving visual selective attention, but these aberrations do not appear to be uniquely affected by age.


Asunto(s)
Ritmo alfa , Atención , Parálisis Cerebral , Magnetoencefalografía , Humanos , Adulto , Parálisis Cerebral/fisiopatología , Adolescente , Masculino , Femenino , Adulto Joven , Atención/fisiología , Niño , Persona de Mediana Edad , Ritmo alfa/fisiología , Percepción Visual/fisiología , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología
9.
Elife ; 122024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234821

RESUMEN

Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While many studies have investigated how color information is processed in visual brain areas of primate species, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of natural scenes experienced by mice. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of 'predatory'-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species.


Asunto(s)
Visión de Colores , Corteza Visual , Animales , Ratones , Visión de Colores/fisiología , Corteza Visual/fisiología , Percepción de Color/fisiología , Estimulación Luminosa , Ratones Endogámicos C57BL , Neuronas/fisiología , Corteza Visual Primaria/fisiología , Masculino
10.
BMC Psychol ; 12(1): 469, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223690

RESUMEN

In environments teeming with distractions, the ability to selectively focus on relevant information is crucial for advanced cognitive processing. Existing research using event-related potential (ERP) technology has shown active suppression of irrelevant stimuli during the consolidation phase of visual working memory (VWM). In previous studies, participants have always been given sufficient time to consolidate VWM, while suppressing distracting information. However, it remains unclear whether the suppression of irrelevant distractors requires continuous effort throughout their presence or whether this suppression is only necessary after the consolidation of task-relevant information. To address this question, our study examines whether distractor suppression is necessary in scenarios where consolidation time is limited. This research investigates the effect of varying presentation durations on the filtering of distractors in VWM. We tasked participants with memorizing two color stimuli and ignoring four distractors, presented for either 50 ms or 200 ms. Using ERP technology, we discovered that the distractor-induced distractor positivity (PD) amplitude is larger during longer presentation durations compared to shorter ones. These findings underscore the significant impact of presentation duration on the efficacy of distractor suppression in VWM, as prolonged exposure results in a stronger suppression effect on distractors. This study sheds light on the temporal dynamics of attention and memory, emphasizing the critical role of stimulus timing in cognitive tasks. These findings provide valuable insights into the mechanisms underlying VWM and have significant implications for models of attention and memory.


Asunto(s)
Atención , Electroencefalografía , Potenciales Evocados , Memoria a Corto Plazo , Percepción Visual , Humanos , Memoria a Corto Plazo/fisiología , Atención/fisiología , Masculino , Femenino , Potenciales Evocados/fisiología , Adulto Joven , Adulto , Percepción Visual/fisiología , Factores de Tiempo , Estimulación Luminosa
11.
J Vis ; 24(9): 1, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226069

RESUMEN

Most research on visual search has used simple tasks presented on a computer screen. However, in natural situations visual search almost always involves eye, head, and body movements in a three-dimensional (3D) environment. The different constraints imposed by these two types of search tasks might explain some of the discrepancies in our understanding concerning the use of memory resources and the role of contextual objects during search. To explore this issue, we analyzed a visual search task performed in an immersive virtual reality apartment. Participants searched for a series of geometric 3D objects while eye movements and head coordinates were recorded. Participants explored the apartment to locate target objects whose location and visibility were manipulated. For objects with reliable locations, we found that repeated searches led to a decrease in search time and number of fixations and to a reduction of errors. Searching for those objects that had been visible in previous trials but were only tested at the end of the experiment was also easier than finding objects for the first time, indicating incidental learning of context. More importantly, we found that body movements showed changes that reflected memory for target location: trajectories were shorter and movement velocities were higher, but only for those objects that had been searched for multiple times. We conclude that memory of 3D space and target location is a critical component of visual search and also modifies movement kinematics. In natural search, memory is used to optimize movement control and reduce energetic costs.


Asunto(s)
Movimientos Oculares , Memoria Espacial , Realidad Virtual , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Movimientos Oculares/fisiología , Memoria Espacial/fisiología , Percepción Espacial/fisiología , Movimientos de la Cabeza/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Tiempo de Reacción/fisiología
12.
Proc Natl Acad Sci U S A ; 121(37): e2408067121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226351

RESUMEN

Humans explore visual scenes by alternating short fixations with saccades directing the fovea to points of interest. During fixation, the visual system not only examines the foveal stimulus at high resolution, but it also processes the extrafoveal input to plan the next saccade. Although foveal analysis and peripheral selection occur in parallel, little is known about the temporal dynamics of foveal and peripheral processing upon saccade landing, during fixation. Here we investigate whether the ability to localize changes across the visual field differs depending on when the change occurs during fixation, and on whether the change localization involves foveal, extrafoveal processing, or both. Our findings reveal that the ability to localize changes in peripheral areas of the visual field improves as a function of time after fixation onset, whereas localization accuracy for foveal stimuli remains approximately constant. Importantly, this pattern holds regardless of whether individuals monitor only foveal or peripheral stimuli, or both simultaneously. Altogether, these results show that the visual system is more attuned to the foveal input early on during fixation, whereas change localization for peripheral stimuli progressively improves throughout fixation, possibly as a consequence of an increased readiness to plan the next saccade.


Asunto(s)
Fijación Ocular , Fóvea Central , Movimientos Sacádicos , Campos Visuales , Humanos , Fijación Ocular/fisiología , Fóvea Central/fisiología , Movimientos Sacádicos/fisiología , Masculino , Femenino , Adulto , Campos Visuales/fisiología , Adulto Joven , Estimulación Luminosa/métodos , Percepción Visual/fisiología
13.
Cognition ; 253: 105940, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39226734

RESUMEN

A simple button press towards a prime stimulus enhances subsequent visual search for objects that match the prime. The present study investigated whether this action effect is a general phenomenon across different task domains, and the underlying neural mechanisms. The action effect was measured in an unspeeded size-matching task, with the presentation of the central target and the surrounding inducers of the Ebbinghaus illusion together to one eye or separately to each eye, and when repetitive TMS was applied over right primary motor cortex (M1). The results showed that a prior key-press significantly reduced the illusion effect compared to passive viewing. Notably, the action effect persisted with dichoptic presentation of the Ebbinghaus configuration, but disappeared with the right M1 disruption. These results suggest that action guides visual perception to influence human behavior, which mainly affects the late visual processing stage and probably relies on feedback projections from the motor cortex.


Asunto(s)
Corteza Motora , Desempeño Psicomotor , Percepción del Tamaño , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Corteza Motora/fisiología , Percepción del Tamaño/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Estimulación Luminosa
14.
J Vis ; 24(9): 8, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39254964

RESUMEN

Classic change blindness is the phenomenon where seemingly obvious changes that coincide with visual disruptions (such as blinks or brief blanks) go unnoticed by an attentive observer. Some early work into the causes of classic change blindness suggested that any pre-change stimulus representation is overwritten by a representation of the altered post-change stimulus, preventing change detection. However, recent work revealed that, even when observers do maintain memory representations of both the pre- and post-change stimulus states, they can still miss the change, suggesting that change blindness can also arise from a failure to compare the stored representations. Here, we studied slow change blindness, a related phenomenon that occurs even in the absence of visual disruptions when the change occurs sufficiently slowly, to determine whether it could be explained by conclusions from classic change blindness. Across three different slow change blindness experiments we found that observers who consistently failed to notice the change had access to at least two memory representations of the changing display. One representation was precise but short lived: a detailed representation of the more recent stimulus states, but fragile. The other representation lasted longer but was fairly general: stable but too coarse to differentiate the various stages of the change. These findings suggest that, although multiple representations are formed, the failure to compare hypotheses might not explain slow change blindness; even if a comparison were made, the representations would be too sparse (longer term stores) or too fragile (short-lived stores) for such comparison to inform about the change.


Asunto(s)
Estimulación Luminosa , Humanos , Estimulación Luminosa/métodos , Atención/fisiología , Memoria/fisiología , Adulto , Percepción Visual/fisiología , Adulto Joven , Masculino , Femenino
15.
J Vis ; 24(9): 9, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39259169

RESUMEN

The contents of visual perception are inherently dynamic-just as we experience objects in space, so too events in time. The boundaries between these events have downstream consequences. For example, memory for incidentally encountered items is impaired when walking through a doorway, perhaps because event boundaries serve as cues to clear obsolete information from previous events. Although this kind of "memory flushing" can be adaptive, work on visual working memory (VWM) has focused on the opposite function of active maintenance in the face of distraction. How do these two cognitive operations interact? In this study, observers watched animations in which they walked through three-dimensionally rendered rooms with picture frames on the walls. Within the frames, observers either saw images that they had to remember ("encoding") or recalled images they had seen in the immediately preceding frame ("test"). Half of the time, a doorway was crossed during the delay between encoding and test. Across experiments, there was a consistent memory decrement for the first image encoded in the doorway compared to the no-doorway condition while equating time elapsed, distance traveled, and distractibility of the doorway. This decrement despite top-down VWM efforts highlights the power of event boundaries to structure what and when we forget.


Asunto(s)
Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Adulto Joven , Percepción Visual/fisiología , Masculino , Atención/fisiología , Femenino , Estimulación Luminosa/métodos , Adulto , Señales (Psicología)
16.
J Vis ; 24(9): 10, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39259170

RESUMEN

The lightness of a surface depends not only on the amount of light reflected off, it but also on the context in which it is embedded. Despite a long history of research, neural correlates of context-dependent lightness perception remain a topic of ongoing debate. Here, we seek to expand on the existing literature by measuring functional magnetic resonance imaging (fMRI) responses to lightness variations induced by the context. During the fMRI experiment, we presented 10 participants with a dynamic stimulus in which either the luminance of a disk or its surround is modulated at four different frequencies ranging from 1 to 8 Hz. Behaviorally, when the surround luminance is modulated at low frequencies, participants perceive an illusory change in the lightness of the disk (lightness induction). In contrast, they perceive little or no induction at higher frequencies. Using this frequency dependence and controlling for long-range responses to border contrast and luminance changes, we found that activity in the primary visual cortex (V1) correlates with lightness induction, providing further evidence for the involvement of V1 in the processing of context-dependent lightness.


Asunto(s)
Sensibilidad de Contraste , Imagen por Resonancia Magnética , Estimulación Luminosa , Humanos , Imagen por Resonancia Magnética/métodos , Adulto , Masculino , Estimulación Luminosa/métodos , Femenino , Sensibilidad de Contraste/fisiología , Adulto Joven , Corteza Visual Primaria/fisiología , Corteza Visual/fisiología , Luz
17.
Sci Rep ; 14(1): 21335, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266687

RESUMEN

Cinema, a modern titan of entertainment, holds power to move people with the artful manipulation of auditory and visual stimuli. Despite this, the mechanisms behind how sensory stimuli elicit emotional responses are unknown. Thus, this study evaluated which brain regions were involved when sensory stimuli evoke auditory- or visual-driven emotions during film viewing. Using functional magnetic resonance imaging (fMRI) decoding techniques, we found that brain activities in the auditory area and insula represent the stimuli that evoke emotional response. The observation of brain activities in these regions could provide further insights to these mechanisms for the improvement of film-making, as well as the development of novel neural techniques in neuroscience. In near feature, such a "neuro-designed" products/ applications might gain in popularity.


Asunto(s)
Corteza Auditiva , Mapeo Encefálico , Emociones , Corteza Insular , Imagen por Resonancia Magnética , Humanos , Emociones/fisiología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Adulto Joven , Mapeo Encefálico/métodos , Corteza Auditiva/fisiología , Corteza Auditiva/diagnóstico por imagen , Corteza Insular/fisiología , Corteza Insular/diagnóstico por imagen , Estimulación Acústica , Estimulación Luminosa/métodos
18.
Sci Rep ; 14(1): 21296, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266612

RESUMEN

Motion-onset visual evoked potentials (MO VEPs) are robust to dioptric blur when low contrast and low spatial frequency patterns are used for stimulation. To reveal mechanisms of MO VEPs robustness, we studied whether the resistance to defocus persists even when using a high-contrast checkerboard using digital defocus in the emmetropic eyes of 13 subjects (males 20-60 years). We compared the dominant components of MO VEPs to pattern-reversal VEPs (PR VEP), which are sensitive to the blur. For stimulation, we used checkerboard patterns with 15´ and 60´ checks. To defocus the checkerboard, we rendered it with a second-order Zernike polynomial ( Z 2 0 ) with an equivalent defocus of 0, 2, or 4 D. For PR VEP, the checkerboards were reversed in terms of their contrast. To evoke MO VEP, the checkerboard of 60´ checks moved for 200 ms with a speed of 5 or 10 deg/s in the cardinal directions. The MO VEP did not change in peak time (P ≥ 0.0747) or interpeak amplitude (P > 0.0772) with digital blur. In contrast, for PR VEP, the results showed a decrease in interpeak amplitude (P ≤ 6.65ˑ10-4) and an increase in peak time (P ≤ 0.0385). Thus, we demonstrated that MO VEPs evoked by checkerboard, structure containing high spatial content, can be robust to defocus.


Asunto(s)
Potenciales Evocados Visuales , Humanos , Adulto , Masculino , Potenciales Evocados Visuales/fisiología , Persona de Mediana Edad , Adulto Joven , Femenino , Percepción de Movimiento/fisiología , Estimulación Luminosa
19.
J Neural Eng ; 21(5)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39231466

RESUMEN

Objective.Steady-state visual evoked potentials (SSVEPs) in response to flickering stimuli are popular in brain-computer interfacing but their implementation in virtual reality (VR) offers new opportunities also for clinical applications. While traditional SSVEP target selection relies on single-frequency stimulation of both eyes simultaneously, further called congruent stimulation, recent studies attempted to improve the information transfer rate by using dual-frequency-coded SSVEP where each eye is presented with a stimulus flickering at a different frequency, further called incongruent stimulation. However, few studies have investigated incongruent multifrequency-coded SSVEP (MultiIncong-SSVEP).Approach.This paper reports on a systematical investigation of incongruent dual-, triple-, and quadruple-frequency-coded SSVEP for use in VR, several of which are entirely novel, and compares their performance with that of congruent dual-frequency-coded SSVEP.Main results.We were able to confirm the presence of a summation effect when comparing monocular- and binocular single-frequency congruent stimulation, and a suppression effect when comparing monocular- and binocular dual-frequency incongruent stimulation, as both tap into the binocular vision capabilities which, when hampered, could signal amblyopia.Significance.In sum, our findings not only evidence the potential of VR-based binocularly incongruent SSVEP but also underscore the importance of paradigm choice and decoder design to optimize system performance and user comfort.


Asunto(s)
Electroencefalografía , Potenciales Evocados Visuales , Estudios de Factibilidad , Estimulación Luminosa , Realidad Virtual , Visión Binocular , Humanos , Potenciales Evocados Visuales/fisiología , Visión Binocular/fisiología , Masculino , Femenino , Adulto , Estimulación Luminosa/métodos , Adulto Joven , Electroencefalografía/métodos , Interfaces Cerebro-Computador
20.
PLoS One ; 19(9): e0310282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39264932

RESUMEN

Color vision in honeybees is a well-documented perceptual phenomenon including multiple behavioral tests of trichromaticity and color opponency. Data on the combined color/space properties of high order visual neurons in the bee brain is however limited. Here we fill this gap by analyzing the activity of neurons in the anterior optic tract (AOT), a high order brain region suggested to be involved in chromatic processing. The spectral response properties of 72 units were measured using UV, blue and green light stimuli presented in 266 positions of the visual field. The majority of these units comprise combined chromatic-spatial processing properties. We found eight different neuron categories in terms of their spectral, spatial and temporal response properties. Color-opponent neurons, the most abundant neural category in the AOT, present large receptive fields and activity patterns that were typically opponent between UV and blue or green, particularly during the on-tonic response phase. Receptive field shapes and activity patterns of these color processing neurons are more similar between blue and green, than between UV and blue or green. We also identified intricate spatial antagonism and double spectral opponency in some receptive fields of color-opponent units. Stimulation protocols with different color combinations applied to 21 AOT units allowed us to uncover additional levels of spectral antagonism and hidden inhibitory inputs, even in some units that were initially classified as broad-band neurons based in their responses to single spectral lights. The results are discussed in the context of floral color discrimination and celestial spectral gradients.


Asunto(s)
Encéfalo , Percepción de Color , Neuronas , Animales , Abejas/fisiología , Neuronas/fisiología , Percepción de Color/fisiología , Encéfalo/fisiología , Estimulación Luminosa , Vías Visuales/fisiología , Campos Visuales/fisiología , Visión de Colores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA