RESUMEN
This study aimed to evaluate the impact of long-term liquid dairy manure (LDM) application on the activity and structure of soil bacterial and archaea communities in two cropping seasons over 1 year of a no-till crop rotation system. The experiment was run in a sandy clay loam texture Oxisol, in Brazil, including LDM doses of 60, 120, and 180 m3 ha-1 year-1, installed in 2005. Soil sampling was conducted during spring 2018 and autumn 2019 at 0-10-cm depth. Microbial biomass carbon and nitrogen, 16S rRNA gene sequencing, microbial respiration and quotient were performed. Over the 14-year period, LDM application increased soil microbial community activity. Analysis of 16S rRNA gene sequencing revealed dominance by Proteobacteria, Acidobacteria, and Actinobacteria phyla (67% in spring and 70% in autumn). Genera Pirulla and Nitrososphaera showed enrichment at LDM doses of 120 and 180 m3 ha-1 year-1 doses, respectively. During spring, following black oat cropping, shifts in the relative abundance of Bacteroidetes, Proteobacteria, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Chloroflexi, Actinobacteria, and AD3 phyla were observed due to LDM application, correlating with soil chemical indicators such as pH, K, Ca, Mn, and Zn. Our findings indicate that plant development strongly influences microbial community composition, potentially outweighing the impact of LDM. Our findings indicate that the application of liquid dairy manure alters the soil bacterial activity and community; however, this effect depends on the developing plant.
Asunto(s)
Archaea , Bacterias , Estiércol , Microbiología del Suelo , Suelo , Estiércol/microbiología , Suelo/química , ARN Ribosómico 16S , Brasil , Agricultura/métodos , Industria LecheraRESUMEN
Sugarcane is a central crop for sugar and ethanol production. Investing in sustainable practices can enhance productivity, technological quality, mitigate impacts, and contribute to a cleaner energy future. Among the factors that help increase the productivity of sugarcane, the physical, chemical and biological parameters of the soil are amongst the most important. The use of poultry litter has been an important alternative for soil improvement, as it acts as a soil conditioner. Therefore, this work aimed to verify the best doses of poultry litter for the vegetative, reproductive and technological components of sugarcane. The experiment was carried out at Usina Denusa Destilaria Nova União S/A in the municipality of Jandaia, GO. The experimental design used was a complete randomized block design with four replications: 5 × 4, totaling 20 experimental units. The evaluated factor consisted of four doses of poultry litter plus the control (0 (control), 2, 4, 6 and 8 t ha-1). In this study, were evaluated the number of tillers, lower stem diameter, average stem diameter, upper stem diameter, plant height, stem weight and productivity. The technological variables of total recoverable sugar, recoverable sugar, Brix, fiber, purity and percentage of oligosaccharides were also evaluated. It was observed, within the conditions of this experiment, that the insertion of poultry litter did not interfere significantly in most biometric, productive and technological variables of the sugarcane. But it can also be inferred that there was a statistical trend toward better results when the sugarcane was cultivated with 4 t ha-1 of poultry litter.
Asunto(s)
Aves de Corral , Saccharum , Animales , Suelo/química , Agricultura/métodos , Estiércol , Producción de Cultivos/métodosRESUMEN
With the expansion of organic agriculture, research is needed to indicate economically and ecologically viable fertilizer options, especially in semiarid regions, with low soil organic matter and nitrogen content. In the Brazilian semiarid region, vermicomposts are widely used by farmers and are scientifically investigated; however, there is no information for millicompost, a new type of organic compound that has shown very promising results in other regions. Thus, this study aimed to analyze the decomposition rate, nutrient release, and microstructure evaluation of vermicomposts from different sources and of millicompost produced from plant residues, with the application of mineral nitrogen-urea and organo-mineral fertilizer in the Brazilian semiarid region. The experimental design was a randomized block in a 4 × 3 factorial scheme, with four replicates; four organic composts (millicompost, commercial vermicompost, vermicompost from bovine manure, vermicompost from goat manure); and three types of fertilization (without fertilizer, with mineral-urea and organo-mineral fertilizer). The organic composts were decomposed using litterbags at the soil surface. The variable's decomposition rate and the nutrient release were evaluated at six-time intervals (0, 30, 60, 90, 120, and 150 days), and microstructure was evaluated at the beginning and the end of the experiment, with scanning electron microscopy (SEM). The highest decomposition was verified for commercial vermicompost rich in macro and micronutrients and with lower P contents. The lignin:N ratio and the initial P content were more important in the permanence of the organic compost in the field than the C:N ratio. Regardless of the organic composts, the use of urea as a mineral fertilizer stimulated decomposition more than the organo-mineral fertilizer. The initial composition of the nutrients was decisive in the dynamics of nutrient release, mass loss, and decomposition of C. There was no pattern in the release order of macronutrients. However, for the micronutrients, the release order was Cu > Fe > Mn, in all treatments. Microstructure analysis is a visual analysis where differences are detected through microphotographs and the biggest difference occurred with millicompost, which showed elongated fibers and fiber bundles, forming a relatively open structure characteristic of the presence of fulvic acid. However, the addition of organo-mineral fertilizer formed agglomerates in compacted micro-portions, helping the mineralization of C and N.
Asunto(s)
Agricultura , Fertilizantes , Nitrógeno , Suelo , Suelo/química , Compostaje , Animales , Brasil , Estiércol , NutrientesRESUMEN
The use of fertilizers affects not only the soil fertility and crop yield, but also significantly changes the taxonomic structure of the soil microbiocenosis. Here, based on stationary field experiment, we studied the influence of organo-mineral fertilizer (ÐÐF), modified by bacteria Bacillus subtilis, H-13 in comparison with different fertilizer systems (organic, mineral, organo-mineral) on (i) crop yield, (ii) physical and chemical properties, and (iii) alpha and beta diversity of the microbial community Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric). The studies were carried out against the background of liming (ÑÐÐCl - 5.9) and without it (ÑÐÐCl - 5.1). The use of only one cattle farmyard manure was less effective than its co-application with mineral fertilizers in half doses. A similar effect was obtained when applying ÐÐF. In addition, the use of OMF contributes to a significant increase in the reserves of soil organic carbon in the soil layer 0-20 cm by 18%-32%. Using high-throughput sequencing of the 16S rRNA variable V4 gene sequence libraries, 10.759 taxa from 456 genera were identified, assigned to 34 fila (31 bacterial and 3 archaeotic. Unilateral application of mineral fertilizers leads to a significant decrease in the alpha diversity of the structure of soil microbial communities (OTE (other things equal) and Shannon index). A clear clustering of the microbiota was found in the variants with and without the introduction of Ñattle farmyard manure. It is revealed that the taxonomic structure of the microbiocenosis is formed under the influence of two main factors: crop rotation culture and applied fertilizers. The type of cultivated crop determines the dynamics of the microbiota at the level of larger taxa, such as domains, and fertilizers affect the structure of the microbial community at a lower taxonomic level (phyla, orders, bloodlines). On the basis of the Deseq analysis, marker taxa were identified, according to the share participation of which it is possible to determine the type of cultivated crop and fertilizers used in the experiment. Understanding the dynamics of taxa association and other influential factors can lead to the creation of universal systems of metagenomic indication, where tracking the dynamics of microbial communities will allow for a comprehensive assessment of the agroecological state of soils and timely decisions to prevent their degradation.
Asunto(s)
Productos Agrícolas , Fertilizantes , Microbiología del Suelo , Suelo , Fertilizantes/análisis , Suelo/química , Productos Agrícolas/microbiología , Federación de Rusia , Agricultura/métodos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Animales , Bovinos , Microbiota , Estiércol/microbiologíaRESUMEN
Escherichia coli is one of the key bacteria responsible for a variety of diseases in humans and livestock-associated infections around the globe. It is the leading cause of mortality in neonatal and weaned piglets in pig husbandry, causing diarrhea and significant harm to the industry. Furthermore, the frequent and intensive use of antimicrobials for the prevention of diseases, particularly gastrointestinal diseases, may promote the selection of multidrug-resistant (MDR) strains. These resistant genotypes can be transmitted through the excrement of animals, including swine. It is common practice to use porcine manure processed by biodigesters as fertilizer. This study aimed to examine the antimicrobial susceptibility, the presence of virulence genes frequently associated with pathotypes of intestinal pathogenic E. coli (InPEC), and antimicrobial resistance genes (ARGs) of 28 E. coli isolates collected from swine manure fertilizers. In addition, the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) technique was used to investigate the genetic relationship among the strains. Using disk diffusion, the antimicrobial susceptibility profiles of the strains were determined. Using polymerase chain reaction (PCR), 14 distinct virulence genes associated with the most prevalent diarrhea and intestinal pathogenic E. coli (DEC/InPEC) and five ARGs were analyzed. All isolates tested positive for multidrug resistance. There was no detection of any of the 14 virulence genes associated with InPECs, indicating the presence of an avirulent commensal microbiota. Molecular classification by ERIC-PCR revealed that the majority of isolates (27 isolates) coalesced into a larger cluster with a genetic similarity of 47.7%; only one strain did not cluster in this cluster, indicating a high level of genetic diversity among the analyzed isolates. Thus, it is of the utmost importance to conduct epidemiological surveillance of animal breeding facilities in order to determine their microbiota and formulate plans to reduce the use of antimicrobials and improve animal welfare.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Fertilizantes , Estiércol , Animales , Porcinos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Estiércol/microbiología , Brasil , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacologíaRESUMEN
The bacterial composition of and the circulation of antimicrobial resistance genes (ARGs) in waste from Brazilian swine farms are still poorly understood. Considering that antimicrobial resistance (AMR) is one of the main threats to human, animal, and environmental health, the need to accurately assess the load of ARGs released into the environment is urgent. Therefore, this study aimed to characterize the microbiota in a swine farm in southern Brazil and the resistome in swine farm wastewater treated in a series of waste stabilization ponds (WSPs). Samples were collected from farm facilities and the surrounding environment, representing all levels of swine manure within the treatment system. Total metagenomic sequencing was performed on samples from WSPs, and 16S-rDNA sequencing was performed on all the collected samples. The results showed increased bacterial diversity in WSPs, characterized by the presence of Caldatribacteriota, Cloacimonadota, Desulfobacterota, Spirochaetota, Synergistota, and Verrucomicrobiota. Furthermore, resistance genes to tetracyclines, lincosamides, macrolides, rifamycin, phenicol, and genes conferring multidrug resistance were detected in WSPs samples. Interestingly, the most abundant ARG was linG, which confers resistance to the lincosamides. Notably, genes conferring macrolide (mphG and mefC) and rifamycin (rpoB_RIF) resistance appeared in greater numbers in the late WSPs. These drugs are among the high-priority antibiotic classes for human health. Moreover, certain mobile genetic elements (MGEs) were identified in the samples, notably tnpA, which was found in high abundance. These elements are of particular concern due to their potential to facilitate the dissemination of ARGs among bacteria. In summary, the results indicate that, in the studied farm, the swine manure treatment system could not eliminate ARGs and MGEs. Our results validate concerns about Brazil's swine production system. The misuse and overuse of antimicrobials during animal production must be avoided to mitigate AMR.
Asunto(s)
Antibacterianos , Bacterias , Farmacorresistencia Bacteriana , Granjas , Animales , Porcinos , Brasil , Bacterias/genética , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Genes Bacterianos , Aguas Residuales/microbiología , Estiércol/microbiología , Microbiota/efectos de los fármacos , Microbiota/genéticaRESUMEN
Green manure (GM) may reduce the use of chemical fertilizers, been an ecologically appropriate strategy to cultivation of medicinal plants. Crotalaria juncea, is one of the most used because it adapts to different climatic and high nitrogen content. Origanum vulgare. is widely used in cooking, pharmaceutical, cosmetic industries and food products. The objectives of this study were to evaluate the GM on biomass, essential oil (EO), phenolic and antioxidant. The experiment consisted: control; 150, 300, 450, and 600 g (Sh= leaves+steam) more 200 g roots (R); 600 g aerial part; 200 g roots; and soil with 300 g cattle manure per pot. The highest dry weights were observed in the presence of GM and cattle manure (90 days). The control had an EO production 75% lower in relation to the dose of 450 g GM (Sh+R). Principal component analysis showed that GM and cattle manure positively influenced the dry weight, content, yield, and EO constituents, and total flavonoids. The GM contributed to the accumulation of the major EO compounds (trans-sabinene hydrate, thymol, terpinen-4-ol). The GM management may be beneficial for cultivating, because it can increase the production of biomass and the active components, in addition to being an inexpensive resource.
Asunto(s)
Crotalaria , Aceites Volátiles , Origanum , Bovinos , Animales , Aceites Volátiles/química , Origanum/química , Estiércol , Biomasa , FitoquímicosRESUMEN
Studies have underscored a growingdemand for innovative practices in the cultivation of seedlings from forest species, with a notable emphasis on the utilization of organic waste, inoculation with arbuscular mycorrhizal fungi (AMF), and phosphate fertilization. This study aimed to evaluate the impact of organic residues, inoculation with AMF, and phosphorus on the growth and quality of Peltophorum dubium (Spreng.) Taub. seedlings. Two independent experiments were conducted. In Experiment I, treatments included inoculation with various AMF species: control (without inoculation), Clareoideoglomus etunicatum, Rhizophagus heterosporum, Rhizophagus clarum, and MIX (a combination of the three AMF species), all in conjunction with varying doses of phosphorus (0, 60, 120, 180, and 240 mg kg-1 soil). In Experiment II, treatments comprised a control group (without AMF) and inoculation with Glomus clarum, Gigaspora margarita, Gigaspora albida, Clareoideoglomus etunicatum, and MIX (a combination of the four AMF species), each associated with four substrates: S1) soil + coarse sand - SCS, S2) SCS + poultry manure, S3) SCS + cattle manure, and S4) SCS + sheep manure. Peltophorum dubium seedlings exhibited heightened growth with the inoculation of R. heterosporum, R. clarum, and MIX. Positive responses were observed in seedlings when exposed to organic residues, particularly sheep manure, resulting in increased biomass production and enhanced Dickson quality index. The AMF inoculation, specifically with R. heterosporum, R. clarum, and MIX, provided optimal growth conditions for P. dubium seedlings. Remarkably, the utilization of organic residues, notably substrates with chicken manure and cattle manure, exerted substantial positive effects on both growth and quality of P. dubium seedlings.
Asunto(s)
Micorrizas , Animales , Bovinos , Ovinos , Micorrizas/fisiología , Plantones , Raíces de Plantas , Fósforo , Estiércol , SueloRESUMEN
Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.
Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/farmacología , Suelo/química , Genes Bacterianos , Brasil , Bacterias , Farmacorresistencia Microbiana/genética , Microbiota/genética , Bosques , Microbiología del Suelo , Estiércol/microbiologíaRESUMEN
Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris). A set of experimental data was collected and analyzed according to the German "Verein Deutscher Ingenieure" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.
Asunto(s)
Compostaje , Animales , Bovinos , Porcinos , Mataderos , Odorantes/prevención & control , Suelo , Biodegradación Ambiental , EstiércolRESUMEN
This study explores the relationship between poultry farming's antibiotic administration practices and residual antibiotic levels in the litter before its application onto agricultural soils. Twenty-three antibiotics were performed across 19 Argentinean farms representing diverse antibiotic management practices. Analysis revealed up to 20 antibiotics from eight chemical classes in poultry litter samples, with tylosin, enrofloxacin, and salinomycin being the most relevant drugs. Farms with restricted antibiotic use in feed exhibited lower residual concentrations. A self-heating treatment was tested to reduce litter antibiotic levels. Although a 60 % reduction of antibiotics was found after treatment, prevalent compounds persisted at residual levels. Regulatory measures and comprehensive litter treatments pre-application are crucial to mitigate environmental risks. This is the first study that provides insight on the occurrence of >20 drugs in real poultry production scenarios from Latin America and demonstrates how relatively simple treatments can be readily applied to decrease the associated environmental risks.
Asunto(s)
Antibacterianos , Aves de Corral , Animales , Antibacterianos/análisis , Argentina , Agricultura , Enrofloxacina , Suelo/química , Estiércol/análisisRESUMEN
In anaerobic digestion (AD), the choice of inoculum type seems to be relevant for methane production for complex substrates, such as lignocellulosic material. Previous work demonstrated that the addition of fresh manure and ruminal fluid to anaerobic sludge improved methane productivity and kinetics of AD of crude sugarcane bagasse (CSB). Considering that the improvement of methane production could be a result of a more adapted microbial community, the present study performed the Next Generation Sequencing analysis to identify changes in the microbiome of anaerobic sludge inoculum, resulting from fresh manure and ruminal fluid addition. In comparison with AD performed only with anaerobic sludge inoculum (50:50, U), accumulated methane production was 15% higher with anaerobic sludge plus ruminal fluid inoculum (50:50, UR) and even higher (68%) with anaerobic sludge with fresh bovine manure inoculum (50:50, UFM), reaching the value of 143â NmLCH4.gVS-1. Clostridium species were highly abundant in all inocula, playing an important role during the hydrolysis and fermentation of CSB, and detoxifying potential inhibitors. Microbial composition also revealed the occurrence of Pseudomonas and Anaerobaculum at UFM inoculum that seem to have contributed to the higher methane production rate, mainly due to their hydrolytic and fermentative ability on lignocellulosic substrates. On the other hand, the presence of Alcaligenes might have had a negative effect on methane production due to their ability to perform methane oxidation.
Asunto(s)
Microbiota , Saccharum , Animales , Bovinos , Anaerobiosis , Celulosa , Aguas del Alcantarillado , Estiércol , Metano , Reactores BiológicosRESUMEN
This research was conducted during the two experimental seasons 2021/2022 and 2022/2023 to explore the effect of salicylic acid (SA) concentrations at 0.75.150 and 300 ppm, fertilization of poultry manure (PM) on rats 0, 5, 10/ and 20 m3/ha as well as their interactions on growth, yield and volatile oil components of Coriander (Coriandrum sativum L.). It resulted in a significant increase in plant growth traits in terms of plant height, number of branches, fresh and dry weed weight, number of threads, and seed yield per plant and hectare, when plants were treated with fine particles at a high concentration (300 ppm). While the highest values for volatile oil production were when spraying at a concentration of 200 parts per million, it was also proven that poultry manure at all levels was more effective in increasing the previously studied traits. All tested variables were significantly affected by the interaction coefficients. In this respect, most of the combination therapies significantly increased all aspects examined. Moreover, foliar application at 300 ppm SA plus high level (20 m3/ha) was the most effective treatment for growth and yield characteristics while oil production was better at 200 ppm concentration with the same level of poultry manure. GC-MS analysis of the volatile oil indicated that poultry manure and foliar applications with salicylic acid concentrations also affected the major constituents. The combination of SA at 200 and 300 ppm plus PM at the higher level (20 m3/ha) resulted in increased percentages of major components compared to the untreated plants and the other treatments.
Asunto(s)
Coriandrum , Aceites Volátiles , Animales , Ratas , Aceites Volátiles/farmacología , Estiércol , Ácido Salicílico/farmacología , Aves de Corral , PlantasRESUMEN
Mini-roses (Rosa chinensis Jacq.) is largely used in salty dishes and desserts. This study evaluated instrumental color, sugars, organic acids, phenolics, volatiles, and the indigenous microbiota (fungi and bacteria) in edible mini-roses farmed in discarded fruits biocompost and animal manure systems. A descriptive sensory analysis of flowers was also performed. Mini-roses farmed in biocompost had higher luminosity and intensity of instrumental red color, a higher concentration of phenolic compounds, including anthocyanins related to red color, and fructose than mini-roses farmed in animal manure (p < 0.05). Furthermore, mini-roses farmed in biocompost had higher concentrations of various volatiles (p < 0.05), including hexyl acetate and cis-3 -hexenyl butyrate related to the fruity aroma. Bacterial groups related to plant growth-promoting such as Stenotrophomonas and endophilic fungal groups such as Eurotiales sp, Pleosporales sp were found in higher abundance (p < 0.05) in mini-roses farmed in biocompost. Mini-rose farmed in biocompost also received higher score (p < 0.05) for fruity aroma and red color than mini-rose mini-roses farmed in animal manure. Results indicate that farming mini-roses using biocompost from discarded fruits impacts the synthesis of phenolics and volatiles, resulting in a more intense fruity aroma and red color. Findings also suggest that the microbiota of mini-roses farmed in biocompost or animal manure do not represent a major risk for the safety of these products.
Asunto(s)
Antocianinas , Rosa , Animales , Odorantes , Estiércol , AgriculturaRESUMEN
This research aimed at evaluating optimal conditions to obtain value-added metabolites, such as bio-CH4, by co-digesting swine manure and food waste diluted in domestic sewage. The assays were carried out in batches using the statistical methods of Rotational Central Composite Design (RCCD) and Surface Response to evaluate the ranges of food waste (1.30-9.70 gTS.L-1), pH (6.16-7.84) and granular Upflow Anaerobic Sludge Blanket sludge as inoculum (2.32-5.68 gTS.L-1), besides about 250 mL of swine manure in 500 mL Duran flasks. According to the RCCD matrix, bio-CH4 yields among 600.6 ± 60.1 and 2790.0 ± 112.0 mL CH4 gTS.L-1 were observed, besides the maximum CH4 production rate between 0.4 ± 0.5 and 49.7 ± 2.0 mL CH4 h-1 and λ between ≤0.0 and 299.3 ± 4.5 h. In the validation assay, the optimal conditions of 9.98 gTS.L-1 of food waste, pH adjusted to 8.0 and 2.20 gTS.L-1 of inoculum were considered, and the bio-CH4 yield obtained (5640.79 ± 242.98 mL CH4 gTS.L-1 or also 5201.83 ± 224.07 mL CH4 gTVS.L-1) was 11.3 times higher than in assays before optimization (499.3 ± 16.0 mL CH4 gTS.L-1) with 5 gTS.L-1 of food waste, 3 gTS.L-1 of inoculum and pH 7.0. Besides, the results observed about the energetic balance of the control and validation assays highlight the importance of process optimization, as this condition was the only one with energy supply higher than the energy required for its operation, exceeding max consumption sevenfold. Based on the most dominant microorganisms (Methanosaeta, 31.06%) and the metabolic inference of the validation assay, it could be inferred that the acetoclastic methanogenesis was the predominant pathway to CH4 production.
Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Animales , Porcinos , Aguas del Alcantarillado/química , Anaerobiosis , Eliminación de Residuos/métodos , Estiércol , Alimentos , Reactores Biológicos , Concentración de Iones de Hidrógeno , Metano , Biocombustibles/análisisRESUMEN
AIMS: The purpose was to characterize Salmonella Heidelberg (SH) and Minnesota (SM) isolates in terms of their resistance and persistence profile and to assess the antimicrobial effect of benzoic acid (BA) and polypyrrole (PPy). METHODS AND RESULTS: The 20 isolates from broiler litter drag swabs were submitted to antibiogram and efflux pump expression. The minimum inhibitory/bactericidal concentration (MIC/MBC) of the compounds, synergistic activity, time kill, biofilm production, presence of related genes, and molecular docking between compounds and bacterial target sites were evaluated. All isolates showed multidrug resistance (MDR) and BA and PPy showed mean MIC (1750 and 342 µg ml-1) and MBC (3167 and 1000 µg ml-1), respectively. None of the isolates expressed an efflux pump. The compounds showed synergism against an SH isolate and reduced the count by 3 logs in the presence of the compounds after 4 h. Most isolates (16/20) produced weak to moderate biofilm and 17 showed genes related to biofilm. The compounds interacted with two essential proteins, 3,4-dihydroxy-2-butanone 4-phosphate synthase proteins and ferritin-like domain-containing protein, in bacterial metabolism at different target sites. CONCLUSIONS: It can be concluded that BA and PPy showed activity on SH and SM, MDR, and biofilm producers, with a potential synergistic effect.
Asunto(s)
Ácido Benzoico , Pollos , Animales , Ácido Benzoico/farmacología , Estiércol , Simulación del Acoplamiento Molecular , Polímeros , Pirroles/farmacología , Antibacterianos/farmacologíaRESUMEN
Green manure decomposition and nutrient recycling improve soil quality and productivity of different crops, but information on irrigated fruit orchards in the Brazilian semi-arid region is still scarce. Decomposition and nitrogen, phosphate, and potassium release from the cut biomass of three green manure legumes (sunn hemp, pigeon pea and jack bean) placed in litterbags, and spontaneous vegetation grown for 90 days in the rows of a passion fruit orchard were followed for 150 days. Biomasses decreased exponentially, reaching 12 (sunn hemp) to 25% (jack beans and spontaneous vegetation) after 150 days. K was rapidly released (< 21 and 4% of the original content remaining after 7 and 150 days, respectively), contrasting with more than half of the P and one third of the N remaining after 150 days. The amounts released were more influenced by the amounts of biomass produced (sunn hemp, 1583); (Jack bean 5152 kg ha-1); (Pigeon pea 822 kg ha-1); (Spontaneous plants 3175 kg ha-1); (spontaneous legumes 744 kg ha-1) than by variation in decomposition proportions among species. N release represented a liquid input to the soil, since more than 80% of the green manure and spontaneous vegetation contents came from N2-symbiotic fixation. Therefore, green manure is an effective technique to incorporate N and recycle K and P in irrigated orchards in the Brazilian semi-arid region.
Asunto(s)
Fabaceae , Passiflora , Biomasa , Brasil , Frutas , Estiércol , Monitoreo del Ambiente , Nutrientes , Suelo , VerdurasRESUMEN
Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.
Asunto(s)
Gases de Efecto Invernadero , Suelo , Ecosistema , Brasil , Secuestro de Carbono , Dióxido de Carbono/análisis , Estiércol , Carbono/análisis , Bosques , ÁrbolesRESUMEN
Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 µg L-1), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal.
Asunto(s)
Genes Bacterianos , Estiércol , Animales , Porcinos , Estiércol/microbiología , Norfloxacino , Farmacorresistencia Microbiana/genética , Aguas Residuales , Antibacterianos/farmacología , Bacterias/genéticaRESUMEN
The researchers of Russian State Agrarian University, Moscow Timiryazev Agricultural Academy in 2013-2016 conducted a long-term stationary experiment to study chemical and toxicological properties of fiber flax, Voskhod variety, growing on sod-podzolic soil in the soil and climate of the Moscow region. Test plots were selected with following crop rotation options: without fertilizers, without liming; without fertilizers, with liming; N100P150K120 (kg a.i./ha), without liming; N100P150K120, with liming; N100P150K120 + manure 20 t/ha, without liming; N100P150K120 + manure 20 t/ha, with liming. The agro-climatic conditions of the growing seasons during the research years did not have a negative impact on the growth and development of fiber flax, the hydro-thermal index was 1.1 in 2013, -1.05 in 2014, 1.5 in 2015, and 1.5 in 2016. The maintained crop rotation and the introduction of a full range of mineral and organic fertilizers has been found to contribute to high yields of flax in terms of fiber (18.5-18.9 hwt/ha) and seeds (7.9-8.3 hwt/ha). The seeds contain 16.9-19.5% protein and 33.5-39.4% lipids. The yield of flaxseed oil from seeds ranged from 19.5-35.7% on average for different variants of the experiment. The peroxide number index was 2.5-1.5 mg-eq O2/kg, the acid number index was 1.1-1.9 mg KOH/g, which corresponds to obtaining high-quality linseed oil in compliance with quality standards for all variants of the experiment.