Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Rev. biol. trop ; Rev. biol. trop;68(2)jun. 2020.
Artículo en Español | LILACS, SaludCR | ID: biblio-1507682

RESUMEN

Introducción: Las investigaciones sobre ontogenia de los soros, esporangios, paráfisis receptaculares y esporogénesis de los helechos leptosporangiados son escasas en la literatura científica. Objectivos: Describiry analizar la ontogenia de los soros, esporangios, paráfisis receptaculares y esporogénesis de Phymatosorus scolopendria. Métodos: Entre marzo y mayo 2017 (época lluviosa del año) se recolectaron frondas fértiles de P. scolopendria en el campus de la Universidad de Antioquia, Medellín-Colombia.Las frondas fértiles, en diferentes etapas del desarrollo se fijaron y procesaron de acuerdo a protocolos estándar para la inclusión y corte en parafina y resina. Las secciones de 0.5 µm obtenidas en resina se tiñeron con azul de Toluidina que tiñe diferencialmente paredes primarias y secundarias, resalta núcleos celulares, y esporopolenina y de manera secundaria tiñe polifenoles. Para descripciones detalladas, otros cortes se tiñeron con Safranina-azul de alciano que discrimina entre componentes de pared primaria, secundaria, núcleos, cutícula y polifenoles; Hematoxilina-azul de alciano para resaltar núcleos y paredes primarias y Fluoroglucinol ácido para detectar lignina. Las observaciones y registro fotográfico se efectuaron con microscopio fotónico. Para la observación y descripción con microscopía electrónica de barrido (MEB), los soros se deshidrataron con 2,2 dimetoxipropano, se desecaron a punto crítico y se metalizaron con oro. Resultados: Los soros son exindusiados, superficiales, vascularizados y de desarrollo mixto, se encuentran asociados a paráfisis receptaculares multicelulares uniseriadas. Durante el desarrollo del soro primero se diferencian las células epidérmicas receptaculares que darán origen a los esporangios y posteriormente las células que originarán a las paráfisis receptaculares. El esporangio es de tipo leptosporangio de pedicelos largos de una o dos filas de células. Los anillos de los esporangios muestran paredes secundarias con engrosamientos en forma de "U" ricos en lignina. La meiosis es simultánea y las tétradas de esporas se disponen de forma decusada o tetragonal. El tapete celular es inicialmente uniestratificado pero por una división mitótica de tipo periclinal, se torna biestratificado. Las células del estrato interno del tapete pierden la integridad estructural dando origen a un tapete plasmodial que invade los esporocitos en meiosis, el estrato externo persiste hasta la etapa de esporas maduras. En las diferentes etapas de desarrollo del esporodermo, primero se forma el exosporio, compuesto por esporopolenina, seguida del endosporio, conformado por celulosa, pectina y polisacáridos carboxilados y finalmente el perisporio. Los polifenoles fueron detectados, principalmente, en las vacuolas de las células de los esporangios, paráfisis y células receptaculares. Para el momento de la liberación de las esporas, tanto la capa externa del tapete celular como el plasmodial han degenerado por completo. En la cavidad esporangial se aprecian orbículas adyacentes a las esporas. Conclusiones: la ontogenia de los esporangios y esporogénesis de P. scolopendria es similar al descrito previamente para helechos leptosporangiados. Adicionalmente, se indica que las paráfisis receptaculares presentes en los soros de P. scolopendria tienen la función de protección de los esporangios durante las primeras etapas del desarrollo.


Introduction: Research about the ontogeny of sori, sporangia, receptacular paraphyses and sporogenesis of leptosporangiate ferns are scarce in the scientific literature. Objectives: To describe and analyze the ontogeny of sori, sporangia, receptacular paraphyses and sporogenesis of Phymatosorus scolopendria. Methods: Fertile fronds of P. scolopendria were collected in the campus of the Universidad de Antioquia, Medellín, Colombia, during the months March and May (annual rain season) of 2017. The fertile fronds of the samples at different developmental stages were fixed and processed according to the standard protocols for embedding and sectioning in paraffin and resin. Sections of 0.5 µm obtained in resin were stained with Toluidine blue, which differentially stains primary and secondary walls, highlights the cell nucleus and sporopolenin and secondarily stains polyphenols. For detailed descriptions, additional sections were processed with Safranin-Alcian blue, allowing the distinction of components of primary and secondary walls, nuclei, cuticle and polyphenols; Hematoxylin-Alcian blue to enhance nuclei and primary walls and Phloroglucinol-HCl for lignin. Observations and photographic records were done with a photonic microscope. For the observations and descriptions with scanning electron microscopy (SEM), the sori were dehydrated with 2,2-dimethoxypropane, critical point dried and coated with gold. Results: The sori are exindusiate, superficial, vascularized and have mixed development; they are associated with uniseriate and multicellular receptacle paraphyses. During the development of the sori, the epidermal cells of the receptacle that will form the sporangia are the first differentiated followed by those forming the receptacle paraphyses. The sporangium is leptosporangiate, with long stalks formed by one or two cell rows. The annulus of the sporangia displays secondary walls with U-shaped thickenings rich in lignin. The meiosis is simultaneous and the spore tetrads are arranged in a decussate or tetragonal shape. The cellular tapetum is initially unistratified but becomes bistratified after a periclinal division. The cells of the internal strata of the cellular tapetum loose structural integrity giving rise to a plasmodial tapetum that invades the meiotic sporocytes. During the sporoderm development, the sporopollenin-composed exospore is the first formed followed by the endospore, composed by cellulose, pectin and carboxylated polysaccharides; the process ends with the perispore. Polyphenols were mainly detected on vacuoles in cells of the sporangium, paraphysis and receptacle. When the time comes for the spore maturation, the remnants of cellular and the plasmodial tapeta have fully degenerated. Abundant orbicles are seen near the spores in the sporangial cavity. Conclusions: The ontogeny of the sporangia and sporogenesis of P. scolopendria are similar to the previously described for leptosporangiate ferns. Furthermore, in P. scolopendria, the receptacle paraphyses of the sori have a role protecting the sporangium during the early development stages.


Asunto(s)
Polypodiaceae/crecimiento & desarrollo , Esporangios/crecimiento & desarrollo , Colombia , Helechos/clasificación
2.
Rev Biol Trop ; 62(3): 1217-27, 2014 Sep.
Artículo en Español | MEDLINE | ID: mdl-25412546

RESUMEN

Phlegmariurus is the only genus of Lycopodiaceae with the species grouped in 22 informal groups. Species level relationships within Phlegmariurus are poorly understood and their circumscriptions require a thorough molecular and morphological review. A detailed study of morphology and anatomy of caulinar axes, lycophylls and sporangia of Phlegmariurus phylicifolius was carried out in order to contribute to the elucidation of species circumscription in the informal group Phlegmariurus phlegmaria. Small pieces of caulinar axes bearing trophophylls, sporophylls and sporangia were fixed, dehydrated, Histowax (paraffin) embedded, sectioned in a rotatory microtome, and stained using the common Safranin O-Fast Green technique; handmade cross sections were also made and stained with the same technique. P. phylicifolius includes slender, pendulous plants up to 40cm long. Shoots heterophyllous, in the basal divisions ca. 10-20(-25) mm in diameter including the trophophylls, then abruptly constricted to (1-) 1.5-2(-2.5) mm in diameter including the imbricate, reduced sporophylls. Trophophylls are borne in alternating whorls of three, or decussate, subdecussate, or alternate, widely spaced in alternate leaved caulinar axes portions, perpendicular to the caulinar axes to falcately ascending, lanceolate to linear-lanceolate, with flat to slightly revolute margins. Each lycophyll is supplied by a single central vascular bundle, connected to a protoxylem pole in the stele. At the site of leaf-trace departure, no leaf (lycophyll) gap is present. Caulinar axes excluding leaves 0.7-1.2 mm thick at the base, upward tapering to ca. 0.5 mm. Caulinar axes present unistratified epidermis and endodermis, the cortex is characterized by the presence of a trabecular structure of lisigenous origin formed in the parenchimatous tissue next to the endodermis. The vascular tissue occupies the central part of the caulinar axes, forming a plectostele ofsubradiate organization, with five poles ofprotoxylem. The epidermal cells present sinuous anticlinal walls; invaginations in the inner side of external periclinal wall of the epidermal cells could be probably adaptive morphological feature of a water deficient environment. Leaves of constricted terminal divi- sions are decussate, or subdecussate, continuously or discontinuously sporangiate, appressed, abaxially rounded to carinate, widely lanceolate to widely ovate or subcordate, acute to mucronate or cuspidate, shorter than the sporangia. Each sporangium originates from a group of epidermal cells, axilar to the sporophylls. The cell walls of epidermal cell of the sporangia are Huperzioideae type. The morphological studies of trophophylls contribute to confirm the differences between P. phylicifolius and P. subulatus.


Asunto(s)
Carotenoides/análisis , Lycopodiaceae/citología , Esporangios/citología , Esporas/citología , Lycopodiaceae/química , Lycopodiaceae/clasificación , Lycopodiaceae/crecimiento & desarrollo , Esporangios/química , Esporangios/clasificación , Esporangios/crecimiento & desarrollo , Esporas/química , Esporas/clasificación , Esporas/crecimiento & desarrollo
3.
Rev. biol. trop ; Rev. biol. trop;62(3): 1217-1227, jul.-sep. 2014. ilus
Artículo en Español | LILACS | ID: lil-753684

RESUMEN

Phlegmariurus is the only genus of Lycopodiaceae with the species grouped in 22 informal groups. Species level relationships within Phlegmariurus are poorly understood and their circumscriptions require a thorough molecular and morphological review. A detailed study of morphology and anatomy of caulinar axes, lycophylls and sporangia of Phlegmariurus phylicifolius was carried out in order to contribute to the elucidation of species circumscription in the informal group Phlegmariurus phlegmaria. Small pieces of caulinar axes bearing trophophylls, sporophylls and sporangia were fixed, dehydrated, Histowax (paraffin) embedded, sectioned in a rotatory microtome, and stained using the common Safranin O-Fast Green technique; handmade cross sections were also made and stained with the same technique. P. phylicifolius includes slender, pendulous plants up to 40cm long. Shoots heterophyllous, in the basal divisions ca. 10-20(-25)mm in diameter including the trophophylls, then abruptly constricted to (l-) 1.5-2(-2.5)mm in diameter including the imbricate, reduced sporophylls. Trophophylls are borne in alternating whorls of three, or decussate, subdecussate, or alternate, widely spaced in alternate leaved caulinar axes portions, perpendicular to the caulinar axes to falcately ascending, lanceolate to linear-lanceolate, with flat to slightly revolute margins. Each lycophyll is supplied by a single central vascular bundle, connected to a protoxylem pole in the stele. At the site of leaf-trace departure, no leaf (lycophyll) gap is present. Caulinar axes excluding leaves 0.7-1.2mm thick at the base, upward tapering to ca. 0.5mm. Caulinar axes present unistratified epidermis and endodermis, the cortex is characterized by the presence of a trabecular structure of lisigenous origin formed in the parenchimatous tissue next to the endodermis. The vascular tissue occupies the central part of the caulinar axes, forming a plectostele of subradiate organization, with five poles of protoxylem. The epidermal cells present sinuous anticlinal walls; invaginations in the inner side of external periclinal wall of the epidermal cells could be probably adaptive morphological feature of a water deficient environment. Leaves of constricted terminal divisions are decussate, or subdecussate, continuously or discontinuously sporangiate, appressed, abaxially rounded to carinate, widely lanceolate to widely ovate or subcordate, acute to mucronate or cuspidate, shorter than the sporangia. Each sporangium originates from a group of epidermal cells, axilar to the sporophylls. The cell walls of epidermal cell of the sporangia are Huperzioideae type. The morphological studies of trophophylls contribute to confirm the differences between P. phylicifolius and P. subulatus. Rev. Biol. Trop. 62 (3): 1217-1227. Epub 2014 September 01.


Phlegmariurus es el único género de Lycopodiaceae con las especies reunidas en 22 grupos informales. Las relaciones a nivel de especie dentro de Phlegmariurus están pobremente estudiadas y la circunscripción de las mismas requiere profundos exámenes moleculares y morfológicos. Se ha llevado a cabo un estudio detallado de la morfología y la anatomía de ejes caulinares, licofilos y esporangios de P. phylicifolius, con el fin de contribuir al esclarecimiento en la delimitación de las especies en el grupo Phlegmariurus phlegmaria. Segmentos de ejes caulinares con trofofilos, esporofilos y esporangios fueron fijados, deshidratados, incluidos en Histowax (parafina), cortados con un micrótomo rotatorio y coloreados usando la técnica tradicional Safranina O-Verde Rápido; además se hicieron cortes a mano alzada y se colorearon con la misma técnica. P. phylicifolius incluye plantas colgantes y péndulas de hasta 40cm de longitud. Los ejes son heterofilos, de aproximadamente 10-20(-25)mm de diámetro en las divisiones basales incluyendo los trofofilos, luego abruptamente reducidos a (l-) 1.5-2(-2.5)mm de diámetro incluyendo los esporofilos reducidos e imbricados. Los trofofilos están dispuestos en anillos alternantes de a tres, o decusados, subdecusados o alternos, dispuestos en forma espaciada en los ejes caulinares, perpendiculares al tallo hasta falcadamente ascendentes, lanceolados a lineal-lanceolados, con márgenes lisos o levemente revolutos. Cada licofilo está provisto de un haz vascular simple y central, conectado a un polo de protoxilema de la estela y sin laguna foliar. Los tallos poseen un ancho de 0.7-1.2mm en la base, excluyendo los licofilos, estrechándose hasta cerca de 0.5mm hacia el ápice. Los ejes caulinares presentan una epidermis uniestratificada y endodermis, la corteza se caracteriza por la presencia de una estructura trabecular de origen lisígeno formada en el tejido parenquimático próximo a la endodermis. El tejido vascular ocupa la parte central del eje caulinar, formando una plectostela de organización subradiada, con cinco polos de protoxilema. Las células epidérmicas presentan paredes anticlinales sinuosas; las invaginaciones en la cara interna de la pared periclinal externa podrían ser probablemente un característica morfológica adaptativa a un ambiente con períodos de sequía. Las hojas de las porciones apicales son decusadas o subdecusadas, con esporangio de disposición continua o discontinua, adpresas, abaxialmente redondeadas a carinadas, ampliamente lanceoladas a ovadas o subcordadas, ápice agudo a mucronado o cuspidado, más corto que el esporangio. Cada esporangio se origina de un grupo de células epidérmicas, en la axila de los esporofilos con el eje caulinar. Las paredes celulares de las células epidérmicas del esporangio son de tipo Huperzioideae. El estudio de la morfología de los trofofilos contribuye a confirmar las diferencias entre P. phylicifolius y P. subulatus.


Asunto(s)
Carotenoides/análisis , Lycopodiaceae/citología , Esporangios/citología , Esporas/citología , Lycopodiaceae/química , Lycopodiaceae/clasificación , Lycopodiaceae/crecimiento & desarrollo , Esporangios/química , Esporangios/clasificación , Esporangios/crecimiento & desarrollo , Esporas/química , Esporas/clasificación , Esporas/crecimiento & desarrollo
4.
Rev Biol Trop ; 62(1): 273-98, 2014 Mar.
Artículo en Español | MEDLINE | ID: mdl-24912358

RESUMEN

Studies on reproductive aspects of Lycopodiaceae are not very abundant in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. Here we present a detailed study of the ontogeny of sporangia and sporogenesis, and the chemical determination of several compounds generated during spore formation. The analyses were performed in 14 taxa of six genera of the family, Diphasiastrum, Diphasium, Huperzia (a genus which is treated here including Phlegmariurus), Lycopodiella, Lycopodium and Palhinhaea. Specimens were collected in three departments from the Colombian Andes between 1 454-3 677m altitude. Ontogeny was studied in small, 1cm long pieces of strobili and axis, which were fixed in glutaraldehyde or FAA, dehydrated in alcohol, embedded in LR White, sectioned in 0.2-0.5 microm and stained with toluidine blue (TBO), a metachromatic dye that allows to detect both sporopollenin and lignin or its precursors, during these processes. For other studies, paraplast plus-embedded sections (3-5 microm) were stained with safranin-fast green and alcian blue-hematoxylin. Chemical tests were also conducted in sections of fresh sporangia at different stages of maturity using alcian blue (mucopolysaccharides), Lugol solution (starch), Sudan III (lipids), phloroglucinol (lignin) and orcein (chromosomes). Sections were observed with photonic microscope equipped with differential interference contrast (DIC) and fluorescence microscopy (for spore and sporangium walls unstained). Strobili and sporangia were dehydrated with 2.2 dimethoxypropane, critical point dried and coated with gold for scanning electron microscopy (SEM). Our results indicated that the ontogeny of sporangia and sporogenesis were very similar to the previously observed in Huperzia brevifolia. Cutinisation occurs in early stages of development of sporangium cell walls, but in their final stages walls become lignified. As for the sporoderm development, the exospore is the first layer formed, composed by sporopollenin. The endospore deposits as a thin inner layer composed of cellulose, pectin and carboxylated polysaccharides. The perispore, if present, deposits at last. Mucopolysaccharides were found on the sporocyte coat and its abundance in sporangial cavity persists up to the immature tetrads stage, and then disappears. The lipids were abundant in the sporocytes, tetrads and spores, representing the main source of energy of the latter. In contrast, starch is not detected in the spores, but is abundant in premeiotic sporocytes and immature tetrads, developmental stages of high cellular metabolic activity. Intrinsic fluorescence corroborates the presence of lignin and cutin in the sporangium wall, while the sporopollenin is restricted to the exospore. The transfusion cells and the perispore are not always present. However, the processes of ontogeny and sporogenesis are extremely similar throughout the taxa studied, suggesting that they represent conservative family traits, nonspecific or generic.


Asunto(s)
Lycopodiaceae/crecimiento & desarrollo , Esporangios/crecimiento & desarrollo , Esporas/crecimiento & desarrollo , Histocitoquímica , Lycopodiaceae/química , Lycopodiaceae/clasificación , Lycopodiaceae/citología , Meiosis , Microscopía Fluorescente , Esporangios/química , Esporangios/clasificación , Esporangios/citología , Esporas/química , Esporas/clasificación , Esporas/citología
5.
Rev. biol. trop ; Rev. biol. trop;62(1): 282-307, ene.-mar. 2014. ilus, tab
Artículo en Español | LILACS | ID: lil-715430

RESUMEN

Studies on reproductive aspects of Lycopodiaceae are not very abundant in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. Here we present a detailed study of the ontogeny of sporangia and sporogenesis, and the chemical determination of several compounds generated during spore formation. The analyses were performed in 14 taxa of six genera of the family, Diphasiastrum, Diphasium, Huperzia (a genus which is treated here including Phlegmariurus), Lycopodiella, Lycopodium and Palhinhaea. Specimens were collected in three departments from the Colombian Andes between 1 454-3 677m altitude. Ontogeny was studied in small, 1cm long pieces of strobili and axis, which were fixed in glutaraldehyde or FAA, dehydrated in alcohol, embedded in LR White, sectioned in 0.2-0.5μm and stained with toluidine blue (TBO), a metachromatic dye that allows to detect both sporopollenin and lignin or its precursors, during these processes. For other studies, paraplast plus-embedded sections (3-5μm) were stained with safranin-fast green and alcian blue-hematoxylin. Chemical tests were also conducted in sections of fresh sporangia at different stages of maturity using alcian blue (mucopolysaccharides), Lugol solution (starch), Sudan III (lipids), phloroglucinol (lignin) and orcein (chromosomes). Sections were observed with photonic microscope equipped with differential interference contrast (DIC) and fluorescence microscopy (for spore and sporangium walls unstained). Strobili and sporangia were dehydrated with 2.2 dimethoxypropane, critical point dried and coated with gold for scanning electron microscopy (SEM). Our results indicated that the ontogeny of sporangia and sporogenesis were very similar to the previously observed in Huperzia brevifolia. Cutinisation occurs in early stages of development of sporangium cell walls, but in their final stages walls become lignified. As for the sporoderm development, the exospore is the first layer formed, composed by sporopollenin. The endospore deposits as a thin inner layer composed of cellulose, pectin and carboxylated polysaccharides. The perispore, if present, deposits at last. Mucopolysaccharides were found on the sporocyte coat and its abundance in sporangial cavity persists up to the immature tetrads stage, and then disappears. The lipids were abundant in the sporocytes, tetrads and spores, representing the main source of energy of the latter. In contrast, starch is not detected in the spores, but is abundant in premeiotic sporocytes and immature tetrads, developmental stages of high cellular metabolic activity. Intrinsic fluorescence corroborates the presence of lignin and cutin in the sporangium wall, while the sporopollenin is restricted to the exospore. The transfusion cells and the perispore are not always present. However, the processes of ontogeny and sporogenesis are extremely similar throughout the taxa studied, suggesting that they represent conservative family traits, nonspecific or generic.


Los estudios sobre aspectos reproductivos no son muy abundantes en la literatura científica sobre los taxones de Lycopodiaceae y constituyen información esencial para apoyar la taxonomía y relaciones sistemáticas en el grupo. Por lo tanto, se presenta aquí un análisis detallado de la ontogenia de los esporangios y esporogénesis, así como determinaciones químicas de varios compuestos generados durante la formación de las esporas. Los análisis se llevaron a cabo en 14 taxones de seis géneros de la familia: Diphasiastrum, Diphasium, Huperzia (un género que se trata aquí, incluyendo Phlegmariurus), Lycopodiella, Lycopodium y Palhinhaea. Las muestras fueron recolectadas en tres departamentos de los Andes de Colombia entre 1 454-3 677m de altitud. La ontogenia se estudió en trozos de estróbilos y ejes, de 1cm de largo, que se fijaron en glutaraldehido o FAA, se deshidrataron en alcohol, se incluyeron en LR White, se seccionaron en cortes de 0.2-0.5μm y se colorearon con azul de toluidina (TBO), un colorante metacromático que permite detectar tanto esporopolenina como lignina o sus precursores. Para estudios adicionales, secciones de 3-5μm de material incluido en paraplast plus se colorearon con safranina-verde rápido y azul alciánhematoxilina. Las pruebas químicas se llevaron a cabo en secciones de esporangios sin fijar en diferentes etapas de madurez utilizando azul alcián (mucopolisacáridos), solución de Lugol (almidón), Sudán III (lípidos), fluoroglucinol (lignina) y orceína (cromosomas). Las observaciones se efectuaron con microscopio fotónico equipado con contraste diferencial de interferencia (DIC) y microscopía de fluorescencia (para esporas y pared de los esporangios sin colorear). Para observaciones con microscopía electrónica de barrido (MEB), los estróbilos y esporangios se deshidrataron con 2,2 dimetoxipropano, se desecaron a punto crítico y se metalizaron con oro. Los resultados indican que la ontogenia de los esporangios y esporogénesis es muy similar a la observada previamente en Huperzia brevifolia. En las primeras etapas de desarrollo, las paredes celulares de la epidermis del esporangio se cutinizan y en las finales se lignifican. En el desarrollo del esporodermo, la primera capa que se forma es el exosporio, compuesto por esporopolenina. El endosporio es una capa interna delgada compuesta de celulosa, pectina y polisacáridos carboxilados. El perisporio, si está presente, es la última capa que se deposita. Los mucopolisacáridos se encontraron en la cubierta del esporocito, son abundantes en la cavidad esporangial hasta la etapa de tétradas inmaduras y luego desaparecen. Los lípidos son abundantes en esporocitos, tétradas y esporas, y representan la principal fuente de energía de estas. En contraste, el almidón no se detecta en las esporas pero es abundante en esporocitos premeióticos y tétradas inmaduras, ambos con gran actividad metabólica. La fluorescencia intrínseca corrobora la presencia de lignina y cutina en la pared del esporangio, mientras que la esporopolenina se limita al exosporio. Las células de transfusión y el perisporio no siempre están presentes. Sin embargo, los procesos de la ontogenia y esporogénesis son extremadamente similares en todos los taxones estudiados, lo que sugiere que representan rasgos típicos de familia, no específicos ni genéricos.


Asunto(s)
Lycopodiaceae/crecimiento & desarrollo , Esporangios/crecimiento & desarrollo , Esporas/crecimiento & desarrollo , Histocitoquímica , Lycopodiaceae/química , Lycopodiaceae/clasificación , Lycopodiaceae/citología , Meiosis , Microscopía Fluorescente , Esporangios/química , Esporangios/clasificación , Esporangios/citología , Esporas/química , Esporas/clasificación , Esporas/citología
6.
Rev. biol. trop ; Rev. biol. trop;59(4): 1845-1858, Dec. 2011. ilus
Artículo en Español | LILACS | ID: lil-646556

RESUMEN

Ontogeny of strobili, sporangia development and sporogenesis in Equisetum giganteum (Equisetaceae) from the Colombian Andes. Studies on the ontogeny of the strobilus, sporangium and reproductive biology of this group of ferns are scarce. Here we describe the ontogeny of the strobilus and sporangia, and the process of sporogenesis using specimens of E. giganteum from Colombia collected along the Rio Frio, Distrito de Sevilla, Piedecuesta, Santander, at 2 200m altitude. The strobili in different stages of development were fixed, dehydrated, embedded in paraffin, sectioned using a rotatory microtome and stained with the safranin O and fast green technique. Observations were made using differential interference contrast microscopy (DIC) or Nomarski microscopy, an optical microscopy illumination technique that enhances the contrast in unstained, transparent. Strobili arise and begin to develop in the apical meristems of the main axis and lateral branches, with no significant differences in the ontogeny of strobili of one or other axis. Successive processes of cell division and differentiation lead to the growth of the strobilus and the formation of sporangiophores. These are formed by the scutellum, the manubrium or pedicel-like, basal part of the sporangiophore, and initial cells of sporangium, which differentiate to form the sporangium wall, the sporocytes and the tapetum. There is not formation of a characteristic arquesporium, as sporocytes quickly undergo meiosis originating tetrads of spores. The tapetum retains its histological integrity, but subsequently the cell walls break down and form a plasmodium that invades the sporangial cavity, partially surrounding the tetrads, and then the spores. Towards the end of the sporogenesis the tapetum disintegrates leaving spores with elaters free within the sporangial cavity. Two layers finally form the sporangium wall: the sporangium wall itself, with thickened, lignified cell walls and an underlying pyknotic layer. The mature spores are chlorofilous, morphologically similar and have exospore, a thin perispore and two elaters. This study of the ontogeny of the spore-producing structures and spores is the first contribution of this type for a tropical species of the genus. Fluorescence microscopy indicates that elaters and the wall of the sporangium are autofluorescent, while other structures induced fluorescence emitted by the fluorescent dye safranin O. The results were also discussed in relation to what is known so far for other species of Equisetum, suggesting that ontogenetic processes and structure of characters sporoderm are relatively constant in Equisetum, which implies important diagnostic value in the taxonomy of the group. Rev. Biol. Trop. 59 (4): 1845-1858. Epub 2011 December 01.


Estudios sobre la ontogenia del estróbilo, los esporangios y la biología reproductiva de Equisetum son escasos, por lo tanto, para la especie E. giganteum, se estudiaron estos aspectos en especímenes recolectados a orillas del Río Frío, Santander, Colombia (2 200m). Los estróbilos en diferentes etapas de maduración fueron fijados, deshidratados, embebidos en parafina, seccionados en micrótomo rotatorio y teñidos con safranina O-fast green. Las observaciones se efectuaron mediante un microscopio óptico de alta resolución con contraste diferencial de interferencia (DIC) y microscopio de fluorescencia. Los estróbilos se inician a partir del meristemo apical, tanto en el eje principal como en los laterales, sin diferencias en el proceso de ontogenia y esporogénesis entre estróbilos de diferentes ejes. Sucesivas mitosis y diferenciación celular conducen al crecimiento del estróbilo, y a la formación de los esporangióforos peltados, formados por el manubrio, o porción basal con aspecto de pedicelo, el escutelo, o porción apical aplanada y las iniciales del esporangio, los cuales se diferenciarán para formar la pared del esporangio, los esporocitos y el tapete. No se forma arquesporio y los esporocitos experimentan meiosis para formar tétradas de esporas. El tapete mantiene la integridad histológica hasta la formación de las tétradas y en esa etapa forma un plasmodio que invade la cavidad esporangial la cual rodea parcialmente las tétradas y luego las esporas, y aparecen las cámaras plasmodiales, un término propuesto aquí para las formaciones designadas en inglés "tapetal gaps". La pared del esporangio queda reducida a dos capas celulares: una externa con engrosamientos lignificados en todas las paredes celulares y una interna picnótica. Al finalizar la esporogénesis, el tapete degenera, y las esporas, con exosporio, perisporio delgado, casi membranáceo y eláteres quedan libres en la cavidad esporangial. El esporodermo, los núcleos y nucléolos presentan fluorescencia roja, inducida por coloración con safranina O, mientras que los eláteres y las células de la pared del esporangio presentan autofluorescencia amarillo-naranja.


Asunto(s)
Equisetum/citología , Esporangios/citología , Esporas/crecimiento & desarrollo , Colombia , Equisetum/crecimiento & desarrollo , Meiosis , Esporangios/crecimiento & desarrollo
7.
Rev Biol Trop ; 59(4): 1845-58, 2011 Dec.
Artículo en Español | MEDLINE | ID: mdl-22208097

RESUMEN

Studies on the ontogeny of the strobilus, sporangium and reproductive biology of this group of ferns are scarce. Here we describe the ontogeny of the strobilus and sporangia, and the process of sporogenesis using specimens of E. giganteum from Colombia collected along the Rio Frio, Distrito de Sevilla, Piedecuesta, Santander, at 2200m altitude. The strobili in different stages of development were fixed, dehydrated, embedded in paraffin, sectioned using a rotatory microtome and stained with the safranin O and fast green technique. Observations were made using differential interference contrast microscopy (DIC) or Nomarski microscopy, an optical microscopy illumination technique that enhances the contrast in unstained, transparent. Strobili arise and begin to develop in the apical meristems of the main axis and lateral branches, with no significant differences in the ontogeny of strobili of one or other axis. Successive processes of cell division and differentiation lead to the growth of the strobilus and the formation of sporangiophores. These are formed by the scutellum, the manubrium or pedicel-like, basal part of the sporangiophore, and initial cells of sporangium, which differentiate to form the sporangium wall, the sporocytes and the tapetum. There is not formation of a characteristic arquesporium, as sporocytes quickly undergo meiosis originating tetrads of spores. The tapetum retains its histological integrity, but subsequently the cell walls break down and form a plasmodium that invades the sporangial cavity, partially surrounding the tetrads, and then the spores. Towards the end of the sporogenesis the tapetum disintegrates leaving spores with elaters free within the sporangial cavity. Two layers finally form the sporangium wall: the sporangium wall itself, with thickened, lignified cell walls and an underlying pyknotic layer. The mature spores are chlorofilous, morphologically similar and have exospore, a thin perispore and two elaters. This study of the ontogeny of the spore-producing structures and spores is the first contribution of this type for a tropical species of the genus. Fluorescence microscopy indicates that elaters and the wall of the sporangium are autofluorescent, while other structures induced fluorescence emitted by the fluorescent dye safranin O. The results were also discussed in relation to what is known so far for other species of Equisetum, suggesting that ontogenetic processes and structure of characters sporoderm are relatively constant in Equisetum, which implies important diagnostic value in the taxonomy of the group.


Asunto(s)
Equisetum/citología , Esporangios/citología , Esporas/crecimiento & desarrollo , Colombia , Equisetum/crecimiento & desarrollo , Meiosis , Esporangios/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA