Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
1.
Int Braz J Urol ; 50(5): 530-560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106113

RESUMEN

Varicocele can reduce male fertility potential through various oxidative stress mechanisms. Excessive production of reactive oxygen species may overwhelm the sperm's defenses against oxidative stress, damaging the sperm chromatin. Sperm DNA fragmentation, in the form of DNA strand breaks, is recognized as a consequence of the oxidative stress cascade and is commonly found in the ejaculates of men with varicocele and fertility issues. This paper reviews the current knowledge regarding the association between varicocele, oxidative stress, sperm DNA fragmentation, and male infertility, and examines the role of varicocele repair in alleviating oxidative-sperm DNA fragmentation in these patients. Additionally, we highlight areas for further research to address knowledge gaps relevant to clinical practice.


Asunto(s)
Fragmentación del ADN , Infertilidad Masculina , Estrés Oxidativo , Espermatozoides , Varicocele , Humanos , Masculino , Varicocele/fisiopatología , Varicocele/complicaciones , Estrés Oxidativo/fisiología , Infertilidad Masculina/etiología , Infertilidad Masculina/genética , Infertilidad Masculina/fisiopatología , Infertilidad Masculina/metabolismo , Espermatozoides/fisiología , Espermatozoides/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39201677

RESUMEN

Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.


Asunto(s)
Epidídimo , Testículo , Zinc , Masculino , Zinc/metabolismo , Epidídimo/metabolismo , Humanos , Testículo/metabolismo , Animales , Espermatogénesis , Espermatozoides/metabolismo , Infertilidad Masculina/metabolismo , Maduración del Esperma/fisiología
3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892404

RESUMEN

Reproductive failure in dogs is often due to unknown causes, and correct diagnosis and treatment are not always achieved. This condition is associated with various congenital and acquired etiologies that develop inflammatory processes, causing an increase in the number of leukocytes within the female reproductive tract (FRT). An encounter between polymorphonuclear neutrophils (PMNs) and infectious agents or inflammation in the FRT could trigger neutrophil extracellular traps (NETs), which are associated with significantly decreased motility and damage to sperm functional parameters in other species, including humans. This study describes the interaction between canine PMNs and spermatozoa and characterizes the release of NETs, in addition to evaluating the consequences of these structures on canine sperm function. To identify and visualize NETs, May-Grünwald Giemsa staining and immunofluorescence for neutrophil elastase (NE) were performed on canine semen samples and sperm/PMN co-cultures. Sperm viability was assessed using SYBR/PI and acrosome integrity was assessed using PNA-FITC/PI by flow cytometry. The results demonstrate NETs release in native semen samples and PMN/sperm co-cultures. In addition, NETs negatively affect canine sperm function parameters. This is the first report on the ability of NETs to efficiently entrap canine spermatozoa, and to provide additional data on the adverse effects of NETs on male gametes. Therefore, NETs formation should be considered in future studies of canine reproductive failure, as these extracellular fibers and NET-derived pro-inflammatory capacities will impede proper oocyte fertilization and embryo implantation. These data will serve as a basis to explain certain reproductive failures of dogs and provide new information about triggers and molecules involved in adverse effects of NETosis for domestic pet animals.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Espermatozoides , Animales , Perros , Trampas Extracelulares/metabolismo , Masculino , Espermatozoides/metabolismo , Neutrófilos/metabolismo , Motilidad Espermática , Femenino , Elastasa de Leucocito/metabolismo , Técnicas de Cocultivo , Acrosoma/metabolismo
4.
Sci Rep ; 14(1): 14287, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907001

RESUMEN

To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.


Asunto(s)
Reacción Acrosómica , Medios de Cultivo , Fertilización In Vitro , Capacitación Espermática , Espermatozoides , Animales , Capacitación Espermática/efectos de los fármacos , Masculino , Ratones , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Espermatozoides/metabolismo , Fertilización In Vitro/métodos , Femenino , Reacción Acrosómica/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Fosforilación , Fertilización , Desarrollo Embrionario/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
5.
Reproduction ; 168(2)2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912971

RESUMEN

Valosin-containing protein (VCP; aka p97), a member of the AAA (ATPases Associated with various cellular Activities) family, has been associated with a wide range of cellular functions. While previous evidence has shown its presence in mammalian sperm, our study unveils its function in mouse sperm. Notably, we found that mouse VCP does not undergo tyrosine phosphorylation during capacitation and exhibits distinct localization patterns. In the sperm head, it resides within the equatorial segment and, following acrosomal exocytosis, it is released and cleaved. In the flagellum, VCP is observed in the principal and midpiece. Furthermore, our research highlights a unique role for VCP in the cAMP/PKA pathway during capacitation. Pharmacological inhibition of sperm VCP led to reduced intracellular cAMP levels that resulted in decreased phosphorylation in PKA substrates and tyrosine residues and diminished fertilization competence. Our results show that in mouse sperm, VCP plays a pivotal role in regulating cAMP production, probably by the modulation of soluble adenylyl cyclase activity.


Asunto(s)
AMP Cíclico , Capacitación Espermática , Espermatozoides , Proteína que Contiene Valosina , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Espermatozoides/metabolismo , Ratones , AMP Cíclico/metabolismo , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
6.
BMC Res Notes ; 17(1): 132, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730318

RESUMEN

OBJECTIVES: Bovine seminal plasma proteins perform several functions related to sperm function. Changes in the expression pattern or abundance of seminal proteins are related to changes in the fertilizing capacity of bulls. Considering the role of seminal plasma proteins in sperm function and animal reproduction, we investigated changes in the protein abundance profile in response to sperm morphological changes using a proteomic approach. DATADESCRIPTION: In our present investigation, we employed liquid chromatography coupled with mass spectrometry to elucidate the proteomic composition of seminal plasma obtained from Nellore bulls exhibiting varying percentages of sperm abnormalities. Following semen collection, seminal plasma was promptly isolated from sperm, and proteins were subsequently precipitated, enzymatically digested using porcine trypsin, and subjected to analysis utilizing the Acquity nano UHPLC System in conjunction with a mass spectrometer. This dataset encompasses a total of 297 proteins, marking the inaugural instance in which a comparative profile of seminal plasma proteins in young Nellore bulls, categorized by their sperm abnormality percentages, has been delineated using LC-MS/MS. The comprehensive nature of this dataset contributes pivotal proteomic insights, representing a noteworthy advancement in our understanding of the reproductive biology of the Nellore breed.


Asunto(s)
Proteoma , Semen , Espermatozoides , Animales , Masculino , Bovinos , Semen/metabolismo , Semen/química , Proteoma/metabolismo , Espermatozoides/metabolismo , Espectrometría de Masas en Tándem , Proteómica/métodos , Proteínas de Plasma Seminal/metabolismo , Proteínas de Plasma Seminal/genética , Cromatografía Liquida
7.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786087

RESUMEN

As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.


Asunto(s)
Acrosoma , Citosol , Espermatozoides , Masculino , Concentración de Iones de Hidrógeno , Animales , Citosol/metabolismo , Humanos , Acrosoma/metabolismo , Espermatozoides/metabolismo , Mamíferos/metabolismo , Reacción Acrosómica
8.
Biopreserv Biobank ; 22(5): 452-462, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38526565

RESUMEN

Oxidative stress is one of the main causes of loss of sperm function during chilled storage. The aim of the current study was to evaluate the effects of a fructose-based extender, which was supplemented with catalase or uric acid, on the motility, viability, morphological integrity, and lipid peroxidation (LPO) of Colossoma macropomum spermatozoa. Sperm was diluted in extenders containing catalase (0; 0.1; 0.8; and 1.5 kU/L) or uric acid (0; 0.25; 0.5; and 1.0 mmol/L) and then stored at 4.3 ± 0.6°C for 96 hours. The chilling storage time had more significant and pronounced effects on practically all the measured sperm quality parameters than the different concentrations of both antioxidants added to the extenders. This was true for sperm motility, motility duration, sperm viability, and the percentage of normal spermatozoa. In fact, for all these parameters, values were higher in the extenders supplemented with catalase or uric acid, than those not supplemented with these antioxidants, especially after 96 hours. The LPO process showed an antioxidant-dependent response. In catalase-supplemented extenders thiobarbituric acid reactive substance (TBARS) levels increased gradually and significantly with time, but remained stable during the 96 hours of chilled storage in all samples in which uric acid was added. Despite this, TBARS levels were lower in the extenders supplemented with both catalase and uric acid than in those not having these antioxidants. Inverse correlations were found between sperm motility and the damage in sperm flagella. Our findings suggest that the supplementation of an extender with catalase or uric acid is beneficial and protects fish sperm membranes from damage caused by oxidative stress during low-temperature storage. The extenders containing 0.1 kU/L of catalase and 0.25 mmol/L of uric acid provided effective antioxidant protection for the spermatozoa of this important Amazonian fish.


Asunto(s)
Catalasa , Preservación de Semen , Ácido Úrico , Animales , Masculino , Antioxidantes/farmacología , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Characiformes/metabolismo , Frío , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Análisis de Semen , Preservación de Semen/métodos , Motilidad Espermática/efectos de los fármacos , Cola del Espermatozoide/efectos de los fármacos , Cola del Espermatozoide/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Ácido Úrico/farmacología
9.
Chemosphere ; 352: 141423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340991

RESUMEN

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Asunto(s)
Disruptores Endocrinos , Fungicidas Industriales , Nitrilos , Contaminantes Químicos del Agua , Animales , Masculino , Pez Cebra/metabolismo , Disruptores Endocrinos/metabolismo , Eje Hipotálamico-Pituitario-Gonadal , Especies Reactivas de Oxígeno/metabolismo , Fungicidas Industriales/metabolismo , Vitelogeninas/metabolismo , Semen , Gónadas , Espermatozoides/metabolismo , Reproducción , Contaminantes Químicos del Agua/metabolismo
10.
Biol Res ; 57(1): 5, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287386

RESUMEN

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Asunto(s)
Mitocondrias , Semen , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Desarrollo Embrionario , Estrés Oxidativo
11.
Res Vet Sci ; 166: 105077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37948882

RESUMEN

In this study we proposed to address the following question: "Are there differentially expressed sperm microRNAs related to fertility in bulls?". A systematic review of scientific literature until November 2022 was performed, in accordance with PRISMA guidelines. The main outcome was differentially expressed sperm microRNA from bulls with low versus high fertility profiles identified by using different methods such as field fertility evaluation and sperm laboratory analysis. Were identified 786 documents, of which 13 were selected for qualitative analysis. A total of 182 unique differentially expressed miRNAs were identified, among these, 49 miRNAs were found in common between at least two studies. It is believed that from these 49 miRNAs, it is possible that miRNAs such as miR-10a, -10b, -103, -15b, -122, -125b, -126-5p, -151-5p, -193a-5p, -196a, -27a-5p and -99b could be potential universal biomarkers to assess the reproductive potential of males.


Asunto(s)
MicroARNs , Masculino , Animales , Bovinos/genética , MicroARNs/genética , MicroARNs/metabolismo , Semen , Espermatozoides/metabolismo , Fertilidad/genética , Análisis de Semen/veterinaria
12.
Biol. Res ; 57: 5-5, 2024. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1550060

RESUMEN

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Asunto(s)
Humanos , Masculino , Semen/metabolismo , Mitocondrias , Espermatozoides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Desarrollo Embrionario
13.
Theriogenology ; 216: 42-52, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154205

RESUMEN

Spermatogenesis is a finely regulated process that involves the interaction of several cellular mechanisms to ensure the proper development and maturation of germ cells. This study assessed autophagy contribution and its relation to apoptosis in fish spermatogenesis during starvation. To that end, Nile tilapia males were subjected to 0 (control), 7, 14, 21, and 28 days of starvation to induce autophagy. Testes samples were obtained for analyses of spermatogenesis by histology, electron microscopy, immunohistochemistry, and western blotting. Sperm quality was assessed using a computer-assisted sperm analysis (CASA) system. Data indicated a significant reduction in gonadosomatic index, seminiferous tubule area, and spermatozoa proportion in fish subject to starvation compared to the control group. Immunoblotting revealed a reduction of Bcl2 and Beclin 1 associated with increased Bax and Caspase-3, mainly after 21 and 28 days of starvation. LC3 and P62 indicated reduced autophagic flux in these starvation times. Immunolabeling for autophagic and apoptotic proteins occurred in all development stages of the germ cells, but protein expression varied throughout starvation. Beclin 1 and Cathepsin D decreased while Bax and Caspase-3 increased in spermatocytes, spermatids, and spermatozoa after 21 and 28 days. Autophagic and lysosomal proteins colocalization indicated the fusion of autophagosomes with lysosomes and lysosomal degradation in spermatogenic cells. The CASA system indicated reduced sperm motility and velocity in animals subjected to 21 and 28 days of starvation. Altogether, the data support autophagy acting at different spermatogenesis stages in Nile tilapia, with decreased autophagy and increased apoptosis after 21 and 28 days of starvation, which results in a decrease in the spermatozoa number and sperm quality.


Asunto(s)
Cíclidos , Masculino , Animales , Caspasa 3/metabolismo , Cíclidos/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Motilidad Espermática , Semen/metabolismo , Espermatozoides/metabolismo , Espermatogénesis , Espermátides , Autofagia
14.
Colloids Surf B Biointerfaces ; 231: 113575, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832175

RESUMEN

Novel soft materials based on hydrogel are proposed to enhance the selection of high-quality stallion sperm based on their adhesion capacity. The hydrogel surfaces are derived from polyacrylamide (PAAm), which is copolymerized with neutral and ionic co-monomers to modify the interfacial properties. The hydrogels undergo characterization through FTIR spectroscopy, assessment of swelling capacity, and wettability under various experimental conditions. Sperm adhesion capacity on the hydrogels is examined through several parameters including the percentage of bound sperm (%Sp) to hydrogels, tail oscillation intensity and flagellar movement. The biointerfacial properties of sperm-hydrogel systems vary based on the chemical composition of hydrogel as well as the components present in the culture medium. High %Sp and excellent metabolic activity of the spermatozoa are observed on hydrogel surfaces that possess moderate hydrophilicity. Specifically, a cationic hydrogel in BGM3 culture medium and a neutral surface in BGM3 medium supplemented with BSA exhibit favorable outcomes. Scanning Electron Microscopy (SEM) reveals the normal morphology of the head and tail in spermatozoa adhered to the hydrogel. Therefore, these hydrogel surfaces are potential materials for selecting stallion sperm with high quality, and their application could be extended to the study of other mammalian reproductive cells.


Asunto(s)
Hidrogeles , Semen , Masculino , Caballos , Animales , Hidrogeles/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Humectabilidad , Mamíferos
15.
Life Sci ; 333: 122167, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827231

RESUMEN

The male gamete is a highly differentiated cell that aims to fuse with the oocyte in fertilization. Sperm have silenced the transcription and translational processes, maintaining proteostasis to guarantee male reproductive health. Despite the information about the implication of molecular chaperones as orchestrators of protein folding or aggregation, and the handling of body homeostasis by the endocannabinoid system, there is still a lack of basic investigation and random controlled clinical trials that deliver more evidence on the involvement of cannabinoids in reproductive function. Besides, we noticed that the information regarding whether recreational marijuana affects male fertility is controversial and requires further investigation. In other cell models, it has recently been evidenced that chaperones and cannabinoids are intimately intertwined. Through a literature review, we aim to explore the interaction between chaperones and cannabinoid signaling in sperm development and function. To untangle how or whether this dialogue happens within the sperm proteostasis. We discuss the action of chaperones, the endocannabinoid system and phytocannabinoids in sperm proteostasis. Reports of some heat shock and lipid proteins interacting with cannabinoid receptors prove that chaperones and the endocannabinoid system are in an intimate dialogue. Meanwhile, advancing the evidence to decipher these mechanisms for introducing innovative interventions into routine clinical settings becomes crucial. We highlight the potential interaction between chaperones and cannabinoid signaling in regulating proteostasis in male reproductive health.


Asunto(s)
Cannabinoides , Proteostasis , Endocannabinoides/metabolismo , Semillas , Chaperonas Moleculares/metabolismo , Espermatozoides/metabolismo , Cannabinoides/metabolismo
16.
Biol Res ; 56(1): 53, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37876007

RESUMEN

BACKGROUND: In vitro incubation of epididymal and vas deferens sperm with Mn2+ induces Sperm Chromatin Fragmentation (SCF), a mechanism that causes double-stranded breaks in toroid-linker regions (TLRs). Whether this mechanism, thought to require the participation of topoisomerases and/or DNAses and thus far only described in epididymal mouse sperm, can be triggered in ejaculated sperm is yet to be elucidated. The current study aimed to determine if exposure of pig ejaculated sperm to divalent ions (Mn2+ and Mg2+) activates SCF, and whether this has any impact on sperm function and survival. For this purpose, sperm DNA integrity was evaluated through the Comet assay and Pulsed Field Gel Electrophoresis (PFGE); sperm motility and agglutination were assessed with computer assisted sperm analysis (CASA); and sperm viability and levels of total reactive oxygen species (ROS) and superoxides were determined through flow cytometry. RESULTS: Incubation with Mn2+/Ca2+ activated SCF in a dose-dependent (P < 0.05) albeit not time-dependent manner (P > 0.05); in contrast, Mg2+/Ca2+ only triggered SCF at high concentrations (50 mM). The PFGE revealed that, when activated by Mn2+/Ca2+ or Mg2+/Ca2+, SCF generated DNA fragments of 33-194 Kb, compatible with the size of one or multiple toroids. Besides, Mn2+/Ca2+ affected sperm motility in a dose-dependent manner (P < 0.05), whereas Mg2+/Ca2+ only impaired this variable at high concentrations (P < 0.05). While this effect on motility was concomitant with an increase of agglutination, neither viability nor ROS levels were affected by Mn2+/Ca2+ or Mg2+/Ca2+ treatments. CONCLUSION: Mn2+/Ca2+ and Mn2+/Ca2+ were observed to induce SCF in ejaculated sperm, resulting in DNA cleavage at TLRs. The activation of this mechanism by an intracellular, non-oxidative factor sheds light on the events taking place during sperm cell death.


Asunto(s)
Cromatina , Semen , Masculino , Ratones , Animales , Porcinos , Cromatina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semen/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , ADN/metabolismo , Fragmentación del ADN
17.
Expert Rev Proteomics ; 20(1-3): 19-45, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37140161

RESUMEN

INTRODUCTION: Spermatozoa are highly specialized cells with unique morphology. In addition, spermatozoa lose a considerable amount of cytoplasm during spermiogenesis, when they also compact their DNA, resulting in a transcriptionally quiescent cell. Throughout the male reproductive tract, sperm will acquire proteins that enable them to interact with the female reproductive tract. After ejaculation, proteins undergo post-translational modifications for sperm to capacitate, hyperactivate, and fertilize the oocyte. Many proteins have been identified as predictors of male infertility and also investigated in diseases that compromise reproductive potential. AREAS COVERED: In this review, we proposed to summarize the recent findings about the sperm proteome and how they affect sperm structure, function, and fertility. A literature search was performed using PubMed and Google Scholar databases within the past 5 years until August 2022. EXPERT OPINION: Sperm function depends on protein abundance, conformation, and PTMs; understanding the sperm proteome may help to identify pathways essential to fertility, even making it possible to unravel the mechanisms involved in idiopathic infertility. In addition, proteomics evaluation offers knowledge regarding alterations that compromise the male reproductive potential.


Asunto(s)
Infertilidad Masculina , Proteoma , Humanos , Masculino , Femenino , Proteoma/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Fertilidad/genética , Infertilidad Masculina/genética
18.
Nat Commun ; 14(1): 1617, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959185

RESUMEN

Folate is an essential vitamin for vertebrate embryo development. Methotrexate (MTX) is a folate antagonist that is widely prescribed for autoimmune diseases, blood and solid organ malignancies, and dermatologic diseases. Although it is highly contraindicated for pregnant women, because it is associated with an increased risk of multiple birth defects, the effect of paternal MTX exposure on their offspring has been largely unexplored. Here, we found MTX treatment of adult medaka male fish (Oryzias latipes) causes cranial cartilage defects in their offspring. Small non-coding RNA (sncRNAs) sequencing in the sperm of MTX treated males identify differential expression of a subset of tRNAs, with higher abundance for specific 5' tRNA halves. Sperm RNA methylation analysis on MTX treated males shows that m5C is the most abundant and differential modification found in RNAs ranging in size from 50 to 90 nucleotides, predominantly tRNAs, and that it correlates with greater testicular Dnmt2 methyltransferase expression. Injection of sperm small RNA fractions from MTX-treated males into normal fertilized eggs generated cranial cartilage defects in the offspring. Overall, our data suggest that paternal MTX exposure alters sperm sncRNAs expression and modifications that may contribute to developmental defects in their offspring.


Asunto(s)
Metotrexato , ARN Pequeño no Traducido , Animales , Masculino , Embarazo , Humanos , Femenino , Metotrexato/efectos adversos , Metotrexato/metabolismo , Semen , Espermatozoides/metabolismo , Ácido Fólico/metabolismo , ARN Pequeño no Traducido/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
19.
J Biol Chem ; 299(4): 103058, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841478

RESUMEN

In rodents, sphingomyelins (SMs) species with very-long-chain polyunsaturated fatty acid (VLCPUFA) are required for normal spermatogenesis. Data on the expression of enzymes with roles in their biosynthesis and turnover during germ cell differentiation and on possible effects on such expression of testosterone (Tes), known to promote this biological process, were lacking. Here we quantified, in isolated pachytene spermatocytes (PtS), round spermatids (RS), and later spermatids (LS), the mRNA levels from genes encoding ceramide (Cer), glucosylceramide (GlcCer), and SM synthases (Cers3, Gcs, Sms1, and Sms2) and sphingomyelinases (aSmase, nSmase) and assessed products of their activity in cells in culture using nitrobenzoxadiazole (NBD)-labeled substrates and [3H]palmitate as precursor. Transcript levels from Cers3 and Gcs were maximal in PtS. While mRNA levels from Sms1 increased with differentiation in the direction PtS→RS→LS, those from Sms2 increased between PtS and RS but decreased in LS. In turn, the nSmase transcript increased in the PtS→RS→LS order. During incubations with NBD-Cer, spermatocytes produced more GlcCer and SM than did spermatids. In total germ cells cultured for up to 25 h with NBD-SM, not only abundant NBD-Cer but also NBD-GlcCer were formed, demonstrating SM→Cer turnover and Cer recycling. After 20 h with [3H]palmitate, PtS produced [3H]SM and RS formed [3H]SM and [3H]Cer, all containing VLCPUFA, and Tes increased their labeling. In total germ cells, Tes augmented in 5 h the expression of genes with roles in VLCPUFA synthesis, decreased the mRNA from Sms2, and increased that from nSmase. Thus, Tes enhanced or accelerated the metabolic changes occurring to VLCPUFA-SM during germ cell differentiation.


Asunto(s)
Espermatogénesis , Espermatozoides , Esfingomielinas , Testosterona , Animales , Masculino , Ratas , Ceramidas/metabolismo , Espermátides/metabolismo , Esfingomielinas/metabolismo , Testosterona/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo
20.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835392

RESUMEN

Capacitation is a series of physiological, biochemical, and metabolic changes experienced by mammalian spermatozoa. These changes enable them to fertilize eggs. The capacitation prepares the spermatozoa to undergo the acrosomal reaction and hyperactivated motility. Several mechanisms that regulate capacitation are known, although they have not been fully disclosed; among them, reactive oxygen species (ROS) play an essential role in the normal development of capacitation. NADPH oxidases (NOXs) are a family of enzymes responsible for ROS production. Although their presence in mammalian sperm is known, little is known about their participation in sperm physiology. This work aimed to identify the NOXs related to the production of ROS in guinea pig and mouse spermatozoa and define their participation in capacitation, acrosomal reaction, and motility. Additionally, a mechanism for NOXs' activation during capacitation was established. The results show that guinea pig and mouse spermatozoa express NOX2 and NOX4, which initiate ROS production during capacitation. NOXs inhibition by VAS2870 led to an early increase in the capacitation and intracellular concentration of Ca2+ in such a way that the spermatozoa also presented an early acrosome reaction. In addition, the inhibition of NOX2 and NOX4 reduced progressive motility and hyperactive motility. NOX2 and NOX4 were found to interact with each other prior to capacitation. This interaction was interrupted during capacitation and correlated with the increase in ROS. Interestingly, the association between NOX2-NOX4 and their activation depends on calpain activation, since the inhibition of this Ca2+-dependent protease prevents NOX2-NOX4 from dissociating and ROS production. The results indicate that NOX2 and NOX4 could be the most important ROS producers during guinea pig and mouse sperm capacitation and that their activation depends on calpain.


Asunto(s)
Calpaína , Especies Reactivas de Oxígeno , Semen , Capacitación Espermática , Animales , Cobayas , Masculino , Ratones , Calpaína/metabolismo , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA