Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.344
Filtrar
1.
PLoS One ; 19(9): e0309944, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240941

RESUMEN

Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , MicroARNs , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiología , MicroARNs/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Basidiomycota/fisiología
2.
Sci Rep ; 14(1): 20448, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39242602

RESUMEN

From the fluff generated during 2005, after the preliminary experiments (2005-2007), a promising clone G2005047 has been identified. It showed moderate resistance to red rot (3.6 on a 9-scale scoring system), less susceptibility to shoot borer (13.25%) and internode borers (25.35%), and resistance to woolly aphid (0%). In the Advanced Yield Trials (2008-2011), it showed advantages over check for cane yield (CY) (11.79%), commercial cane sugar percent (CCSP) (0.35%), and sugar yield (SY) (20.33%). To ascertain its large-scale cultivation suitability, it has experimented under adaptive research trials (2012-2014) at farmers' fields. It exhibited 18.04%, 1.27%, and 19.55% supremacy over the check Co 86032 for CY, CCSP, and SY respectively. The stability of G2005047 under salinity was ascertained through a multi-environment-based experiment (2015-2017). AMMI (Additive Main-effects and Multiplicative Interactions) and GGE (Genotype × Genotype-Environment interaction) biplots were utilized. ANOVA revealed that the genotypic variation exerted the most significant effect followed by genotype × environment interaction and environment. G2005047 had the highest mean values for yield and quality traits with minimal ASV (AMMI stability value) (2.38:CY; 0.57: CCSP; & 0.58:SY) indicating its good-yielding ability and stability. AMMI I, AMMI II, and GGE biplots confirmed the stability of G2005047. In the jaggery quality assessment trials (2018 and 2019), it yielded 37.1% increased jaggery over the check. Also, the clone G2005047, exhibited moderate resistance to red rot disease, less susceptibility to shoot borer (13.25%) and internode borer (25.35%), and resistance against sugarcane woolly aphid (SWA). Due to supremacy for yield, quality, better performance under salinized situations, and tolerance to disease and pests, the clone G2005047 was released as a variety CoG 7 in 2022.


Asunto(s)
Saccharum , Tolerancia a la Sal , Saccharum/genética , Saccharum/parasitología , Tolerancia a la Sal/genética , Genotipo , Animales , Salinidad , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Áfidos/fisiología
3.
Commun Biol ; 7(1): 1095, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242868

RESUMEN

Long intergenic non-coding RNAs (lincRNAs) are emerging as regulators of protein-coding genes (PCGs) in many plant and animal developmental processes and stress responses. In this study, we characterize the genome-wide lincRNAs in potatoes responsive to a vascular bacterial disease presumably caused by Candidatus Liberibacter solanacearum (CLso). Approximately 4397 lincRNAs were detected in healthy and infected potato plants at various stages of zebra chip (ZC) disease progression. Of them, ~65% (2844) were novel lincRNAs, and less than 1% (9) were orthologs of Arabidopsis and rice based on reciprocal BLAST analysis, suggesting species-specific expansion. Among the proximal lincRNAs within 50 kbp from a PCG, ~49% were transcribed from the same strand, while ~39% and ~15% followed convergent (head-to-head) and divergent (tail-to-tail) orientations, respectively. Approximately 30% (1308) were differentially expressed following CLso infection, with substantial changes occurring 21 days after infection (DAI). Weighted Gene Co-expression Network Analysis (WGCNA) of lincRNAs and PCGs identified 46 highly correlated lincRNA-PCG pairs exhibiting co-up or co-downregulation. Furthermore, overexpression of selected lincRNAs in transgenic potato hairy roots resulted in perturbation of neighboring PCG expression and conferred tolerance to CLso infection. Our results provide novel insights into potato lincRNAs' identity, expression dynamics, and functional relevance to CLso infection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , ARN Largo no Codificante , Solanum tuberosum , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Solanum tuberosum/microbiología , Solanum tuberosum/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Rhizobiaceae/genética , Rhizobiaceae/fisiología
4.
Physiol Plant ; 176(5): e14498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39223906

RESUMEN

Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , MicroARNs , Enfermedades de las Plantas , Populus , Populus/genética , Populus/microbiología , MicroARNs/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , ARN de Planta/genética , Perfilación de la Expresión Génica
5.
Physiol Plant ; 176(5): e14516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39223917

RESUMEN

Wheat leaf rust, caused by the fungus Puccinia triticina (Pt), severely affects the grain quality and quantity of bread wheat (Triticum aestivum L.). Hairpin small(s)RNAs, like micro(mi)RNAs and their variants [including isomiRNAs (isomiRs) and microRNA-like RNAs (milRNAs)], along with their corresponding target genes, bestow leaf rust disease resistance, development and progression from both interacting species. However, the regulatory networks remain inadequately understood. Thirteen differentially expressed novel miRNAs, including two isomiRs and three milRNAs were discerned from induced reads of wheat sRNA libraries, and a further 5,393 and 1,275 candidate target genes were predicted in wheat and Pt, respectively. Functional annotation divulged that wheat-originated miRNAs/isomiRs were involved in resistance, while Pt-derived milRNAs imparted pathogenesis. The identified milRNAs- Tae-Pt-milR5, Tae-Pt-milR12, and Tae-Pt-milR14b and their cleavage sites on Pt target gene MEP5 were confirmed through degradome library screening, suggesting cross-kingdom translocation of Pt virulent genes in wheat host. Co-expression analysis of miRNAs/isomiRs-target genes provided insights into combating leaf rust disease, while co-expression analysis of milRNAs-target gene pairs reflected the extent of pathogenicity exerted by Pt with varied expression levels at the analyzed time points. The analysis pinpointed leaf rust-responsive candidate hairpin sRNAs- Tae-miR8, Tae-Pt-miR12, Tae-Pt-miR14a, and Tae-Pt-miR14b in wheat and Tae-Pt-milR12 in Pt. This study provides new insights into the hairpin sRNAs involved in the resistance and pathogenesis of wheat and Pt, respectively. Furthermore, crucial hairpin sRNAs and their promising targets for future biotechnological interventions to augment stress resilience have been identified.


Asunto(s)
Resistencia a la Enfermedad , MicroARNs , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Triticum/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Puccinia/patogenicidad , Puccinia/fisiología , MicroARNs/genética , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Basidiomycota/genética
6.
Mol Biol Rep ; 51(1): 958, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230778

RESUMEN

Sheath blight, caused by the fungus Rhizoctonia solani, is a major problem that significantly impacts rice production and can lead to substantial yield losses. The disease has become increasingly problematic in recent years due to the widespread use of high-yielding semi-dwarf rice cultivars, dense planting, and heavy application of nitrogenous fertilizers. The disease has become more challenging to manage due to its diverse host range and the lack of resistant cultivars. Despite utilizing traditional methods, the problem persists without a satisfactory solution. Therefore, modern approaches, including advanced breeding, transgenic methods, genome editing using CRISPR/Cas9 technology, and nanotechnological interventions, are being explored to develop rice plants resistant to sheath blight disease. This review primarily focuses on these recent advancements in combating the sheath blight disease.


Asunto(s)
Biotecnología , Sistemas CRISPR-Cas , Resistencia a la Enfermedad , Edición Génica , Oryza , Fitomejoramiento , Enfermedades de las Plantas , Rhizoctonia , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Rhizoctonia/patogenicidad , Fitomejoramiento/métodos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Biotecnología/métodos , Plantas Modificadas Genéticamente/genética , Nanotecnología/métodos
7.
Theor Appl Genet ; 137(10): 224, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283360

RESUMEN

KEY MESSAGE: Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Fitomejoramiento , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Fitomejoramiento/métodos , Basidiomycota/patogenicidad , Marcadores Genéticos , Técnicas de Genotipaje/métodos , Genotipo , Genoma de Planta
8.
PLoS One ; 19(9): e0310306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283893

RESUMEN

Sugarcane (Saccharum spp.)is an economically useful crop grown globally for sugar, ethanol and biofuel production. The crop is vulnerable to fungus Colletotrichum falcatum known to cause red rot disease. The pathogen hydrolyses stalk parenchyma cells where sucrose is accumulated resulting in upto 75% losses in sugar recovery. In this study, transgenic sugarcane having resistance against red rot was developed by introducing Trichoderma spp. endochitinase following Agrobacterium mediated transformation. The transgene introduction and expression in genetically modified plants were verified through qRT-PCR revealing upto 6-fold enhancement in endochitinase expression than non-transgenic plants. Hyperspectral Imaging of transgenic plants displayed altered leaf reflectance spectra and vegetative indices that were positively correlated with ransgene expression. The bioassay with virulent pathotypes of C. falcatumCF08 and CF13 known for epiphytotic occurrence resulted in identification of resistant plant Chit 3-13.The plants with higher reflectance also displayed improved disease resistance, implying their early classification into resistant/susceptible. The losses in sucrose content were minimized (up to 4-fold) in inoculated resistant plant Chit 3-13 as compared to susceptible non-transgenic plant, and a fewer pathogen hyphae were detected in vascular cells of the former through optical microscopy. The electron micrographs confirmed sucrose-filled stalk parenchyma cells in Chit 3-13; in contrast, cells of non-transgenic inoculated plant were depleted of sucrose. The active sites involved in cleaving 1-4 ß-glycoside bonds of N-acetyl-d-glucosaminein the pathogen hyphal walls were detected through endochitinase protein structural modelling. The transgenic sugarcane is an important source for in trogressingred rot resistance in plant breeding programs.


Asunto(s)
Quitinasas , Colletotrichum , Resistencia a la Enfermedad , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Saccharum , Trichoderma , Saccharum/microbiología , Saccharum/genética , Resistencia a la Enfermedad/genética , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Colletotrichum/patogenicidad , Trichoderma/genética , Quitinasas/genética , Quitinasas/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/genética
9.
Nat Commun ; 15(1): 8107, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285171

RESUMEN

Brown planthopper (BPH) is the most destructive insect pest of rice. Drought is the most detrimental environmental stress. BPH infestation causes adaxial leaf-rolling and bulliform cells (BCs) shrinkage similar to drought. The BC-related abaxially curled leaf1 (ACL1) gene negatively regulates BPH resistance and drought tolerance, with decreased cuticular wax in the gain-of-function mutant ACL1-D. ACL1 shows an epidermis-specific expression. The TurboID system and multiple biochemical assays reveal that ACL1 interacts with the epidermal-characteristic rice outermost cell-specific (ROC) proteins. ROC4 and ROC5 positively regulate BPH resistance and drought tolerance through modulating cuticular wax and BCs, respectively. Overexpression of ROC4 and ROC5 both rescue ACL1-D mutant in various related phenotypes. ACL1 competes with ROC4/ROC5 in homo-dimer and hetero-dimer formation, and interacts with the repressive TOPLESS-related proteins. Altogether, we illustrate that ACL1-ROC4/5 complexes synergistically mediate drought tolerance and BPH resistance through regulating cuticular wax content and BC development in rice, a mechanism that might facilitate BPH-resistant breeding.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hemípteros , Oryza , Proteínas de Plantas , Hemípteros/fisiología , Oryza/parasitología , Oryza/genética , Oryza/metabolismo , Animales , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Hojas de la Planta/parasitología , Hojas de la Planta/metabolismo , Ceras/metabolismo , Estrés Fisiológico
10.
BMC Genomics ; 25(1): 861, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277723

RESUMEN

BACKGROUND: Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS: The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS: A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.


Asunto(s)
Alternaria , Perfilación de la Expresión Génica , Paeonia , Enfermedades de las Plantas , Paeonia/genética , Paeonia/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Alternaria/genética , Transcriptoma , Secuenciación de Nucleótidos de Alto Rendimiento , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Ontología de Genes
11.
BMC Genomics ; 25(1): 831, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227779

RESUMEN

Pectobacterium carotovorum and Pectobacterium aroidearum represent the primary pathogens causing variable soft rot disease. However, the fundamental defense responses of Pinellia ternata to pathogens remain unclear. Our investigation demonstrated that the disease produced by P. carotovorum is more serious than P. aroidearum. RNA-seq analysis indicated that many cell wall-related genes, receptor-like kinase genes, and resistance-related genes were induced by P. aroidearum and P. carotovorum similarly. But many different regulatory pathways exert a crucial function in plant immunity against P. aroidearum and P. carotovorum, including hormone signaling, whereas more auxin-responsive genes were responsive to P. carotovorum, while more ethylene and gibberellin-responsive genes were responsive to P. aroidearum. 12 GDSL esterase/lipase genes and 3 fasciclin-like arabinogalactan protein genes were specifically upregulated by P. carotovorum, whereas 11 receptor-like kinase genes and 8 disease resistance genes were up-regulated only by P. aroidearum. Among them, a lectin gene (part1transcript/39001) was induced by P. carotovorum and P. aroidearum simultaneously. Transient expression in N. benthamiana demonstrated that the lectin gene improves plant resistance to P. carotovorum. This study offers a comprehensive perspective on P. ternata immunity produced by different soft rot pathogens and reveals the importance of lectin in anti-soft rot of P. ternata for the first time.


Asunto(s)
Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Pectobacterium carotovorum , Pinellia , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Pinellia/genética , Pinellia/microbiología , Pectobacterium carotovorum/fisiología , Resistencia a la Enfermedad/genética , Pectobacterium/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma
12.
Theor Appl Genet ; 137(9): 213, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222129

RESUMEN

Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/virología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Fenotipo , Cromosomas de las Plantas/genética , Virus del Mosaico/patogenicidad , Genes de Plantas , Marcadores Genéticos
13.
Theor Appl Genet ; 137(10): 222, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276212

RESUMEN

KEY MESSAGES: Sixty-nine quantitative trait nucleotides conferring maize resistance to Gibberella ear rot were detected, including eighteen novel loci. Four candidate genes were predicted, and four kompetitive allele-specific PCR markers were developed. Maize Gibberella ear rot (GER), caused by Fusarium graminearum, is one of the most devastating diseases in maize-growing regions worldwide. Enhancing maize cultivar resistance to this disease requires a comprehensive understanding of the genetic basis of resistance to GER. In this study, 334 maize inbred lines were phenotyped for GER resistance in five environments and genotyped using the Affymetrix CGMB56K SNP Array, and a genome-wide association study of resistance to GER was performed using a 3V multi-locus random-SNP-effect mixed linear model. A total of 69 quantitative trait nucleotides (QTNs) conferring resistance to GER were detected, and all of them explained individually less than 10% of the phenotypic variation, suggesting that resistance to GER is controlled by multiple minor-effect genetic loci. A total of 348 genes located around the 200-kb genomic region of these 69 QTNs were identified, and four of them (Zm00001d029648, Zm00001d031449, Zm00001d006397, and Zm00001d053145) were considered candidate genes conferring susceptibility to GER based on gene expression patterns. Moreover, four kompetitive allele-specific PCR markers were developed based on the non-synonymous variation of these four candidate genes and validated in two genetic populations. This study provides useful genetic resources for improving resistance to GER in maize.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Gibberella , Fenotipo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Gibberella/genética , Fusarium/patogenicidad , Fusarium/fisiología , Genotipo , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Estudios de Asociación Genética , Alelos , Genes de Plantas
14.
Plant Cell Rep ; 43(10): 231, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276239

RESUMEN

KEY MESSAGE: Transcription factor PpMYB5 promotes lignin synthesis by directly binding to the Pp4CL1/Pp4CL2 promoter and affecting their expression, which may be related to nectarine russeting formation. Nectarine russeting is usually considered to be a non-invasive physiological disease that usually occurs on late-maturing cultivars and seriously affects their appearance quality and commercial value. The cause of nectarine fruit rust is currently unknown. In this study, we compared two flat nectarine cultivars, 'zhongyoupanweidi' (HD; russeting-free cultivar) and 'zhongyoupanweihou' (TH; russeting-prone cultivar), with respect to nectarine russeting by means of microscopy, transcriptomics, and hormone analysis. Compared to HD fruits, TH fruits had a broken cuticle, missing wax layer, and heavy lignin deposition. RNA sequencing (RNA-seq) revealed significant alternations in the expression of genes related to lignin synthesis. Moreover, structure genes Pp4CL1 and Pp4CL2, MYB transcription factor (TF) gene PpMYB5 were identified through weighted gene co-expression network analysis (WGCNA). Molecular experiments and transgenic evidence suggested that PpMYB5 regulates Pp4CL1/Pp4CL2 expression to promote lignin synthesis. Overall, in addition to providing new insights into the formation of mechanisms for nectarine russeting, our study also establishes a foundation for nectarine russeting prevention.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Factores de Transcripción , Lignina/biosíntesis , Lignina/metabolismo , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética
15.
Sci Rep ; 14(1): 21281, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261582

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) poses a significant threat to tomato production worldwide, prompting extensive research into its genetic diversity, evolutionary dynamics, and adaptive strategies. In this study, we conducted a comprehensive analysis of ToBRFV at the codon level, focusing on codon usage bias, selection pressures, and evolutionary patterns across multiple genes. Our analysis revealed distinct patterns of codon usage bias and selection pressures within the ToBRFV genome, with varying levels of genetic diversity and evolutionary constraints among different genes. We observed a transition/transversion bias of 2.07 across the entire ToBRFV genome, with the movement protein (MP) gene exhibiting the highest transition/transversion bias and SNP density, suggesting potential evolutionary pressures or a higher mutation rate in this gene. Furthermore, our study identified episodic positive selection primarily in the MP gene, highlighting specific codons subject to adaptive changes in response to host immune pressures or environmental factors. Comparative analysis of codon usage bias in the coat protein (CP) and RNA-dependent RNA polymerase (RdRp) genes revealed gene-specific patterns reflecting functional constraints and adaptation to the host's translational machinery. Our findings provide valuable insights into the molecular mechanisms driving ToBRFV evolution and adaptation, with implications for understanding viral pathogenesis, host-virus interactions, and the development of control strategies. Future research directions include further elucidating the functional significance of codon usage biases, exploring the role of episodic positive selection in viral adaptation, and leveraging these insights to inform the development of effective antiviral strategies and crop protection measures.


Asunto(s)
Uso de Codones , Evolución Molecular , Genoma Viral , Solanum lycopersicum , Solanum lycopersicum/virología , Solanum lycopersicum/genética , Selección Genética , Adaptación Fisiológica/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Codón/genética , Variación Genética
16.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273180

RESUMEN

Rubisco small subunit (RbcS), a core component with crucial effects on the structure and kinetic properties of the Rubisco enzyme, plays an important role in response to plant growth, development, and various stresses. Although Rbcs genes have been characterized in many plants, their muti-functions in soybeans remain elusive. In this study, a total of 11 GmRbcS genes were identified and subsequently divided into three subgroups based on a phylogenetic relationship. The evolutionary analysis revealed that whole-genome duplication has a profound effect on GmRbcSs. The cis-acting elements responsive to plant hormones, development, and stress-related were widely found in the promoter region. Expression patterns based on the RT-qPCR assay exhibited that GmRbcS genes are expressed in multiple tissues, and notably Glyma.19G046600 (GmRbcS8) exhibited the highest expression level compared to other members, especially in leaves. Moreover, differential expressions of GmRbcS genes were found to be significantly regulated by exogenous plant hormones, demonstrating their potential functions in diverse biology processes. Finally, the function of GmRbcS8 in enhancing soybean resistance to soybean mosaic virus (SMV) was further determined through the virus-induced gene silencing (VIGS) assay. All these findings establish a strong basis for further elucidating the biological functions of RbcS genes in soybeans.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Filogenia , Reguladores del Crecimiento de las Plantas , Potyvirus , Glycine max/genética , Glycine max/virología , Glycine max/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Potyvirus/patogenicidad , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Resistencia a la Enfermedad/genética , Familia de Multigenes
17.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273397

RESUMEN

Fusarium head blight (FHB), caused by the Fusarium graminearum species complex, is a destructive disease in wheat worldwide. The lack of FHB-resistant germplasm is a barrier in wheat breeding for resistance to FHB. Thinopyrum elongatum is an important relative that has been successfully used for the genetic improvement of wheat. In this study, a translocation line, YNM158, with the YM158 genetic background carrying a fragment of diploid Th. elongatum 7EL chromosome created using 60Co-γ radiation, showed high resistance to FHB under both field and greenhouse conditions. Transcriptome analysis confirmed that the horizontal transfer gene, encoding glutathione S-transferase (GST), is an important contributor to FHB resistance in the pathogen infection stage, whereas the 7EL chromosome fragment carries other genes regulated by F. graminearum during the colonization stage. Introgression of the 7EL fragment affected the expression of wheat genes that were enriched in resistance pathways, including the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, plant-pathogen interaction, and the mitogen-activated protein kinase (MAPK) signaling pathway at different stages after F. graminearium infection. This study provides a novel germplasm for wheat resistance to FHB and new insights into the molecular mechanisms of wheat resistance to FHB.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Triticum , Fusarium/patogenicidad , Triticum/microbiología , Triticum/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Transcriptoma/genética , Translocación Genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/microbiología , Interacciones Huésped-Patógeno/genética
18.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273439

RESUMEN

Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.


Asunto(s)
Resistencia a la Enfermedad , Micorrizas , Enfermedades de las Plantas , Micorrizas/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas/microbiología , Plantas/inmunología , Simbiosis , Raíces de Plantas/microbiología , Inmunidad de la Planta
19.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273455

RESUMEN

The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.


Asunto(s)
Enfermedades de las Plantas , Pseudomonas , Zea mays , Zea mays/microbiología , Zea mays/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Hongos/genética , Agricultura/métodos , Genómica/métodos , Genoma Bacteriano
20.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273500

RESUMEN

Fungi infection, especially derived from Plasmopara viticola, causes severe grapevine economic losses worldwide. Despite the availability of chemical treatments, looking for eco-friendly ways to control Vitis vinifera infection is gaining much more attention. When a plant is infected, multiple disease-control molecular mechanisms are activated. PRRs (Pattern Recognition Receptors) and particularly RLKs (receptor-like kinases) take part in the first barrier of the immune system, and, as a consequence, the kinase signaling cascade is activated, resulting in an immune response. In this context, discovering new lectin-RLK (LecRLK) membrane-bounded proteins has emerged as a promising strategy. The genome-wide localization of potential LecRLKs involved in disease defense was reported in two grapevine varieties of great economic impact: Chardonnay and Pinot Noir. A total of 23 potential amino acid sequences were identified, exhibiting high-sequence homology and evolution related to tandem events. Based on the domain architecture, a carbohydrate specificity ligand assay was conducted with docking, revealing two sequences as candidates for specific Vitis vinifera-Plasmopara viticola host-pathogen interaction. This study confers a starting point for designing new effective antifungal treatments directed at LecRLK targets in Vitis vinifera.


Asunto(s)
Oomicetos , Filogenia , Enfermedades de las Plantas , Proteínas de Plantas , Vitis , Vitis/genética , Vitis/microbiología , Vitis/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/química , Interacciones Huésped-Patógeno/genética , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA