Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.073
Filtrar
1.
J Ethnopharmacol ; 336: 118743, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209000

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver-related morbidity and mortality, with hepatic steatosis being the hallmark symptom. Salvia miltiorrhiza Bunge (Smil, Dan-Shen) and Ligusticum striatum DC (Lstr, Chuan-Xiong) are commonly used to treat cardiovascular diseases and have the potential to regulate lipid metabolism. However, whether Smil/Lstr combo can be used to treat NAFLD and the mechanisms underlying its lipid-regulating properties remain unclear. PURPOSE: To assess the feasibility and reliability of a short-term high-fat diet (HFD) induced zebrafish model for evaluating hepatic steatosis phenotype and to investigate the liver lipid-lowering effects of Smil/Lstr, as well as its active components. METHODS: The phenotypic alterations of liver and multiple other organ systems were examined in the HFD zebrafish model using fluorescence imaging and histochemistry. The liver-specific lipid-lowering effects of Smil/Lstr combo were evaluated endogenously. The active molecules and functional mechanisms were further explored in zebrafish, human hepatocytes, and hamster models. RESULTS: In 5-day HFD zebrafish, significant lipid accumulation was detected in the blood vessels and the liver, as evidenced by increased staining with Oil Red O and fluorescent lipid probes. Hepatic hypertrophy was observed in the model, along with macrovesicular steatosis. Smil/Lstr combo administration effectively restored the lipid profile and alleviated hepatic hypertrophy in the HFD zebrafish. In oleic-acid stimulated hepatocytes, Smil/Lstr combo markedly reduced lipid accumulation and cell damage. Subsequently, based on zebrafish phenotypic screening, the natural phthalide senkyunolide I (SEI) was identified as a major molecule mediating the lipid-lowering activities of Smil/Lstr combo in the liver. Moreover, SEI upregulated the expression of the lipid metabolism regulator PPARα and downregulated fatty acid translocase CD36, while a PPARα antagonist sufficiently blocked the regulatory effect of SEI on hepatic steatosis. Finally, the roles of SEI on hepatic lipid accumulation and PPARα signaling were further verified in the hamster model. CONCLUSIONS: We proposed a zebrafish-based screening strategy for modulators of hepatic steatosis and discovered the regulatory roles of Smil/Lstr combo and its component SEI on liver lipid accumulation and PPARα signaling, suggesting their potential value as novel candidates for NAFLD treatment.


Asunto(s)
Modelos Animales de Enfermedad , PPAR alfa , Transducción de Señal , Pez Cebra , Animales , Transducción de Señal/efectos de los fármacos , PPAR alfa/metabolismo , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cricetinae , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Mesocricetus , Células Hep G2 , Benzofuranos/farmacología , Hígado Graso/tratamiento farmacológico
2.
Cell Biochem Funct ; 42(7): e4112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238138

RESUMEN

Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.


Asunto(s)
Suplementos Dietéticos , Inflamación , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Animales
4.
Nutrients ; 16(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275255

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disorder marked by the buildup of triacylglycerols (TGs) in the liver. It includes a range of conditions, from simple steatosis to more severe forms like non-alcoholic steatohepatitis (NASH), which can advance to fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD's prevalence is rising globally, estimated between 10% and 50%. The disease is linked to comorbidities such as obesity, type 2 diabetes, insulin resistance, and cardiovascular diseases and currently lacks effective treatment options. Therefore, researchers are focusing on evaluating the impact of adjunctive herbal therapies in individuals with NAFLD. One herbal therapy showing positive results in animal models and clinical studies is fruits from the Vaccinium spp. genus. This review presents an overview of the association between consuming fruits, juices, and extracts from Vaccinium spp. and NAFLD. The search used the following keywords: ((Vaccinium OR blueberry OR bilberry OR cranberry) AND ("non-alcoholic fatty liver disease" OR "non-alcoholic steatohepatitis")). Exclusion criteria included reviews, research notes, book chapters, case studies, and grants. The review included 20 studies: 2 clinical trials and 18 studies on animals and cell lines. The findings indicate that juices and extracts from Vaccinium fruits and leaves have significant potential in addressing NAFLD by improving lipid and glucose metabolism and boosting antioxidant and anti-inflammatory responses. In conclusion, blueberries appear to have the potential to alleviate NAFLD, but more clinical trials are needed to confirm these benefits.


Asunto(s)
Frutas , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Vaccinium , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/terapia , Humanos , Frutas/química , Vaccinium/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoterapia , Jugos de Frutas y Vegetales
5.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273541

RESUMEN

Obesity-related metabolic disorders, including diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease, increasingly threaten global health. Uncontrolled inflammation is a key pathophysiological factor in many of these conditions. In the human body, inflammatory responses generate specialized pro-resolving mediators (SPMs), which are crucial for resolving inflammation and restoring tissue balance. SPMs derived from omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as resolvins, protectins, and maresins hold promise in attenuating the chronic inflammatory diseases associated with lipid metabolism disorders. Recent research has highlighted the therapeutic potential of n-3 PUFA-derived metabolites in addressing these metabolic disorders. However, the understanding of the pharmacological aspects of SPMs, particularly in obesity-related metabolic disorders, remains limited. This review comprehensively summarizes recent advances in understanding the role of SPMs in resolving metabolic disorders, based on studies in animal models and humans. These studies indicate that SPMs have potential as therapeutic targets for combating obesity, as well as offering insights into their mechanisms of action.


Asunto(s)
Enfermedades Metabólicas , Obesidad , Humanos , Obesidad/metabolismo , Animales , Enfermedades Metabólicas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/uso terapéutico , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
6.
Molecules ; 29(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274927

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases encountered in clinical practice, which is characterized by the excessive accumulation of triglycerides (steatosis), and a variety of metabolic abnormalities including lipid metabolism and bile acid metabolism are closely related to NAFLD. In China, Gynostemma pentaphyllum is used as functional food and Chinese medicine to treat various diseases, especially NAFLD, for a long time. However, the active components that exert the main therapeutic effects and their mechanisms remain unclear. In this study, Gypensapogenin A was isolated from the total saponins of G. pentaphyllum and prepared as a liposomal delivery system. Gypensapogenin A liposomes could activate FXR, inhibit the expression of CYP7A1 and CYP8B1, increase the expression of CYP27A1, modulate the ratio of CA and CDCA, decrease the content of CA, and increase the content of CDCA, thus forming a virtuous cycle of activating FXR to play a role in lowering blood lipid levels.


Asunto(s)
Gynostemma , Metabolismo de los Lípidos , Liposomas , Receptores Citoplasmáticos y Nucleares , Receptores Citoplasmáticos y Nucleares/metabolismo , Liposomas/química , Metabolismo de los Lípidos/efectos de los fármacos , Humanos , Animales , Gynostemma/química , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Saponinas/farmacología , Saponinas/química , Células Hep G2 , Ratones , Ácidos y Sales Biliares/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos
7.
Life Sci ; 356: 123031, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226989

RESUMEN

AIMS: Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS: A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS: The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE: The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.


Asunto(s)
Descubrimiento de Drogas , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Humanos , Descubrimiento de Drogas/métodos , Animales , Bibliotecas de Moléculas Pequeñas/farmacología , Unión Proteica , Proteínas/metabolismo
8.
Nutrients ; 16(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39275156

RESUMEN

The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Polisacáridos , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Polisacáridos/farmacología , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Animales , Obesidad/microbiología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159560, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39181440

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of chronic liver disease worldwide. Spermidine (SPD), a naturally occurring polyamine, has shown potential in alleviating the accumulation of hepatic lipids and reducing NAFLD symptoms in overweight mice. Nonetheless, the specific mechanisms through which SPD exerts its effects remain largely unknown. This study seeks to explore the protective effects of SPD on NAFLD and to clarify the underlying mechanisms. An in vitro model of NAFLD was established by inducing steatosis in AML-12 cells through the use of free fatty acids (FFAs). Our experimental results demonstrate that SPD significantly reduces NAFLD development induced by FFAs. This reduction is primarily achieved through the inhibition of cellular ferroptosis, as evidenced by decreased levels of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS). Additionally, SPD was found to enhance cellular activity and ameliorate mitochondrial dysfunction and oxidative stress caused by FFA exposure. Further mechanistic studies have revealed that SPD upregulates the expression of solute transporter family 7a member 11 (SLC7A11), glutamate-cysteine ligase modifier subunit (GCLM), and glutathione peroxidase (GPX4). This upregulation is mediated by the activation of activating transcription factor 4 (ATF4). Knockdown experiments of ATF4 confirmed that its inhibition reverses the upregulation of SLC7A11, GCLM, and GPX4, thereby negating the protective effects of SPD. In conclusion, our findings suggest that SPD mitigates NAFLD by modulating the ATF4/SLC7A11/GCLM/GPX4 signaling pathway, resulting in the suppression of ferroptosis and the improvement of cellular health. These insights provide a novel molecular mechanism and identify potential therapeutic targets for the treatment of NAFLD.


Asunto(s)
Factor de Transcripción Activador 4 , Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Espermidina , Ferroptosis/efectos de los fármacos , Espermidina/farmacología , Espermidina/metabolismo , Animales , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Transducción de Señal/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos
10.
J Manag Care Spec Pharm ; 30(9-a Suppl): S1-S13, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39213163

RESUMEN

Nonalcoholic steatohepatitis (NASH)/metabolic dysfunction-associated steatohepatitis (MASH) is an advanced form of liver disease that can lead to significant morbidity and mortality primarily due to hepatic complications including fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure, as well as cardiovascular disease. As the development of NASH/MASH is closely linked to cardiometabolic risk factors such as obesity and type 2 diabetes mellitus, its prevalence is increasing along with the prevalence of those conditions. Identifying at-risk patients or those early in the disease process is essential to optimizing care and may prevent future complications. Current treatment options include disease-modifying interventions, off-label use of US Food and Drug Administration (FDA)-approved medications for comorbid conditions, and resmetirom, the recently first-ever FDA-approved medication specifically for use in NASH/MASH. There is also considerable continued activity in related drug development research with several other potential emerging treatments. With the increasing prevalence of NASH/MASH and emerging treatments, it is important for managed care organizations (MCOs) to be prepared to assist in patient care and implement equitable treatment management. Understanding patient perspectives and their experience with NASH/MASH provides insights for MCOs such as the need for education of both health care providers and patients to encourage early diagnosis and for enhancing access to individualized care including resources and support. Additionally, MCOs can consider potential management strategies for new and emerging treatments.


Asunto(s)
Accesibilidad a los Servicios de Salud , Enfermedad del Hígado Graso no Alcohólico , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Programas Controlados de Atención en Salud , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/terapia , Prevalencia , Estados Unidos/epidemiología
11.
J Ethnopharmacol ; 335: 118662, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39117022

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bge. (SMB) is an herbal medicine extensively used for improving metabolic disorders, including Nonalcoholic fatty liver disease (NAFLD). However, the potential material basis and working mechanism still remained to be elucidated. AIM OF THE STUDY: To find potential ingredients for therapy of NAFLD by high content screening and further verify the efficacy on restoring hepatic steatosis and insulin resistance, and clarify the potential working mechanism. MATERIALS AND METHODS: The mouse transcription factor EB (Tfeb) in preadipocytes was knocked out by CRISPR-Cas9 gene editing. High content screening of TFEB nuclear translocation was performed to identify TFEB activators. The effect of candidate compounds on reducing lipid accumulation was evaluated using Caenorhabditis elegans (C. elegans). Then the role of Salvia miltiorrhiza extract (SMB) containing Tanshinone IIA and the derivatives were further investigated on high-fat diet (HFD) fed mice. RNA-seq was performed to explore potential molecular mechanism of SMB. Finally, the gut microbiota diversity was evaluated using 16S rRNA sequencing to investigate the protective role of SMB on regulating gut microbiota homeostasis. RESULTS: Knockout of Tfeb led to excessive lipid accumulation in adipocytes while expression of TFEB homolog HLH-30 in C. elegans (MAH240) attenuated lipid deposition. Screening of TFEB activators identified multiple candidates from Salvia miltiorrhiza, all of them markedly induced lysosome biogenesis in HepG2 cells. One of the candidate compounds Tanshinone IIA significantly decreased lipid droplet deposition in HFD fed C. elegans. Administration of SMB on C57BL/6J mice via gastric irrigation at the dose of 15 g/kg/d markedly alleviated hepatic steatosis, restored serum lipid profile, and glucose tolerance. RNA-seq showed that gene expression profile was altered and the genes related to lipid metabolism were restored. The disordered microbiome was remodeled by SMB, Firmicutes and Actinobacteriotawere notably reduced, Bacteroidota and Verrucomicrobiota were significantly increased. CONCLUSION: Taken together, the observations presented here help address the question concerning what were the main active ingredients in SMB for alleviating NAFLD, and established that targeting TFEB was key molecular basis for the efficacy of SMB.


Asunto(s)
Abietanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Caenorhabditis elegans , Resistencia a la Insulina , Ratones Endogámicos C57BL , Salvia miltiorrhiza , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Caenorhabditis elegans/efectos de los fármacos , Abietanos/farmacología , Ratones , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Dieta Alta en Grasa , Células 3T3-L1
12.
J Ethnopharmacol ; 335: 118657, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39127115

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides L.) is a traditional Chinese medicinal and possesses a rich medical history in terms of treating gastric disorders, sputum and cough and liver injuries in oriental medicinal system. By reason of the complicated chemical constituents, the material basis and potential pharmacological mechanism of sea buckthorn acting on Non-alcoholic fatty liver disease (NAFLD) has not been clearly elucidated. AIM OF THE STUDY: To explore the pharmacological efficacy and underlying mechanism of sea buckthorn triterpenoid acid enrichment (STE) in the treatment of NAFLD. MATERIALS AND METHODS: The approaches of Network pharmacology and experiment validation in vitro and in vivo were applied in this study. Firstly, targets of triterpenoid acid compounds and NAFLD were collected from databases. The crucial targets were screened by the construction of protein-protein interaction (PPI) network. Furthermore, the potential signaling pathways and targets affected by STE was predicted by GO together with KEGG enrichment analysis. Finally, the experiment validation was carried out through high-fat feeding NAFLD mice and lipid accumulation HepG2 cell model. Lipids and liver related biochemical indicators were determined, Oil Red O and H&E staining were employed to observe fat accumulation. In addition, the expression levels of proteins of key target and signal pathway anticipated in network pharmacology were detected to elaborated its action mechanism. RESULTS: A total of 180 intersecting potential targets for enhancing NAFLD with STE were eventually identified. 6 key targets including AKT1, TNF, IL6, INS, JUN, STAT3 and TP53 were further identified and the AMPK-SREBP1 pathway was enriched. Animal experiment result showed that STE treatment could significantly reduce the levels of TG, TC, LDL-C, ALT and AST, increase the levels of HDL-C in serum, and improve lipid accumulation of epididymal fat and liver. The results of the lipid accumulation cell model indicated that STE and key compound oleanolic acid could diminish intracellular lipid levels of TG, TC, LDL-C and number of lipid droplets. Western blot results showed that the above beneficial effects could be achieved by regulating the expression of p-AMPK/AMPK, SREBP1, FAS, ACC, SCD protein. CONCLUSION: This study confirmed the effect of STE on improving NAFLD and the potential action mechanism was involved in the regulation of the AMPK-SREBP1 pathway.


Asunto(s)
Hippophae , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Triterpenos , Hippophae/química , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triterpenos/farmacología , Humanos , Masculino , Células Hep G2 , Ratones , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas , Dieta Alta en Grasa , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transducción de Señal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
13.
J Agric Food Chem ; 72(35): 19378-19394, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166383

RESUMEN

This study aimed to investigate the effects of corn gluten-derived soluble epoxide hydrolase (sEH) inhibitory peptides on nonalcoholic fatty liver fibrosis induced by a high-fat diet and carbon tetrachloride in mice. Mice treated with corn peptides at doses of 500 or 1000 mg/kg/d for 4 weeks exhibited reduced sEH activity in serum and liver, enhanced lipid metabolism, and decreased lipid accumulation and oxidative stress. Corn peptides effectively downregulated the mRNA levels of Pro-IL-1ß, Pro-IL-18, NOD-like receptor protein 3 (NLRP3), ASC, Pro-caspase-1, Caspase-1, and GSDMD in the liver. This hepatoprotective effect of corn peptides by inhibiting NLRP3 inflammasome activation was further validated in H2O2-induced HepG2 cells. Moreover, corn peptides restored the composition of the gut microbiota and promoted short-chain fatty acid production. This study provides evidence that corn-derived sEH inhibitory peptides have hepatoprotective activity against nonalcoholic fatty liver fibrosis by suppressing NLRP3 inflammasome activation and modulating gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico , Péptidos , Zea mays , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/genética , Masculino , Humanos , Zea mays/química , Péptidos/farmacología , Péptidos/administración & dosificación , Hígado/metabolismo , Hígado/efectos de los fármacos , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Células Hep G2 , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo
14.
World J Gastroenterol ; 30(30): 3584-3608, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193572

RESUMEN

BACKGROUND: Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM: To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS: HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS: FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION: FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.


Asunto(s)
Autofagia , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Transducción de Señal , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Autofagia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Lipogénesis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología
15.
World J Gastroenterol ; 30(30): 3541-3547, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193573

RESUMEN

In this editorial, we comment on Yin et al's recently published Letter to the editor. In particular, we focus on the potential use of glucagon-like peptide 1 receptor agonists (GLP-1RAs) alone, but even more so in combination therapy, as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease (MASLD), the new definition of an old condition, non-alcoholic fatty liver disease, which aims to better define the spectrum of steatotic pathology. It is well known that GLP-1RAs, having shown outstanding performance in fat loss, weight loss, and improvement of insulin resistance, could play a role in protecting the liver from progressive damage. Several clinical trials have shown that, among GLP-1RAs, semaglutide is a safe, well-studied therapeutic choice for MASLD patients; however, most studies demonstrate that, while semaglutide can reduce steatosis, including steatohepatitis histological signs (in terms of inflammatory cell infiltration and hepatocyte ballooning), it does not improve fibrosis. Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease. In particular, GLP-1RAs associated with antifibrotic drug therapy, dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis, liver biochemistry, and non-invasive fibrosis tests than monotherapy. Therefore, although to date there are no definitive indications from international drug agencies, there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD, one that will certainly include the use of GLP-1RAs as combination therapy.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Péptidos Similares al Glucagón , Enfermedad del Hígado Graso no Alcohólico , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Péptidos Similares al Glucagón/uso terapéutico , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Resistencia a la Insulina , Quimioterapia Combinada/métodos , Péptido 1 Similar al Glucagón/agonistas , Péptido 1 Similar al Glucagón/metabolismo , Resultado del Tratamiento , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Progresión de la Enfermedad , Incretinas/uso terapéutico
16.
Lipids Health Dis ; 23(1): 266, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182075

RESUMEN

BACKGROUND: Nonalcoholic Steatohepatitis (NASH) results from complex liver conditions involving metabolic, inflammatory, and fibrogenic processes. Despite its burden, there has been a lack of any approved food-and-drug administration therapy up till now. PURPOSE: Utilizing machine learning (ML) algorithms, the study aims to identify reliable potential genes to accurately predict the treatment response in the NASH animal model using biochemical and molecular markers retrieved using bioinformatics techniques. METHODS: The NASH-induced rat models were administered various microbiome-targeted therapies and herbal drugs for 12 weeks, these drugs resulted in reducing hepatic lipid accumulation, liver inflammation, and histopathological changes. The ML model was trained and tested based on the Histopathological NASH score (HPS); while (0-4) HPS considered Improved NASH and (5-8) considered non-improved, confirmed through rats' liver histopathological examination, incorporates 34 features comprising 20 molecular markers (mRNAs-microRNAs-Long non-coding-RNAs) and 14 biochemical markers that are highly enriched in NASH pathogenesis. Six different ML models were used in the proposed model for the prediction of NASH improvement, with Gradient Boosting demonstrating the highest accuracy of 98% in predicting NASH drug response. FINDINGS: Following a gradual reduction in features, the outcomes demonstrated superior performance when employing the Random Forest classifier, yielding an accuracy of 98.4%. The principal selected molecular features included YAP1, LATS1, NF2, SRD5A3-AS1, FOXA2, TEAD2, miR-650, MMP14, ITGB1, and miR-6881-5P, while the biochemical markers comprised triglycerides (TG), ALT, ALP, total bilirubin (T. Bilirubin), alpha-fetoprotein (AFP), and low-density lipoprotein cholesterol (LDL-C). CONCLUSION: This study introduced an ML model incorporating 16 noninvasive features, including molecular and biochemical signatures, which achieved high performance and accuracy in detecting NASH improvement. This model could potentially be used as diagnostic tools and to identify target therapies.


Asunto(s)
Modelos Animales de Enfermedad , Aprendizaje Automático , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Proteínas Señalizadoras YAP/genética , Biomarcadores/sangre , MicroARNs/genética
17.
Bioorg Chem ; 151: 107698, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126869

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, facing increasing challenges in terms of prevention and treatment. The methylation of lysine and arginine residues on histone proteins is dynamically controlled by histone methyltransferases (HMTs) and histone demethylases (HDMs), regulating chromatin structure and gene transcription. Mutations, genetic translocations, and altered gene expression involving HMTs and HDMs are frequently observed in NAFLD. HMTs and HDMs are receiving increasing attention in regulating NALFD. Targeting specific HMTs and HDMs for drug development is becoming a new strategy for treating NAFLD. This review provides a comprehensive summary of the regulatory mechanism of histone methylation/demethylation in NAFLD. Additionally, we discuss the potential applications of HMTs and HDMs inhibitors in preventing NAFLD, which may provide a scientific basis for the treatment of NAFLD.


Asunto(s)
Histonas , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Humanos , Metilación , Histonas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Desmetilación , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Histona Metiltransferasas/metabolismo , Histona Metiltransferasas/antagonistas & inhibidores , Estructura Molecular
18.
Int Immunopharmacol ; 140: 112821, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39088919

RESUMEN

Hepatocellular carcinoma (HCC) is a common cause of cancer-related mortality and morbidity globally, and with the prevalence of metabolic-related diseases, the incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) related hepatocellular carcinoma (MAFLD-HCC) continues to rise with the limited efficacy of conventional treatments, which has created a major challenge for HCC surveillance. Immune checkpoint inhibitors (ICIs) and molecularly targeted drugs offer new hope for advanced MAFLD-HCC, but the evidence for the use of both types of therapy in this type of tumour is still insufficient. Theoretically, the combination of immunotherapy, which awakens the body's anti-tumour immunity, and targeted therapies, which directly block key molecular events driving malignant progression in HCC, is expected to produce synergistic effects. In this review, we will discuss the progress of immunotherapy and molecular targeted therapy in MAFLD-HCC and look forward to the opportunities and challenges of the combination therapy.


Asunto(s)
Carcinoma Hepatocelular , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias Hepáticas , Terapia Molecular Dirigida , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales , Terapia Combinada , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
19.
Phytomedicine ; 133: 155924, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098169

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a critical stage in the progression of non-alcoholic fatty liver disease (NAFLD), characterized by obvious inflammation and fibrosis. Because of its high incidence rate and serious consequences, NASH is becoming a global health problem. The influence of endotoxin translocation on NASH is receiving attention. As a traditional Chinese herb that effectively improves hepatic inflammation, Fructus Aurantii (Quzhou origin, FAQ) is widely used in the clinical treatment of NASH. However, the intervention mechanism of FAQ on reg3g and related endotoxin translocation remains unclear. AIM: To study the mechanism of the impact by which ileal regenerating family member 3 gamma (reg3g) deficiency and subsequent endotoxin translocation impact the progression of NASH; To elucidate the efficacy and mechanism of FAQ in the treatment of NASH. METHODS: Clinical serum, ileal tissue, and dynamic NASH model-related analyses collectively confirmed that reg3g is a pivotal gene associated with NASH. Reg3g-/- mice were used to assess the impact of reg3g on liver injury, inflammation, and fibrosis, as well as the underlying mechanism involved. In vitro studies elucidated the regulatory effects of FAQ on reg3g, intestinal barrier function, and intestinal permeability. Subsequently, the efficacy of FAQ was investigated in NASH mouse models. Pathological examinations combined with Western blotting (WB), immunohistochemistry (IHC), and multiplex immunohistochemical (mIHC) analyses were used to evaluate the effects of FAQ on mucosal repair and barrier function. Transepithelial electrical resistance (TEER), fluorescein isothiocyanate-dextran 4 (FD-4) experiments, coupled with enzyme linked immunosorbent assay (ELISA) and chromogenic LAL endotoxin assay were used to confirm intestinal permeability and endotoxin translocation. The results of WB and mIHC reflected the levels of endotoxin recruitment and M1 macrophage polarization in the liver. Parameters such as body weight, transaminases, and cholesterol were utilized to assess the metabolic effects of FAQ. RESULTS: Decreased expression of reg3g was associated with the progression of NASH. Ileal deficiency in reg3g resulted in damage to the intestinal barrier and permeability, leading to the recruitment of endotoxins via the 'gut-liver' axis to the liver, causing the polarization of M1 macrophages, release of inflammatory factors, excessive inflammation, and activation of hepatic stellate cells (HSCs), leading to fibrosis. FAQ significantly upregulated ileal reg3g expression and the expression of intestinal barrier-related proteins tight junction protein 1 (ZO-1) and occludin (OLCN) in mice (p < 0.05), thereby improving intestinal barrier function and permeability. Reduced intestinal permeability led to decreases in endotoxins entering the bloodstream and accumulating in the liver (p < 0.05). The expression of CD68 suggested reduced polarization of M1 macrophages. Expression levels of actin alpha 2, smooth muscle actin (α-SMA) and extracellular matrix (ECM)-related proteins also decreased, indicating improved liver fibrosis. CONCLUSION: FAQ ameliorates NASH by upregulating the expression of reg3g. The upregulation of reg3g contributes to the repair of the intestinal barrier and permeability, reducing the recruitment of endotoxins and subsequent polarization of M1 macrophages, excessive inflammation, and fibrosis.


Asunto(s)
Medicamentos Herbarios Chinos , Íleon , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Proteínas Asociadas a Pancreatitis , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Ratones , Masculino , Humanos , Íleon/efectos de los fármacos , Íleon/metabolismo , Medicamentos Herbarios Chinos/farmacología , Modelos Animales de Enfermedad , Ratones Noqueados , Hígado/efectos de los fármacos , Hígado/metabolismo , Endotoxinas
20.
J Biochem Mol Toxicol ; 38(9): e23809, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39148263

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is an alarming ailment that leads to severe liver damage and increases the risk of serious health conditions. The prevalence of NAFLD due to oxidative stress could be mitigated by plant-derived antioxidants. This study aims to investigate the effects of syringic acid (SA) on NAFLD in a high-fat diet (HFD) rat model. Twenty-four rats were randomly divided into four groups (n = 6): normal control, HFD, SA-administered HFD, and positive control SA on a normal diet. Rats in the normal control and positive control groups received a normal diet, and the remaining groups received an HFD for 8 weeks. SA (20 mg/kg b.w.) was orally (gavage) administered for 8 weeks. Lipid profiles were controlled by SA against HFD-fed rats (p < 0.05). SA reduced the serum aspartate aminotransferase and alanine aminotransferase levels by 70%-190%. SA also suppressed pro-inflammatory cytokines and attenuated histopathological and immunohistochemical changes against HFD-fed rats. SA reversed oxidative stress by suppressing the malondialdehyde formation by 82% and replenished the nonenzymatic and enzymatic antioxidant activities (p < 0.05). Gene expressions of nuclear factor-erythroid 2-related factor/heme oxygenase 1 (Nrf2/HO-1) were elevated in SA-treated rats. Ameliorative effects of SA on NAFLD induced by an HFD in rats were prominent through the reversal of oxidative stress and inflammation, regulated by an intrinsic mechanism of defense against oxidative stress, the Nrf2/HO-1 pathway.


Asunto(s)
Ácido Gálico , Hemo Oxigenasa (Desciclizante) , Factor 2 Relacionado con NF-E2 , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ratas , Masculino , Transducción de Señal/efectos de los fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratas Sprague-Dawley , Antioxidantes/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA