Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.128
Filtrar
1.
Lancet Gastroenterol Hepatol ; 9(10): 944-956, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243773

RESUMEN

The natural history of metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease (NAFLD), is complex and long. A minority of patients develop inflammation and risk progressive fibrosis that can result in cirrhosis. Progression to cirrhosis occurs in 3-5% of patients and often takes more than 20 years. This narrative review presents an update on the natural history of MASLD, discussing studies and risk estimates for progression to severe outcomes, such as decompensated cirrhosis or hepatocellular carcinoma. We highlight the dynamic progression of liver damage, how to identify patients whose disease progresses over time, and how risk factors might be mitigated to reduce the risk for disease progression.


Asunto(s)
Progresión de la Enfermedad , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Factores de Riesgo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/complicaciones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología
2.
Cell Biochem Funct ; 42(7): e4112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238138

RESUMEN

Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.


Asunto(s)
Suplementos Dietéticos , Inflamación , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Animales
3.
Eur J Med Res ; 29(1): 459, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272195

RESUMEN

BACKGROUND AND AIM: Metabolic dysfunction-associated steatotic liver disease (MASLD) formerly known as non-alcoholic fatty liver disease (NAFLD) is the most common liver condition globally. The FIB-4 test is used to detect fibrosis in fatty liver disease but has limited accuracy in predicting liver stiffness, resulting in high rates of false positives and negatives. The new BAST scoring system, incorporating waist circumference, AST, and BMI, has been developed to assess the presence of fibrosis in NAFLD patients. This study compares the effectiveness of BAST and FIB-4 in predicting liver fibrosis in MASLD patients. PATIENTS AND METHODS: The study included 140 non-diabetic MASLD patients who underwent transient elastography measurement. BAST score and FIB-4 were calculated for each patient. Patients were grouped based on fibrosis severity; F1, F2, and F3-F4. The sensitivity and specificity of the BAST score and FIB-4 were assessed using receiver operating characteristic curves. RESULTS: The BAST score increased significantly with fibrosis progression from F1 to F3-F4. In differentiating advanced fibrosis (F2-F3) from mild/moderate fibrosis (F1-F2), the BAST score at cutoff ≤ - 0.451 showed better diagnostic performance with 90.70% sensitivity, 74.07% specificity, 84.8% PPV and 83.3% NPV compared to FIB-4 that had 60.47% sensitivity, 50.0% specificity, 65.8% PPV and 44.3% NPV. Similarly, for differentiating between F1 and F2 fibrosis, the BAST score at cutoff ≤ - 1.11 outperformed FIB-4, with 80.23% sensitivity, 79.49% specificity, 89.6% PPV and 64.6% NPV, while FIB-4 had 59.30% sensitivity, 51.28% specificity, 72.9% PPV and 36% NPV. CONCLUSIONS: The BAST score is a better predictor of liver fibrosis in MASLD compared to FIB-4, especially in cases of advanced fibrosis or cirrhosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Femenino , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/complicaciones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Diagnóstico por Imagen de Elasticidad/métodos , Adulto , Índice de Severidad de la Enfermedad , Curva ROC , Anciano
4.
Cell Death Dis ; 15(9): 674, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277582

RESUMEN

Abnormal SUMOylation is implicated in non-alcoholic fatty liver disease (NAFLD) progression. Forkhead box protein A1 (FoxA1) has been shown to protect liver from steatosis, which was down-regulated in NAFLD. This study elucidated the role of FoxA1 deSUMOylation in NAFLD. NAFLD models were established in high-fat diet (HFD)-induced mice and palmitate acid (PAL)-treated hepatocytes. Hepatic steatosis was evaluated by biochemical and histological methods. Lipid droplet formation was determined by BODIPY and Oil red O staining. Target molecule levels were analyzed by RT-qPCR, Western blotting, and immunohistochemistry staining. SUMOylation of FoxA1 was determined by Ni-NTA pull-down assay and SUMOylation assay Ultra Kit. Protein interaction and ubiquitination were detected by Co-IP. Gene transcription was assessed by ChIP and dual luciferase reporter assays. Liver FoxA1 knockout mice developed severe liver steatosis, which could be ameliorated by sirtuin 6 (Sirt6) overexpression. Nutritional stresses reduced Sumo2/3-mediated FoxA1 SUMOylation at lysine residue K6, which promoted lipid droplet formation by repressing fatty acid ß-oxidation. Moreover, Sirt6 was a target gene of FoxA1, and Sirt6 transcription activity was restrained by deSUMOylation of FoxA1 at site K6. Furthermore, nutritional stresses-induced deSUMOylation of FoxA1 promoted the ubiquitination and degradation of FoxA1 with assistance of murine double minute 2 (Mdm2). Finally, activating FoxA1 SUMOylation delayed the progression of NAFLD in mice. DeSUMOylation of FoxA1 at K6 promotes FoxA1 degradation and then inhibits Sirt6 transcription, thereby suppressing fatty acid ß-oxidation and facilitating NAFLD development. Our findings suggest that FoxA1 SUMOylation activation might be a promising therapeutic strategy for NAFLD.


Asunto(s)
Regulación hacia Abajo , Factor Nuclear 3-alfa del Hepatocito , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Sumoilación , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Ratones , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Masculino , Ratones Endogámicos C57BL , Dieta Alta en Grasa , Modelos Animales de Enfermedad
5.
Medicine (Baltimore) ; 103(22): e38383, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-39259089

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is an important etiology of hepatocellular carcinoma (HCC), and there is no established therapy for this syndrome. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, autonomic dysregulation, and neural crest tumor (ROHHAD(NET)) is an extremely rare syndrome considered to be life-threatening, with death occurring around 10 years of age. We present the oldest known autopsy case of this syndrome that developed HCC. This case provided important information on not only improving the course of this syndrome, but also understanding the natural history and therapeutic modalities of NASH and HCC. METHODS: The patient was diagnosed with ROHHAD(NET) syndrome in childhood, and liver cirrhosis due to NASH was diagnosed at age 17. HCC was detected at age 20, and embolization and irradiation were performed. At age 21, she died from accidental acute pancreatitis and subsequent liver failure and pulmonary hemorrhage. RESULTS: Rapid onset of obesity, hypoventilation, and hypothalamic disturbance appeared in childhood and was diagnosed as this syndrome. At age 17, liver cirrhosis due to NASH was diagnosed by liver biopsy, and at age 20, HCC was diagnosed by imaging. Transarterial chemoembolization and irradiation were performed, and the HCC was well controlled for a year. CONCLUSION: At age 21, she died from accidental acute pancreatitis, subsequent liver failure and pulmonary hemorrhage. Autopsy revealed that the HCC was mostly necrotized. This case was valuable not only for other ROHHAD(NET) syndrome cases, but also in improving our understanding of the natural history of NASH and HCC.


Asunto(s)
Autopsia , Carcinoma Hepatocelular , Enfermedades Hipotalámicas , Hipoventilación , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Femenino , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/terapia , Hipoventilación/etiología , Hipoventilación/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedades Hipotalámicas/complicaciones , Enfermedades Hipotalámicas/diagnóstico , Obesidad/complicaciones , Tumores Neuroendocrinos/complicaciones , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/terapia , Resultado Fatal , Adulto Joven , Enfermedades del Sistema Nervioso Autónomo/etiología , Síndrome
6.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273539

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a rising global burden, affecting one in four adults. Despite the increasing prevalence of NAFLD, the exact cellular and molecular mechanisms remain unclear, and effective therapeutic strategies are still limited. In vitro models of NAFLD are critical to understanding the pathogenesis and searching for effective therapies; thus, we evaluated the effects of free fatty acids (FFAs) on NAFLD hallmarks and their association with the modulation of Annexin A2 (ANXA2) and Keratin 17 (KRT17) in HepG2 cells. Our results show that oleic and palmitic acids can differentially induce intracellular lipid accumulation, cell death, and promote oxidative stress by increasing lipid peroxidation, protein carbonylation, and antioxidant defense depletion. Moreover, a markedly increased expression of inflammatory cytokines demonstrated the activation of inflammation pathways associated with lipotoxicity and oxidative stress. ANXA2 overexpression and KRT17 nuclear translocation were also observed, supporting the role of both molecules in the progression of liver disease. Taken together, these data provide insights into the interplay between ANXA2 and KRT17 in NAFLD, paving the way for understanding molecular mechanisms involved with the disease and developing new therapeutic strategies.


Asunto(s)
Anexina A2 , Ácidos Grasos no Esterificados , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Células Hep G2 , Ácidos Grasos no Esterificados/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
7.
Sci Rep ; 14(1): 21085, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256536

RESUMEN

Non-alcoholic Fatty Liver Disease (NAFLD), noted for its widespread prevalence among adults, has become the leading chronic liver condition globally. Simultaneously, the annual disease burden, particularly liver cirrhosis caused by NAFLD, has increased significantly. Neutrophil Extracellular Traps (NETs) play a crucial role in the progression of this disease and are key to the pathogenesis of NAFLD. However, research into the specific roles of NETs-related genes in NAFLD is still a field requiring thorough investigation. Utilizing techniques like AddModuleScore, ssGSEA, and WGCNA, our team conducted gene screening to identify the genes linked to NETs in both single-cell and bulk transcriptomics. Using algorithms including Random Forest, Support Vector Machine, Least Absolute Shrinkage, and Selection Operator, we identified ZFP36L2 and PHLDA1 as key hub genes. The pivotal role of these genes in NAFLD diagnosis was confirmed using the training dataset GSE164760. This study identified 116 genes linked to NETs across single-cell and bulk transcriptomic analyses. These genes demonstrated enrichment in immune and metabolic pathways. Additionally, two NETs-related hub genes, PHLDA1 and ZFP36L2, were selected through machine learning for integration into a prognostic model. These hub genes play roles in inflammatory and metabolic processes. scRNA-seq results showed variations in cellular communication among cells with different expression patterns of these key genes. In conclusion, this study explored the molecular characteristics of NETs-associated genes in NAFLD. It identified two potential biomarkers and analyzed their roles in the hepatic microenvironment. These discoveries could aid in NAFLD diagnosis and management, with the ultimate goal of enhancing patient outcomes.


Asunto(s)
Biomarcadores , Trampas Extracelulares , Aprendizaje Automático , Enfermedad del Hígado Graso no Alcohólico , Análisis de la Célula Individual , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Humanos , Análisis de la Célula Individual/métodos , Trampas Extracelulares/metabolismo , Biomarcadores/metabolismo , Neutrófilos/metabolismo , Transcriptoma , Perfilación de la Expresión Génica
8.
Sci Transl Med ; 16(764): eadi0284, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259813

RESUMEN

Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Macrófagos del Hígado , Hígado , Activación de Macrófagos , Enfermedad del Hígado Graso no Alcohólico , Macrófagos del Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones , Muerte Celular , Lisosomas/metabolismo , Fagocitosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo
9.
Physiol Res ; 73(4): 593-608, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39264080

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver in the absence of excessive alcohol consumption or a secondary cause of hepatic steatosis. The prevalence of NAFLD is increasing worldwide and its management has become a public health concern. Animal models are traditionally used to elucidate disease mechanisms and identify potential drug targets; however, their translational aspects in human diseases have not been fully established. This study aimed to clarify the utility of animal models for translational research by assessing their relevance to human diseases using gene expression analysis. Weighted gene co-expression network analysis of liver tissues from Western diet (WD)-induced NAFLD mice was performed to identify the modules associated with disease progression. Moreover, the similarity of the gene co-expression network across species was evaluated using module preservation analysis. Nineteen disease-associated modules were identified. The brown module was positively associated with disease severity, and functional analyses indicated that it may be involved in inflammatory responses in immune cells. Moreover, the gene co-expression network of the brown module was highly preserved in human NAFLD liver gene expression datasets. These results indicate that WD-induced NAFLD mice have similar gene co-expression networks (especially genes associated with inflammatory responses) to humans and are thought to be a useful experimental tool for preclinical research on NAFLD. Keywords: Nonalcoholic fatty liver disease (NAFLD), Weighted gene co-expression network analysis (WGCNA), Western diet (WD).


Asunto(s)
Dieta Occidental , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Transcriptoma , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Dieta Occidental/efectos adversos , Ratones , Humanos , Masculino , Hígado/metabolismo , Hígado/patología , Perfilación de la Expresión Génica/métodos
10.
Sci Rep ; 14(1): 21642, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285218

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common liver disease associated with obesity and is caused by the accumulation of ectopic fat without alcohol consumption. Coxsackievirus and adenovirus receptor (CAR) are vital for cardiac myocyte-intercalated discs and endothelial cell-to-cell tight junctions. CAR has also been reported to be associated with obesity and high blood pressure. However, its function in the liver is still not well understood. The liver of obese mice exhibit elevated CAR mRNA and protein levels. Furthermore, in the liver of patients with non-alcoholic steatohepatitis, CAR is reduced in hepatocyte cell-cell junctions compared to normal levels. We generated liver-specific CAR knockout (KO) mice to investigate the role of CAR in the liver. Body and liver weights were not different between wild-type (WT) and KO mice fed a paired or high-fat diet (HFD). However, HFD induced significant liver damage and lipid accumulation in CAR KO mice compared with WT mice. Additionally, inflammatory cytokines transcription, hepatic permeability, and macrophage recruitment considerably increased in CAR KO mice. We identified a new interaction partner of CAR using a protein pull-down assay and mass spectrometry. Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) demonstrated a complex relationship with CAR, and hepatic CAR expression tightly regulated its level. Moreover, Apolipoprotein B (ApoB) and Low-density lipoprotein receptor (LDLR) levels correlated with APOBEC3C expression in the liver of CAR KO mice, suggesting that CAR may regulate lipid accumulation by controlling APOBEC3C activity. In this study, we showed that hepatic CAR deficiency increased cell-to-cell permeability. In addition, CAR deletion significantly increased hepatic lipid accumulation by inducing ApoB and LDLR expression. Although the underlying mechanism is unclear, CARs may be a target for the development of novel therapies for MAFLD.


Asunto(s)
Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Hígado , Ratones Noqueados , Animales , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Hígado/metabolismo , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Dieta Alta en Grasa/efectos adversos , Humanos , Hepatocitos/metabolismo , Masculino , Ratones Endogámicos C57BL
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159560, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39181440

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of chronic liver disease worldwide. Spermidine (SPD), a naturally occurring polyamine, has shown potential in alleviating the accumulation of hepatic lipids and reducing NAFLD symptoms in overweight mice. Nonetheless, the specific mechanisms through which SPD exerts its effects remain largely unknown. This study seeks to explore the protective effects of SPD on NAFLD and to clarify the underlying mechanisms. An in vitro model of NAFLD was established by inducing steatosis in AML-12 cells through the use of free fatty acids (FFAs). Our experimental results demonstrate that SPD significantly reduces NAFLD development induced by FFAs. This reduction is primarily achieved through the inhibition of cellular ferroptosis, as evidenced by decreased levels of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS). Additionally, SPD was found to enhance cellular activity and ameliorate mitochondrial dysfunction and oxidative stress caused by FFA exposure. Further mechanistic studies have revealed that SPD upregulates the expression of solute transporter family 7a member 11 (SLC7A11), glutamate-cysteine ligase modifier subunit (GCLM), and glutathione peroxidase (GPX4). This upregulation is mediated by the activation of activating transcription factor 4 (ATF4). Knockdown experiments of ATF4 confirmed that its inhibition reverses the upregulation of SLC7A11, GCLM, and GPX4, thereby negating the protective effects of SPD. In conclusion, our findings suggest that SPD mitigates NAFLD by modulating the ATF4/SLC7A11/GCLM/GPX4 signaling pathway, resulting in the suppression of ferroptosis and the improvement of cellular health. These insights provide a novel molecular mechanism and identify potential therapeutic targets for the treatment of NAFLD.


Asunto(s)
Factor de Transcripción Activador 4 , Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Espermidina , Ferroptosis/efectos de los fármacos , Espermidina/farmacología , Espermidina/metabolismo , Animales , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Transducción de Señal/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos
12.
Genes (Basel) ; 15(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39202366

RESUMEN

This study examines the complex interplay of genetic and environmental interactions that shape chronic illness risk. Evidence is mounting for the role of genetic expression and the immune response in the pathogenesis of chronic disease. In the Rio Grande Valley of south Texas, where 90% of the population is Mexican American, chronic illnesses (including obesity, diabetes, nonalcoholic liver disease, and depression) are reaching epidemic proportions. This study leverages an ongoing family study of the genetic determinants of risk for obesity, diabetes, hypertension, hyperlipidemia, and depression in a Mexican American population. Data collected included blood pressure, BMI, hepatic transaminases, HbA1c, depression (BDI-II), acculturation/marginalization (ARSMA-II), and liver health as assessed by elastography. Heritability and genotype-by-environment (G×E) interactions were analyzed, focusing on the marginalization/separation measure of the ARSMA-II. Significant heritabilities were found for traits such as HbA1c (h2 = 0.52), marginalization (h2 = 0.30), AST (h2 = 0.25), ALT (h2 = 0.41), and BMI (h2 = 0.55). Genotype-by-environment interactions were significant for HbA1c, AST/ALT ratio, BDI-II, and CAP, indicating that genetic factors interact with marginalization to influence these traits. This study found that acculturation stress exacerbates the genetic response to chronic illness. These findings underscore the importance of considering G×E interactions in understanding disease susceptibility and may inform targeted interventions for at-risk populations. Further research is warranted to elucidate the underlying molecular pathways and replicate these findings in diverse populations.


Asunto(s)
Aculturación , Interacción Gen-Ambiente , Americanos Mexicanos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etnología , Masculino , Femenino , Americanos Mexicanos/genética , Adulto , Persona de Mediana Edad , Enfermedad Crónica , Genotipo , Estrés Psicológico/genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Texas/epidemiología
13.
World J Gastroenterol ; 30(30): 3584-3608, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193572

RESUMEN

BACKGROUND: Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM: To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS: HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS: FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION: FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.


Asunto(s)
Autofagia , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Transducción de Señal , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Autofagia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Lipogénesis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología
14.
PLoS One ; 19(8): e0309617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190769

RESUMEN

BACKGROUND: NASH is considered a contributor to atherosclerotic cardiovascular disease (ASCVD) risk; however, its contribution beyond traditional risk factors for CVD, particularly diabetes, is less clearly understood. This study aimed to quantify the cardiovascular-event risk associated with NASH, independent of diabetes status. METHODS: A cross-sectional analysis was conducted using the 2017-2020 NHANES pre-pandemic cycle. NASH was defined based on presence of steatosis without other causes of liver disease, and FibroScan+AST score from vibration-controlled transient elastography (VCTE). Significant fibrosis (stages F2-F4) was identified by liver stiffness measurement from VCTE. Predicted primary CV-event risk was estimated using both the Pooled Cohort Equations (PCE) and the Framingham Risk Score (FRS). NASH patients were matched with non-NASH controls on age, sex, race/ethnicity, and diabetes status. Weighted logistic regression was conducted, modeling elevated predicted CV risk (binary) as the dependent variable and indicators for NASH / fibrosis stages as independent variables. RESULTS: A sample of 125 NASH patients was matched with 2585 controls. NASH with significant fibrosis was associated with elevated predicted 10-year CV risk, although this association was only statistically significant in PCE analyses (odds ratio and 95% CI 2.34 [1.25, 4.36]). Analyses restricting to ages <65 years showed similar results, with associations of greater magnitude. CONCLUSION: Independent of diabetes, a significant association was observed between NASH with significant liver fibrosis and predicted primary CV-event risk in US adults, particularly for those <65. These findings suggest the importance of accounting for NASH and liver-fibrosis stage in predicting CV-event risk.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Encuestas Nutricionales , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Adulto , Estados Unidos/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Factores de Riesgo , Estudios de Casos y Controles , Anciano , Cirrosis Hepática/epidemiología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Factores de Riesgo de Enfermedad Cardiaca
15.
Sci Rep ; 14(1): 19883, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191842

RESUMEN

Muscle quality index (MQI) is a novel indicator reflecting the quality of skeletal muscles. The association between MQI and the development of advanced fibrosis in patients with nonalcoholic fatty liver disease (NAFLD) is unknown. We investigated the association of low MQI with advanced fibrosis among adults with NAFLD using a nationally representative sample of the US population. Adults with NAFLD who participated in the National Health and Nutrition Examination Survey (NHANES) 2011-2014 were included. Sex-specific standard was used to define low and extremely low MQI. Univariate and multivariate logistic regressions were used to assess the association between MQI level and advanced fibrosis. In the study, 3758 participants with NAFLD were included. The prevalence of low and extremely low MQI was 11.7% (95% CI 10.4-13.0%) and 2.2% (95% CI 1.6-2.8%), respectively. Among these participants, 96 were assessed to have advanced fibrosis. Individuals with low [(odds ratio (OR) 2.45, 95% confidence interval (CI) 1.22-4.91)] and extremely low MQI (OR 10.48, 95% CI 3.20-34.27) were associated with advanced fibrosis in multivariable analysis. A linear trend relationship was also observed between MQI level and the risk of advanced fibrosis (Ptrend = 0.001). Subgroup and sensitivity analyses yielded similar results to the main analyses. Decreased MQI is highly prevalent, and is associated with an increased risk of advanced fibrosis in adult US population with NAFLD.


Asunto(s)
Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Encuestas Nutricionales , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Cirrosis Hepática/epidemiología , Cirrosis Hepática/patología , Músculo Esquelético/patología , Factores de Riesgo , Estados Unidos/epidemiología , Prevalencia , Estudios Transversales
16.
World J Gastroenterol ; 30(30): 3541-3547, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193573

RESUMEN

In this editorial, we comment on Yin et al's recently published Letter to the editor. In particular, we focus on the potential use of glucagon-like peptide 1 receptor agonists (GLP-1RAs) alone, but even more so in combination therapy, as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease (MASLD), the new definition of an old condition, non-alcoholic fatty liver disease, which aims to better define the spectrum of steatotic pathology. It is well known that GLP-1RAs, having shown outstanding performance in fat loss, weight loss, and improvement of insulin resistance, could play a role in protecting the liver from progressive damage. Several clinical trials have shown that, among GLP-1RAs, semaglutide is a safe, well-studied therapeutic choice for MASLD patients; however, most studies demonstrate that, while semaglutide can reduce steatosis, including steatohepatitis histological signs (in terms of inflammatory cell infiltration and hepatocyte ballooning), it does not improve fibrosis. Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease. In particular, GLP-1RAs associated with antifibrotic drug therapy, dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis, liver biochemistry, and non-invasive fibrosis tests than monotherapy. Therefore, although to date there are no definitive indications from international drug agencies, there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD, one that will certainly include the use of GLP-1RAs as combination therapy.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Péptidos Similares al Glucagón , Enfermedad del Hígado Graso no Alcohólico , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Péptidos Similares al Glucagón/uso terapéutico , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Resistencia a la Insulina , Quimioterapia Combinada/métodos , Péptido 1 Similar al Glucagón/agonistas , Péptido 1 Similar al Glucagón/metabolismo , Resultado del Tratamiento , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Progresión de la Enfermedad , Incretinas/uso terapéutico
17.
Lipids Health Dis ; 23(1): 266, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182075

RESUMEN

BACKGROUND: Nonalcoholic Steatohepatitis (NASH) results from complex liver conditions involving metabolic, inflammatory, and fibrogenic processes. Despite its burden, there has been a lack of any approved food-and-drug administration therapy up till now. PURPOSE: Utilizing machine learning (ML) algorithms, the study aims to identify reliable potential genes to accurately predict the treatment response in the NASH animal model using biochemical and molecular markers retrieved using bioinformatics techniques. METHODS: The NASH-induced rat models were administered various microbiome-targeted therapies and herbal drugs for 12 weeks, these drugs resulted in reducing hepatic lipid accumulation, liver inflammation, and histopathological changes. The ML model was trained and tested based on the Histopathological NASH score (HPS); while (0-4) HPS considered Improved NASH and (5-8) considered non-improved, confirmed through rats' liver histopathological examination, incorporates 34 features comprising 20 molecular markers (mRNAs-microRNAs-Long non-coding-RNAs) and 14 biochemical markers that are highly enriched in NASH pathogenesis. Six different ML models were used in the proposed model for the prediction of NASH improvement, with Gradient Boosting demonstrating the highest accuracy of 98% in predicting NASH drug response. FINDINGS: Following a gradual reduction in features, the outcomes demonstrated superior performance when employing the Random Forest classifier, yielding an accuracy of 98.4%. The principal selected molecular features included YAP1, LATS1, NF2, SRD5A3-AS1, FOXA2, TEAD2, miR-650, MMP14, ITGB1, and miR-6881-5P, while the biochemical markers comprised triglycerides (TG), ALT, ALP, total bilirubin (T. Bilirubin), alpha-fetoprotein (AFP), and low-density lipoprotein cholesterol (LDL-C). CONCLUSION: This study introduced an ML model incorporating 16 noninvasive features, including molecular and biochemical signatures, which achieved high performance and accuracy in detecting NASH improvement. This model could potentially be used as diagnostic tools and to identify target therapies.


Asunto(s)
Modelos Animales de Enfermedad , Aprendizaje Automático , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Proteínas Señalizadoras YAP/genética , Biomarcadores/sangre , MicroARNs/genética
18.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126031

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated steatotic liver disease (MASLD), is a liver condition that is linked to overweight, obesity, diabetes mellitus, and metabolic syndrome. Nonalcoholic steatohepatitis (NASH), or metabolic dysfunction-associated steatohepatitis (MASH), is a form of NAFLD/MASLD that progresses over time. While steatosis is a prominent histological characteristic and recognizable grossly and microscopically, liver biopsies of individuals with NASH/MASH may exhibit several other abnormalities, such as mononuclear inflammation in the portal and lobular regions, hepatocellular damage characterized by ballooning and programmed cell death (apoptosis), misfolded hepatocytic protein inclusions (Mallory-Denk bodies, MDBs), megamitochondria as hyaline inclusions, and fibrosis. Ballooning hepatocellular damage remains the defining feature of NASH/MASH. The fibrosis pattern is characterized by the initial expression of perisinusoidal fibrosis ("chicken wire") and fibrosis surrounding the central veins. Children may have an alternative form of progressive NAFLD/MASLD characterized by steatosis, inflammation, and fibrosis, mainly in Rappaport zone 1 of the liver acinus. To identify, synthesize, and analyze the scientific knowledge produced regarding the implications of using a score for evaluating NAFLD/MASLD in a comprehensive narrative review. The search for articles was conducted between 1 January 2000 and 31 December 2023, on the PubMed/MEDLINE, Scopus, Web of Science, and Cochrane databases. This search was complemented by a gray search, including internet browsers (e.g., Google) and textbooks. The following research question guided the study: "What are the basic data on using a score for evaluating NAFLD/MASLD?" All stages of the selection process were carried out by the single author. Of the 1783 articles found, 75 were included in the sample for analysis, which was implemented with an additional 25 articles from references and gray literature. The studies analyzed indicated the beneficial effects of scoring liver biopsies. Although similarity between alcoholic steatohepatitis (ASH) and NASH/MASH occurs, some patterns of hepatocellular damage seen in alcoholic disease of the liver do not happen in NASH/MASH, including cholestatic featuring steatohepatitis, alcoholic foamy degeneration, and sclerosing predominant hyaline necrosis. Generally, neutrophilic-rich cellular infiltrates, prominent hyaline inclusions and MDBs, cholestasis, and obvious pericellular sinusoidal fibrosis should favor the diagnosis of alcohol-induced hepatocellular injury over NASH/MASH. Multiple grading and staging methods are available for implementation in investigations and clinical trials, each possessing merits and drawbacks. The systems primarily used are the Brunt, the NASH CRN (NASH Clinical Research Network), and the SAF (steatosis, activity, and fibrosis) systems. Clinical investigations have utilized several approaches to link laboratory and demographic observations with histology findings with optimal platforms for clinical trials of rapidly commercialized drugs. It is promising that machine learning procedures (artificial intelligence) may be critical for developing new platforms to evaluate the benefits of current and future drug formulations.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/patología , Hígado/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo
19.
Exp Mol Med ; 56(8): 1843-1855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39122845

RESUMEN

Innate immune activation is critical for initiating hepatic inflammation during nonalcoholic steatohepatitis (NASH) progression. However, the mechanisms by which immunoregulatory molecules recognize lipogenic, fibrotic, and inflammatory signals remain unclear. Here, we show that high-fat diet (HFD)-induced oxidative stress activates Foxo1, YAP, and Notch1 signaling in hepatic macrophages. Macrophage Foxo1 deficiency (Foxo1M-KO) ameliorated hepatic inflammation, steatosis, and fibrosis, with reduced STING, TBK1, and NF-κB activation in HFD-challenged livers. However, Foxo1 and YAP double knockout (Foxo1/YAPM-DKO) or Foxo1 and Notch1 double knockout (Foxo1/Notch1M-DKO) promoted STING function and exacerbated HFD-induced liver injury. Interestingly, Foxo1M-KO strongly reduced TGF-ß1 release from palmitic acid (PA)- and oleic acid (OA)-stimulated Kupffer cells and decreased Col1α1, CCL2, and Timp1 expression but increased MMP1 expression in primary hepatic stellate cells (HSCs) after coculture with Kupffer cells. Notably, PA and OA challenge in Kupffer cells augmented LIMD1 and LATS1 colocalization and interaction, which induced YAP nuclear translocation. Foxo1M-KO activated PGC-1α and increased nuclear YAP activity, modulating mitochondrial biogenesis. Using chromatin immunoprecipitation (ChIP) coupled with massively parallel sequencing (ChIP-Seq) and in situ RNA hybridization, we found that NICD colocalizes with YAP and targets Mb21d1 (cGAS), while YAP functions as a novel coactivator of the NICD, which is crucial for reprogramming STING function in NASH progression. These findings highlight the importance of the macrophage Foxo1-YAP-Notch1 axis as a key molecular regulator that controls lipid metabolism, inflammation, and innate immunity in NASH.


Asunto(s)
Progresión de la Enfermedad , Proteína Forkhead Box O1 , Inmunidad Innata , Enfermedad del Hígado Graso no Alcohólico , Receptor Notch1 , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Proteína Forkhead Box O1/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteínas Señalizadoras YAP/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones Noqueados , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/inmunología , Dieta Alta en Grasa/efectos adversos , Macrófagos/metabolismo , Macrófagos/inmunología , Masculino , Modelos Animales de Enfermedad
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159545, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39089643

RESUMEN

The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Metionina , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Metionina/deficiencia , Metionina/metabolismo , Ratones , Masculino , Lipidómica , Deficiencia de Colina/metabolismo , Hígado/metabolismo , Hígado/patología , Colina/metabolismo , Metabolismo de los Lípidos , Modelos Animales de Enfermedad , Dieta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA