Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125644

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.


Asunto(s)
Biomarcadores , Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas de Neurofilamentos/metabolismo , Péptidos/metabolismo , Progresión de la Enfermedad , Estrés Oxidativo
2.
Neuroscience ; 555: 76-82, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-38964453

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by mutant ataxin-3 with an abnormally expanded polyQ tract and is the most common dominantly inherited ataxia worldwide. There are no suitable therapeutic options for this disease. Autophagy, a defense mechanism against the toxic effects of aggregation-prone misfolded proteins, has been shown to have beneficial effects on neurodegenerative diseases. Thus, trehalose, which is an autophagy inducer, may have beneficial effects on SCA3. In the present study, we examined the effects of trehalose on an SCA3 cell model. After trehalose treatment, aggregate formation, soluble ataxin-3 protein levels and cell viability were evaluated in HEK293T cells overexpressing ataxin-3-15Q or ataxin-3-77Q. We also explored the mechanism by which trehalose affects autophagy and stress pathways. A filter trap assay showed that trehalose decreased the number of aggregates formed by mutant ataxin-3 containing an expanded polyQ tract. Western blot and Cell Counting Kit-8 (CCK-8) results demonstrated that trehalose also reduced the ataxin-3 protein levels and was safe for ataxin-3-expressing cells, respectively. Western blot and total antioxidant capacity assays suggested that trehalose had great therapeutic potential for treating SCA3, likely through its antioxidant activity. Our data indicate that trehalose plays a neuroprotective role in SCA3 by inhibiting the aggregation and reducing the protein level of ataxin-3, which is also known to protect against oxidative stress. These findings provide a new insight into the possibility of treating SCA3 with trehalose and highlight the importance of inducing autophagy in SCA3.


Asunto(s)
Ataxina-3 , Enfermedad de Machado-Joseph , Trehalosa , Trehalosa/farmacología , Humanos , Ataxina-3/metabolismo , Ataxina-3/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Células HEK293 , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Agregado de Proteínas/efectos de los fármacos , Mutación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Agregación Patológica de Proteínas/metabolismo , Péptidos
3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000316

RESUMEN

We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken ß-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.


Asunto(s)
Ataxina-3 , Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos , Enfermedad de Machado-Joseph , Ratones Endogámicos C57BL , Animales , Dependovirus/genética , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Ratones , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Inyecciones Intravenosas , Barrera Hematoencefálica/metabolismo , Regiones Promotoras Genéticas
4.
Cell Biol Toxicol ; 40(1): 48, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900277

RESUMEN

Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.


Asunto(s)
Autofagia , Endosomas , Péptidos , Animales , Péptidos/metabolismo , Endosomas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Activo de Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Enterocitos/metabolismo , Modelos Animales de Enfermedad , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismo
5.
Mov Disord Clin Pract ; 11(7): 879-885, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38576115

RESUMEN

BACKGROUND: Phenotypes of CANVAS are increasingly diversified, including bradykinesia and dysautonomia, so that its primary differential diagnoses are multiple system atrophy-cerebellar type (MSA-c), and spinocerebellar ataxia type 3 (SCA3). This case series aims to highlight key molecular imaging findings in CANVAS. CASES: We report a case series of six patients with CANVAS who underwent nuclear medicine examinations in our center and 13 patients from the literature. These include 18F-FDG brain positron emission tomography (PET), single photon emission computed tomography (SPECT) of dopamine transporter (DaT) activity, and 123I-MIBG cardiac scintigraphy of noradrenergic transmission. CONCLUSIONS: In CANVAS, 18F-FDG brain PET mainly shows cerebellar hypometabolism, with preserved brainstem and striatum metabolism, contrasting with SCA3 and MSA-c. Dopaminergic denervation on scintigraphy seems to be associated with clinical parkinsonism, ranging from normal to severely impaired DaT SPECT. Additionally, 123I-MIBG cardiac scintigraphy might show denervation in CANVAS, similar to SCA3, but not in most MSA-c patients.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único , Humanos , Masculino , Diagnóstico Diferencial , Persona de Mediana Edad , Femenino , Anciano , Tomografía Computarizada de Emisión de Fotón Único/métodos , Imagen Molecular/métodos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/diagnóstico , Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Enfermedad de Machado-Joseph/diagnóstico por imagen , Enfermedad de Machado-Joseph/diagnóstico , Enfermedad de Machado-Joseph/metabolismo , 3-Yodobencilguanidina
6.
Biochem J ; 481(6): 461-480, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38497605

RESUMEN

Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.


Asunto(s)
Enfermedad de Machado-Joseph , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Enfermedades Neurodegenerativas/genética
7.
Mol Ther ; 32(5): 1359-1372, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429929

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia. Currently, no preventive or disease-modifying treatments exist for this progressive neurodegenerative disorder, although efforts using gene silencing approaches are under clinical trial investigation. The disease is caused by a CAG repeat expansion in the mutant gene, ATXN3, producing an enlarged polyglutamine tract in the mutant protein. Similar to other paradigmatic neurodegenerative diseases, studies evaluating the pathogenic mechanism focus primarily on neuronal implications. Consequently, therapeutic interventions often overlook non-neuronal contributions to disease. Our lab recently reported that oligodendrocytes display some of the earliest and most progressive dysfunction in SCA3 mice. Evidence of disease-associated oligodendrocyte signatures has also been reported in other neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Here, we assess the effects of anti-ATXN3 antisense oligonucleotide (ASO) treatment on oligodendrocyte dysfunction in premanifest and symptomatic SCA3 mice. We report a severe, but modifiable, deficit in oligodendrocyte maturation caused by the toxic gain-of-function of mutant ATXN3 early in SCA3 disease that is transcriptionally, biochemically, and functionally rescued with anti-ATXN3 ASO. Our results highlight the promising use of an ASO therapy across neurodegenerative diseases that requires glial targeting in addition to affected neuronal populations.


Asunto(s)
Ataxina-3 , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph , Oligodendroglía , Oligonucleótidos Antisentido , Animales , Oligodendroglía/metabolismo , Ratones , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , Enfermedad de Machado-Joseph/patología , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ratones Transgénicos
8.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423193

RESUMEN

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Asunto(s)
Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cerebelo/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
9.
Sci Rep ; 14(1): 3236, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332227

RESUMEN

Machado-Joseph disease (MJD) is a neurodegenerative disorder characterized by widespread neuronal death affecting the cerebellum. Cell therapy can trigger neuronal replacement and neuroprotection through bystander effects providing a therapeutic option for neurodegenerative diseases. Here, human control (CNT) and MJD iPSC-derived neuroepithelial stem cells (NESC) were established and tested for their therapeutic potential. Cells' neuroectodermal phenotype was demonstrated. Brain organoids obtained from the Control NESC showed higher mRNA levels of genes related to stem cells' bystander effects, such as BDNF, NEUROD1, and NOTCH1, as compared with organoids produced from MJD NESC, suggesting that Control NESC have a higher therapeutic potential. Graft-derived glia and neurons, such as cells positive for markers of cerebellar neurons, were detected six months after NESC transplantation in mice cerebella. The graft-derived neurons established excitatory and inhibitory synapses in the host cerebella, although CNT neurons exhibited higher excitatory synapse numbers compared with MJD neurons. Cell grafts, mainly CNT NESC, sustained the bystander effects through modulation of inflammatory interleukins (IL1B and IL10), neurotrophic factors (NGF), and neurogenesis-related proteins (Msi1 and NeuroD1), for six months in the mice cerebella. Altogether this study demonstrates the long-lasting therapeutic potential of human iPSC-derived NESC in the cerebellum.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Machado-Joseph , Ratones , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Efecto Espectador , Neuronas/metabolismo , Cerebelo/metabolismo , Enfermedad de Machado-Joseph/metabolismo
10.
J Clin Invest ; 134(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227368

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ácido Tauroquenodesoxicólico , Ratones , Adulto , Animales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Ratones Transgénicos
11.
Hum Mol Genet ; 33(4): 299-317, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862125

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant hereditary disorder, caused by an expansion of polyglutamine in the ataxin-3 protein. SCA3 symptoms include progressive motor decline caused by an atrophy of the cerebellum and brainstem. However, it was recently reported that SCA3 patients also suffer from the cerebellar cognitive affective syndrome. The majority of SCA3 patients exhibit cognitive decline and approximately half of them suffer from depression and anxiety. The necessity to find a combined therapy for both motor and cognitive deficits in a SCA3 mouse model is required for the development of SCA3 treatment. Here, we demonstrated that the SCA3-84Q transgenic mice exhibited anxiety over the novel brightly illuminated environment in the open field, novelty suppressed feeding, and light-dark place preference tests. Moreover, SCA3-84Q mice also suffered from a decline in recognition memory during the novel object recognition test. SCA3-84Q mice also demonstrated floating behavior during the Morris water maze that can be interpreted as a sign of low mood and aversion to activity, i.e. depressive-like state. SCA3-84Q mice also spent more time immobile during the forced swimming and tail suspension tests which is also evidence for depressive-like behavior. Therefore, the SCA3-84Q mouse model may be used as a model system to test the possible treatments for both ataxia and non-motor symptoms including depression, anxiety, and memory loss.


Asunto(s)
Enfermedad de Machado-Joseph , Humanos , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Depresión/genética , Cerebelo/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Ratones Transgénicos , Ansiedad/genética
12.
Clin Exp Pharmacol Physiol ; 51(1): 30-39, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933553

RESUMEN

Spinocerebellar ataxia 3 (SCA3) is an incurable, neurodegenerative genetic disorder that leads to progressive cerebellar ataxia and other parkinsonian-like pathologies because of loss of cerebellar neurons. The role of an expanded polyglutamine aggregate on neural progenitor cells is unknown. Here, we show that SCA3 patient-specific induced neural progenitor cells (iNPCs) exhibit proliferative defects. Moreover, SCA3 iNPCs have reduced autophagic expression compared to control. Furthermore, although SCA3 iNPCs continue to proliferate, they do not survive subsequent passages compared to control iNPCs, indicating the likelihood that SCA3 iNPCs undergo rapid senescence. Exposure to interleukin-4 (IL-4), a type 2 cytokine produced by immune cells, resulted in an observed increase in expression of autophagic programs and a reduction in the proliferation defect observed in SCA3 iNPCs. Our results indicate a previously unobserved role of SCA3 disease ontology on the neural stem cell pool and a potential therapeutic strategy using IL-4 to ameliorate or delay disease pathology in the SCA3 neural progenitor cell population.


Asunto(s)
Enfermedad de Machado-Joseph , Células-Madre Neurales , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Interleucina-4 , Citocinas/metabolismo , Factor de Transcripción STAT6/metabolismo
13.
ACS Chem Neurosci ; 15(2): 278-289, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38154144

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by ataxia and other neurological manifestations, with a poor prognosis and a lack of effective therapies. The amyloid aggregation of the ataxin-3 protein is a hallmark of SCA3 and one of the main biochemical events prompting its onset, making it a prominent target for the development of preventive and therapeutic interventions. Here, we tested the efficacy of an aqueous Lavado cocoa extract and its polyphenolic components against ataxin-3 aggregation and neurotoxicity. The combination of biochemical assays and atomic force microscopy morphological analysis provided clear evidence of cocoa flavanols' ability to hinder ATX3 amyloid aggregation through direct physical interaction, as assessed by NMR spectroscopy. The chemical identity of the flavanols was investigated by ultraperformance liquid chromatography-high-resolution mass spectrometry. The use of the preclinical model Caenorhabditis elegans allowed us to demonstrate cocoa flavanols' ability to ameliorate ataxic phenotypes in vivo. To the best of our knowledge, Lavado cocoa is the first natural source whose extract is able to directly interfere with ATX3 aggregation, leading to the formation of off-pathway species.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloide/metabolismo , Caenorhabditis elegans , Polifenoles/uso terapéutico , Extractos Vegetales/farmacología
14.
Eur J Pharm Sci ; 191: 106608, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832855

RESUMEN

Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.


Asunto(s)
Exosomas , Enfermedad de Machado-Joseph , MicroARNs , Humanos , Ratones , Animales , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Exosomas/metabolismo , Células HEK293 , MicroARNs/metabolismo
15.
Cells ; 12(19)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37830611

RESUMEN

Mitochondrial dysfunction has been described in many neurodegenerative disorders; however, there is less information regarding mitochondrial deficits in Machado-Joseph disease (MJD), a polyglutamine (polyQ) disorder caused by CAG repeat expansion in the ATXN3 gene. In the present study, we characterized the changes in mitochondrial function and biogenesis markers in two MJD models, CMVMJD135 (MJD135) transgenic mice at a fully established phenotype stage and tetracycline-regulated PC6-3 Q108 cell line expressing mutant ataxin-3 (mATXN3). We detected mATXN3 in the mitochondrial fractions of PC6-3 Q108 cells, suggesting the interaction of expanded ATXN3 with the organelle. Interestingly, in both the cerebella of the MJD135 mouse model and in PC6-3 Q108 cells, we found decreased mitochondrial respiration, ATP production and mitochondrial membrane potential, strongly suggesting mitochondrial dysfunction in MJD. Also, in PC6-3 Q108 cells, an additional enhanced glycolytic flux was observed. Supporting the functional deficits observed in MJD mitochondria, MJD135 mouse cerebellum and PC6-3 Q108 cells showed reduced cytochrome c mRNA and protein levels. Overall, our findings show compromised mitochondrial function associated with decreased cytochrome c levels in both cell and animal models of MJD.


Asunto(s)
Enfermedad de Machado-Joseph , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Citocromos c/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Ratones Transgénicos , Mitocondrias/metabolismo , Modelos Animales de Enfermedad
16.
Stem Cell Res ; 72: 103190, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37866221

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a genetic degeneration disease of the nervous system with ataxia as the main clinical manifestation, and the most frequent subtype of SCA3 is known to be caused by CAG repeat expansions of more than 55 units in ATXN3. In this study, we used peripheral blood mononuclear cells (PBMCs) from a volunteer with 14/63 CAG repeats in ATXN3 to generate induced pluripotent stem cells (iPSCs), which will be a good model for studying SCA3.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Machado-Joseph , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Mutación/genética , Voluntarios , Proteínas Represoras/genética
17.
Biomed Pharmacother ; 165: 115258, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549460

RESUMEN

The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.


Asunto(s)
Enfermedad de Machado-Joseph , Proteínas Nucleares , Animales , Humanos , Ataxina-3/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Dopamina , Reposicionamiento de Medicamentos , Caenorhabditis elegans/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Dopaminérgicos
18.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408238

RESUMEN

Machado-Joseph disease (MJD) is a dominant neurodegenerative disease caused by an expanded CAG repeat in the ATXN3 gene encoding the ataxin-3 protein. Several cellular processes, including transcription and apoptosis, are disrupted in MJD. To gain further insights into the extent of dysregulation of mitochondrial apoptosis in MJD and to evaluate if expression alterations of specific apoptosis genes/proteins can be used as transcriptional biomarkers of disease, the expression levels of BCL2, BAX and TP53 and the BCL2/BAX ratio (an indicator of susceptibility to apoptosis) were assessed in blood and post-mortem brain samples from MJD subjects and MJD transgenic mice and controls. While patients show reduced levels of blood BCL2 transcripts, this measurement displays low accuracy to discriminate patients from matched controls. However, increased levels of blood BAX transcripts and decreased BCL2/BAX ratio are associated with earlier onset of disease, indicating a possible association with MJD pathogenesis. Post-mortem MJD brains show increased BCL2/BAX transcript ratio in the dentate cerebellar nucleus (DCN) and increased BCL2/BAX insoluble protein ratio in the DCN and pons, suggesting that in these regions, severely affected by degeneration in MJD, cells show signs of apoptosis resistance. Interestingly, a follow-up study of 18 patients further shows that blood BCL2 and TP53 transcript levels increase over time in MJD patients. Furthermore, while the similar levels of blood BCL2, BAX, and TP53 transcripts observed in preclinical subjects and controls is mimicked by pre-symptomatic MJD mice, the expression profile of these genes in patient brains is partially replicated by symptomatic MJD mice. Globally, our findings indicate that there is tissue-specific vulnerability to apoptosis in MJD subjects and that this tissue-dependent behavior is partially replicated in a MJD mouse model.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Estudios de Seguimiento , Enfermedades Neurodegenerativas/complicaciones , Proteína X Asociada a bcl-2/genética , Ratones Transgénicos , Apoptosis
19.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445783

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Machado-Joseph/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones Transgénicos , Calcio/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Progresión de la Enfermedad
20.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108570

RESUMEN

Machado-Joseph disease (MJD) or spinocerebellar ataxia 3 (SCA3) is a rare, inherited, monogenic, neurodegenerative disease, and the most common SCA worldwide. MJD/SCA3 causative mutation is an abnormal expansion of the triplet CAG at exon 10 within the ATXN3 gene. The gene encodes for ataxin-3, which is a deubiquitinating protein that is also involved in transcriptional regulation. In normal conditions, the ataxin-3 protein polyglutamine stretch has between 13 and 49 glutamines. However, in MJD/SCA3 patients, the size of the stretch increases from 55 to 87, contributing to abnormal protein conformation, insolubility, and aggregation. The formation of aggregates, which is a hallmark of MJD/SCA3, compromises different cell pathways, leading to an impairment of cell clearance mechanisms, such as autophagy. MJD/SCA3 patients display several signals and symptoms in which the most prominent is ataxia. Neuropathologically, the regions most affected are the cerebellum and the pons. Currently, there are no disease-modifying therapies, and patients rely only on supportive and symptomatic treatments. Due to these facts, there is a huge research effort to develop therapeutic strategies for this incurable disease. This review aims to bring together current state-of-the-art strategies regarding the autophagy pathway in MJD/SCA3, focusing on evidence for its impairment in the disease context and, importantly, its targeting for the development of pharmacological and gene-based therapies.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas , Autofagia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA