Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.106
Filtrar
1.
Am J Reprod Immunol ; 92(3): e13921, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39225584

RESUMEN

PROBLEM: Endometrial immune cells are essential for maintaining homeostasis and the endometrial receptivity to embryo implantation. Understanding regional variations in endometrial immune cell populations is crucial for comprehending normal endometrial function and the pathophysiology of endometrial disorders. Despite previous studies focusing on the overall immune cell composition and function in the endometrium, regional variations in premenopausal women remain unclear. METHOD OF STUDY: Endometrial biopsies were obtained from four regions (anterior, posterior, left lateral, and right lateral) of premenopausal women undergoing hysteroscopy with no abnormalities. A 15-color human endometrial immune cell-focused flow cytometry panel was used for analysis. High-dimensional flow cytometry combined with a clustering algorithm was employed to unravel the complexity of endometrial immune cells. Additionally, multiplex immunofluorescent was performed for further validation. RESULTS: Our findings revealed no significant variation in the distribution and abundance of immune cells across different regions under normal conditions during the proliferative phase. Each region harbored similar immune cell subtypes, indicating a consistent immune microenvironment. However, when comparing normal regions to areas with focal hemorrhage, significant differences were observed. An increase in CD8+ T cells highlights the impact of localized abnormalities on the immune microenvironment. CONCLUSIONS: Our study demonstrates that the endometrial immune cell landscape is consistent across different anatomical regions during the proliferative phase in premenopausal women. This finding has important implications for understanding normal endometrial function and the pathophysiology of endometrial disorders.


Asunto(s)
Microambiente Celular , Endometrio , Humanos , Femenino , Endometrio/inmunología , Endometrio/patología , Adulto , Microambiente Celular/inmunología , Citometría de Flujo , Premenopausia/inmunología , Linfocitos T CD8-positivos/inmunología , Biopsia
2.
J Reprod Immunol ; 165: 104317, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39154624

RESUMEN

Uterine fibroids (UFs), the most common tumors in women of reproductive age, are characterized by sex steroid-dependent growth and excessive deposition of extracellular matrix (ECM) surrounding UF smooth muscle cells. Women with symptomatic UFs experience heavy menstrual bleeding and consequent iron-deficiency anemia. They also have a risk of recurrent pregnancy loss, preterm birth, and cesarean delivery, indicating that UFs can negatively affect reproductive outcomes. Various types of immune cells, including innate and adaptive cells, are observed in UFs; however, the impact of these cells on the pathophysiology of UFs remains unclear. Inflammation may play important roles in the growth of UFs, and expression levels of proinflammatory and inflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-10, TNF-α, and TGF-ß, are upregulated in UFs. These cytokines play important roles in the interaction between growth factors and ECM that is regulated by the sex steroids estrogen and progesterone. Furthermore, proinflammatory mediators are upregulated in females with UFs, with higher expression levels in the endometrium with submucosal and intramural UFs than in the endometrium without UFs, indicating that these proinflammatory cytokines may impair endometrial receptivity, leading to implantation failure in in vitro fertilization programs. Hormonal treatments using gonadotropin releasing hormone analogs and the selective progesterone receptor modulator ulipristal acetate significantly shrink UFs and improve UF-related symptoms. These compounds can regulate local inflammation in UFs and adjacent myometrium. Controlling and improving local inflammation caused by UFs may represent a novel therapeutic strategy for UFs and potentially improve reproductive outcomes in women with symptomatic UFs.


Asunto(s)
Inflamación , Leiomioma , Humanos , Femenino , Leiomioma/inmunología , Leiomioma/patología , Embarazo , Inflamación/inmunología , Citocinas/metabolismo , Neoplasias Uterinas/inmunología , Neoplasias Uterinas/patología , Endometrio/inmunología , Endometrio/patología , Mediadores de Inflamación/metabolismo
3.
J Immunol ; 213(5): 567-576, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984872

RESUMEN

Endometriosis, affecting 10% of women, is defined as implantation, survival, and growth of endometrium-like/endometriotic tissue outside the uterine cavity, causing inflammation, infertility, pain, and susceptibility to ovarian cancer. Despite extensive studies, its etiology and pathogenesis are poorly understood and largely unknown. The prevailing view is that the immune system of endometriosis patients fails to clear ectopically disseminated endometrium from retrograde menstruation. Exosomes are small extracellular vesicles that exhibit immunomodulatory properties. We studied the role of endometriotic tissue-secreted exosomes in the pathophysiology of endometriosis. Two exosome-mediated mechanisms known to impair the immune response were investigated: 1) downregulation of NKG2D-mediated cytotoxicity and 2) FasL- and TRAIL-induced apoptosis of activated immune cells. We showed that secreted endometriotic exosomes isolated from supernatants of short-term explant cultures carry the NKG2D ligands MICA/B and ULBP1-3 and the proapoptotic molecules FasL and TRAIL on their surface, i.e., signature molecules of exosome-mediated immune suppression. Acting as decoys, these exosomes downregulate the NKG2D receptor, impair NKG2D-mediated cytotoxicity, and induce apoptosis of activated PBMCs and Jurkat cells through the FasL- and TRAIL pathway. The secreted endometriotic exosomes create an immunosuppressive gradient at the ectopic site, forming a "protective shield" around the endometriotic lesions. This gradient guards the endometriotic lesions against clearance by a cytotoxic attack and creates immunologic privilege by induction of apoptosis in activated immune cells. Taken together, our results provide a plausible, exosome-based mechanistic explanation for the immune dysfunction and the compromised immune surveillance in endometriosis and contribute novel insights into the pathogenesis of this enigmatic disease.


Asunto(s)
Apoptosis , Endometriosis , Endometrio , Exosomas , Subfamilia K de Receptores Similares a Lectina de Células NK , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Endometriosis/inmunología , Endometriosis/metabolismo , Endometriosis/patología , Femenino , Exosomas/metabolismo , Exosomas/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Apoptosis/inmunología , Endometrio/inmunología , Endometrio/patología , Endometrio/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Regulación hacia Abajo/inmunología , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/inmunología , Citotoxicidad Inmunológica , Adulto , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología
4.
Int Immunopharmacol ; 140: 112825, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39079347

RESUMEN

BACKGROUND: Exosomes derived from endometrial regenerative cells (ERC-Exos) can inherit the immunomodulatory function from ERCs, however, whether ERC-Exos exhibit such effect on inflammatory bowel diseases with mucosal immune dysregulation has not been explored. Insulin-like growth factor-Ⅱ (IGF2) is considered to possess the potential to induce an anti-inflammatory phenotype in immune cells. In this study, the contribution of IGF2 in mediating the protective efficacy of ERC-Exos on colitis was investigated. METHODS: Lentiviral transfection was employed to obtain IGF2-specific knockout ERC-Exos (IGF2-/--ERC-Exos). Experimental colitis mice induced by dextran sulfate sodium (DSS) were divided into the phosphate-buffered saline (untreated), ERC-Exos-treated and IGF2-/--ERC-Exos-treated groups. Colonic histopathological analysis and intestinal barrier function were explored. The infiltration of CD4+ T cells and dendritic cells (DCs) were analyzed by immunofluorescence staining and flow cytometry. The maturation and function of bone marrow-derived dendritic cells (BMDCs) in different exosome administrations were evaluated by flow cytometry, ELISA and the coculture system, respectively. RESULTS: Compared with the untreated group, ERC-Exos treatment significantly attenuated DSS-induced weight loss, bloody stools, shortened colon length, pathological damage, as well as repaired the weakened intestinal mucosal barrier, including promoting the goblet cells retention, restoring the intestinal barrier integrity and enhancing the expression of tight junction proteins, while the protective effect of exosomes was impaired with the knockout of IGF2 in ERC-Exos. Additionally, IGF2-expressing ERC-Exos decreased the proportions of Th1 and Th17, increased the proportions of Treg, as well as attenuated DC infiltration and maturation in mesenteric lymph nodes and lamina propria of the colitis mice. ERC-Exos were also observed to be phagocytosed by BMDCs and IGF2 is responsible for the modulating effect of ERC-Exos on BMDCs in vitro. CONCLUSIONS: Exosomes derived from ERCs can exert a therapeutic effect on experimental colitis with remarkable alleviation of the intestinal barrier damage and the abnormal mucosal immune responses. We emphasized that IGF2 plays a critical role for ERC-Exos mediated immunomodulatory function and protection against colitis.


Asunto(s)
Colitis , Sulfato de Dextran , Endometrio , Exosomas , Factor II del Crecimiento Similar a la Insulina , Animales , Femenino , Humanos , Ratones , Células Cultivadas , Colitis/inducido químicamente , Colitis/inmunología , Colitis/terapia , Colon/patología , Colon/inmunología , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Endometrio/inmunología , Endometrio/patología , Exosomas/metabolismo , Exosomas/trasplante , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración
5.
Front Immunol ; 15: 1405597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983846

RESUMEN

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Asunto(s)
Complemento C1q , Endometriosis , Neovascularización Patológica , Endometriosis/metabolismo , Endometriosis/inmunología , Endometriosis/patología , Endometriosis/genética , Complemento C1q/genética , Complemento C1q/metabolismo , Humanos , Femenino , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Endometrio/inmunología , Endometrio/metabolismo , Endometrio/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Células Cultivadas , Adulto , Proliferación Celular
6.
Am J Reprod Immunol ; 92(1): e13901, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39042523

RESUMEN

PROBLEM: Adenomyosis (AM) is associated with immune response and inflammation. However, the role of T cell subsets in AM development has not been thoroughly understood. METHOD OF STUDY: Patients with focal or diffuse AM were recruited. Serum cytokines were quantified by enzyme-linked immunosorbent assay (ELISA). Different T cell subsets in the blood and ectopic endometrium were determined by flow cytometry. RESULTS: Serum interleukin-6 (IL-6) and macrophage-colony-stimulating factor (GM-CSF) were increased in patients with focal or diffuse AM before focused ultrasound ablation surgery (FUAS), but not after FUAS. Compared with the healthy control, the frequencies of CD8+ interferon-gamma (IFN-γ)-expressing cytotoxic T lymphocytes (CTLs), interleukin-17A (IL-17A)-expressing Tc17 cells, CD4+ T helper 1 (Th1) cells, and GM-CSF-expressing T helper (ThGM) cells were up-regulated in the blood of patients with AM, especially those with diffuse AM. However, these changes were eradicated after FUAS. Meanwhile, the frequencies of these T cell subsets were positively correlated with the CA-125 level. Furthermore, these T cell subsets were also increased in ectopic endometrium. CONCLUSIONS: Our study delineates for the first time the presence of CTLs, Tc17 cells, Th1, and ThGM cells in the blood and ectopic endometrium in AM. The results imply that T cell response might impact AM development.


Asunto(s)
Adenomiosis , Endometrio , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Células TH1 , Humanos , Femenino , Endometrio/inmunología , Endometrio/patología , Adulto , Adenomiosis/inmunología , Adenomiosis/sangre , Adenomiosis/patología , Células TH1/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/sangre , Linfocitos T Citotóxicos/inmunología , Persona de Mediana Edad , Interleucina-17/metabolismo , Interleucina-17/sangre , Interleucina-6/sangre , Interleucina-6/metabolismo , Células Th17/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
7.
Dev Comp Immunol ; 159: 105229, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39004297

RESUMEN

The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Endometrio , Animales , Femenino , Embarazo , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Endometrio/inmunología , Endometrio/metabolismo , Porcinos/inmunología , Activación de Complemento/inmunología , Inmunidad Innata , Membrana Corioalantoides/metabolismo , Membrana Corioalantoides/inmunología
8.
Am J Reprod Immunol ; 92(1): e13910, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39072818

RESUMEN

INTRODUCTION: The interleukin (IL)-6 family of cytokines is grouped by a common receptor subunit (gp130), but functions in distinct but overlapping physiological activities, including regulation of acute phase reaction and the balance between effector and regulatory T cell populations-both of which play a role in successful pregnancy maturation. METHODS: Here, we aim to assess the expression profiles of members of the IL-6 cytokine family throughout equine gestation. To do so, RNA Sequencing was performed on chorioallantois and endometrium of mares at 120, 180, 300, and 330 days of gestation (n = 4/stage), as well as 45-day chorioallantois (n = 4) and diestrus endometrium (n = 3). Expression levels of members of the IL-6 cytokine family including ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine factor 1 (CLCF1), galectin-10, oncostatin M (OSM), and IL-6, -11, and -27 were evaluated in addition to the receptors for IL-6 (IL-6R) and the common receptor subunit gp130. Additionally, peripheral concentration of IL-6 was assessed. RESULTS: In the chorioallantois, differential expression of IL-6, IL-11, CNTF, CLCF1, OSM, and CT-1 was noted. In the endometrium, the gestational age of pregnancy impacted the expression of IL-11, CNTF, and CT-1. Circulatory IL-6 concentrations reached their highest concentrations at 120 days, with lesser concentrations noted at 45, 180, 300, and 330 days. Both IL-6R and gp130 altered in expression throughout equine gestation. CONCLUSION: In conclusion, members of the IL-6 cytokine family appear to fluctuate constantly throughout equine pregnancy, with varying expression profiles noted when comparing individual members. Additionally, different expression profiles were noted when comparing chorioallantois, endometrium, and circulation, indicating that the function of the cytokine is tissue-specific.


Asunto(s)
Interleucina-6 , Animales , Caballos/inmunología , Femenino , Embarazo , Interleucina-6/metabolismo , Citocinas/metabolismo , Endometrio/metabolismo , Endometrio/inmunología
9.
Am J Reprod Immunol ; 92(1): e13891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958250

RESUMEN

PROBLEM: The decidualization process conditions monocytes to the immunosuppressive and tolerogenic dendritic cell (DC)-10 profile, a DC subset with high IL-10 production. Since the implantation process implies an embryo-endometrium-immune crosstalk, here we focused on the ability of embryonic soluble factors to modify decidual DC conditioning accordingly with its quality. METHOD OF STUDY: Human endometrial stromal cell line (HESC) decidualized with medroxyprogesterone and dibutyryl-cAMP (Dec) was stimulated with human embryo-conditioned media (ECM), classified as normal (ND) or impaired developed (ID) for 48 h (n = 18/group). Monocytes isolated from six healthy women were differentiated to DCs with rhGM-CSF+rhIL-4 in the presence/absence of conditioned media (CM) from decidualized cells stimulated with ECM or nontreated. RESULTS: We found that decidualized cells stimulated with ECM sustain a myeloid regulatory cell profile on monocyte-derived culture with increased frequency of CD1a-CD14+ and CD83+CD86low cells. ND-Dec sustained the higher expression of the DC-10 markers, HLA-G and IL-10 whereas ID-Dec diminished IL-10 production (ID-Dec: 135 ± 37.4 vs. Dec: 223.3 ± 49.9 pg/mL, p < 0.05). The treatment with ECM-Dec sustained a higher IL-10 production and prevented the increase of CD83/CD86 after LPS challenge regardless of embryo quality. Notably, TNF-α production increased in ID-Dec cultures (ID-Dec: 475.1 ± 134.7 vs. Dec: 347.5 ± 98 pg/mL, p < 0.05). CONCLUSIONS: Although remaining in a tolerogenic profile compatible with DC-10, DCs can differentially respond to decidual secreted factors based on embryo quality, changing their secretome. These results suggest that in the presence of arrested embryo, DCs could differentially shape the immunological microenvironment, contributing to arrested embryo clearance during the menstrual phase.


Asunto(s)
Decidua , Células Dendríticas , Implantación del Embrión , Tolerancia Inmunológica , Humanos , Femenino , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Implantación del Embrión/inmunología , Decidua/inmunología , Decidua/citología , Diferenciación Celular , Medios de Cultivo Condicionados , Interleucina-10/metabolismo , Adulto , Células del Estroma/inmunología , Células del Estroma/metabolismo , Células Cultivadas , Embrión de Mamíferos , Endometrio/inmunología , Endometrio/citología , Línea Celular , Monocitos/inmunología , Embarazo
10.
J Reprod Immunol ; 163: 104251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718429

RESUMEN

Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.


Asunto(s)
Aborto Habitual , Microbiota , Humanos , Aborto Habitual/microbiología , Aborto Habitual/inmunología , Aborto Habitual/diagnóstico , Femenino , Embarazo , Microbiota/inmunología , Microbioma Gastrointestinal/inmunología , Endometrio/microbiología , Endometrio/inmunología , Endometrio/patología , Vagina/microbiología , Vagina/inmunología
11.
Genes Genomics ; 46(7): 803-815, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776050

RESUMEN

BACKGROUND: Patients of ovary endometriosis have an abnormal immune micro-environment, leading to endometrial tissue that from retrograde menstruation evade immune surveillance and subsequently develop into ectopic lesions. OBJECTIVE: This study aims to elucidate the crucial immune cells and molecular pathways that are associated with an aberrant immune micro-environment of endometriosis. METHOD: In this study, we identified differentially expressed genes between ovarian ectopic endometrial tissue (OVE) and eutopic endometrial tissue from patients with endometriosis (PE) and non-endometriosis patients (CON) by analyzing the mRNA sequencing data. Additionally, we used WGCNA(Weighted Gene Co-expression Network Analysis) to screen for key genes related to immune cell infiltration and compared the sub-types of infiltrating immune cells using CIBERSORT(cell-type identification by estimating relative subsets of RNA transcript). Subsequently, we conducted a single-cell analysis on the identified key genes. Furthermore, we analyzed potential drugs suitable for ovarian endometriosis treatment using pRRophertic. RESULTS: Seven key genes associated with immune cell infiltration were screened out. The expression of these genes in OVE was significantly lower than that in PE and CON. These key genes were mainly enriched in the NK cell-mediated cytotoxicity pathway, especially for CD16 + CD56dim NK. Moreover, NK cells infiltration in ovarian endometriosis was significantly reduced compared with PE and CON, while M2 macrophage shown the opposite. Results of the single-cell analysis showed that the expression of the seven key genes in NK cells and monocyte-macrophages in OVE was significantly lower than that in PE or CON. Additionally, we identified potential drugs suitable for ovarian endometriosis treatment. CONCLUSION: The decreased infiltration of NK cells and increased infiltration of M2 macrophages contribute to the evasion of immune surveillance against endometrial tissue, promoting the progression of OVE. Therefore, potential strategies for the treatment of OVE include increasing NK cell activation and decreasing M2 macrophage polarization.


Asunto(s)
Endometriosis , Células Asesinas Naturales , Humanos , Femenino , Endometriosis/genética , Endometriosis/tratamiento farmacológico , Endometriosis/inmunología , Endometriosis/patología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Endometrio/metabolismo , Endometrio/patología , Endometrio/inmunología , Adulto , Evaluación Preclínica de Medicamentos , Análisis de la Célula Individual , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Transcriptoma
12.
Front Immunol ; 15: 1385762, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707901

RESUMEN

The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.


Asunto(s)
Placenta , Humanos , Embarazo , Femenino , Placenta/inmunología , Placenta/metabolismo , Animales , Placentación , Endometrio/inmunología , Endometrio/metabolismo , Neoplasias/inmunología , Neoplasias/etiología , Implantación del Embrión/inmunología
13.
J Reprod Immunol ; 164: 104255, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797133

RESUMEN

Women with antiphospholipid syndrome (APS) are at high risk for miscarriage and preeclampsia. Unlike pro-thrombotic systemic APS, obstetric APS is associated with insufficient placentation, as well as inflammation and vascular dysfunction at the maternal-fetal interface. Antiphospholipid antibodies (aPL) can target the placental trophoblast and induce inflammation. We reported that aPL trigger trophoblast cells to produce elevated levels of IL-8 through activation of Toll-like receptor 4 (TLR4). Downstream of TLR4, we found this IL-8 response is mediated by a TLR8-activating microRNA (miR), miR-146a-3p, which is also released by the trophoblast via extracellular vesicles (EVs). Since endothelial dysfunction is a feature of obstetric APS, we sought to determine if other miRs that can activate the RNA sensors, TLR7 and/or TLR8, are released by the trophoblast via EVs after exposure to aPL, and if these EVs can activate human endometrial endothelial cells (HEECs). Using a human first trimester extravillous trophoblast cell line we found that aPL elevated their release of small EVs (<150 nm). These extracellular vesicles released from trophoblast cells exposed to aPL expressed elevated levels of TLR7/8-activating miR-21a and miR-29a, in addition to the previously reported miR-146a-3p. Extracellular vesicles from aPL-exposed human trophoblast cells triggered human endometrial endothelial cells to generate an inflammatory IL-8 response, in part through TLR7. This study highlights EVs as a mode of communication between the placenta and the maternal vasculature, as well as a potential role for TLR7/8-activating miRs in contributing to inflammation at the maternal-fetal interface in obstetric APS.


Asunto(s)
Anticuerpos Antifosfolípidos , Síndrome Antifosfolípido , Vesículas Extracelulares , MicroARNs , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Trofoblastos , Humanos , Femenino , Trofoblastos/metabolismo , Trofoblastos/inmunología , MicroARNs/metabolismo , MicroARNs/genética , Receptor Toll-Like 7/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Embarazo , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 8/inmunología , Síndrome Antifosfolípido/inmunología , Síndrome Antifosfolípido/metabolismo , Anticuerpos Antifosfolípidos/inmunología , Anticuerpos Antifosfolípidos/metabolismo , Endometrio/metabolismo , Endometrio/inmunología , Endometrio/patología , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Línea Celular , Interleucina-8/metabolismo
14.
Am J Reprod Immunol ; 91(4): e13842, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38650366

RESUMEN

PROBLEM: Although endometrial receptivity is a key factor in influencing implantation in both naturally conceived and assisted reproductive technology (ART) cycles, very little is known about the endometrium milieu around the time of implantation. Previous studies have demonstrated the presence of several cytokines in the endometrium that affect implantation. However, there is lacking data about the presence of immune cell subtypes within the endometrium and in the uterine cavity at the time of implantation. METHOD OF STUDY: This study was approved by the Institutional Review Board (# 225589). The study was designed as a prospective observational cohort study between May 2021 and December 2022 at a single academic-based fertility center. All patients underwent at least one In Vitro Fertilization (IVF) cycle and have frozen embryos. Twenty-four participants were recruited for this study which was conducted during the frozen embryo transfer (FET) cycle regardless of the outcome of previous cycles. Two samples were acquired from each subject, denoted as lower and upper. A trial transfer catheter was introduced under ultrasound guidance into the lower uterine segment. Upon removal, the tip was rinsed in IMDM medium containing 10% FBS (lower uterus). A transfer catheter was then loaded with the embryo that was placed in the upper uterus under ultrasound guidance. The tip of the transfer catheter was rinsed in separate aliquot of the above media (upper uterus). After centrifugation, pelleted cells were stained for the following surface markers: CD45, CD3, CD19, CD4, CD8, gamma delta TCR, CD25, CD127, CD66b, CD14, CD16, CD56 and acquired on Sony SP6800 Spectral Analyzer. RESULTS: Upon staining the pelleted cells, we were able to identify viable leukocytes from samples obtained from both, upper and lower uterus (0.125 × 106 cells ± SD 0.32), (0.123 × 106 cells ± SD 0.12), respectively. Among total viable cells, there was no significant difference in both percent and number of CD45+ cells between the upper and lower uterus (9.88% ± 6.98 SD, 13.67% ± 9.79 SD, p = .198) respectively. However, there was significantly higher expression of CD3+ (p = .006), CD19+ (p = .032) and CD14+ (p = .019) cells in samples collected from upper compared to lower uterus. Within all CD3+ cells, we found that gamma delta T cells (GDT) were the major population of T cells in both upper and lower uterus. In contrast, CD8+ T cells were significantly higher in the lower uterus when compared to the upper uterus (p = .009). There was no statistically significant difference in the expression of CD4+ T cells, T regulatory cells (CD4+CD25+CD127-), NK cells (CD56+), neutrophils (CD66b+) and FcγRIII+ cells (CD16+) between upper and lower uterus. CONCLUSIONS: We believe the immune milieu at the time of embryo transfer will affect implantation. Understanding the composition of immune cells will guide further research in identifying optimal immune milieus that favor implantation. Comprehensive analysis of endometrium is expected to lead to new diagnostic and therapeutic approaches to improve IVF outcomes.


Asunto(s)
Transferencia de Embrión , Endometrio , Útero , Humanos , Femenino , Adulto , Transferencia de Embrión/métodos , Útero/inmunología , Endometrio/inmunología , Endometrio/citología , Estudios Prospectivos , Implantación del Embrión/inmunología , Fertilización In Vitro , Embarazo , Líquidos Corporales/inmunología
15.
J Reprod Immunol ; 163: 104212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432052

RESUMEN

Interferon-τ (IFN-τ) participates in the establishment of endometrial receptivity in ruminants. However, the precise mechanisms by which IFN-τ establishes bovine endometrial receptivity remain largely unknown. Interferon regulatory factor 1 (IRF1) is a classical interferon-stimulated gene (ISG) induced by type I interferon, including IFN-τ. Leukemia inhibitory factor receptor (LIFR) is a transmembrane receptor for leukemia inhibitory factor (LIF), which is a key factor in regulating embryo implantation in mammals. This study aimed to investigate the roles of IRF1 and LIFR in the regulation of bovine endometrial receptivity by IFN-τ. In vivo, we found IRF1 and LIFR were upregulated in the bovine endometrial luminal epithelium on Day 18 of pregnancy compared to Day 18 of the estrous cycle. In vitro, IFN-τ could upregulate IRF1, LIFR, and endometrial receptivity markers (LIF, HOXA10, ITGAV, and ITGB3) expression, downregulate E-cadherin expression and reduce the quantity of microvilli of bovine endometrial epithelial cells (bEECs). Overexpression of IRF1 had similar effects to IFN-τ on endometrial receptivity, and interference of LIFR could block these effects, suggesting the positive effects of IRF1 on endometrial receptivity were mediated by LIFR. Dual luciferase reporter assay verified that IRF1 could transactivate LIFR transcription by binding to its promoter. In conclusion, IFN-τ can induce IRF1 expression in bovine endometrial epithelial cells, and IRF1 upregulates LIFR expression by binding to LIFR promoter, contributing to the enhancement of bovine endometrial receptivity.


Asunto(s)
Implantación del Embrión , Endometrio , Factor 1 Regulador del Interferón , Interferón Tipo I , Animales , Femenino , Bovinos , Endometrio/metabolismo , Endometrio/inmunología , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Implantación del Embrión/inmunología , Interferón Tipo I/metabolismo , Embarazo , Receptores OSM-LIF/metabolismo , Proteínas Gestacionales/metabolismo , Proteínas Gestacionales/genética , Activación Transcripcional , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/inmunología
16.
Immunology ; 172(3): 469-485, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38544333

RESUMEN

Endometriosis is defined as an oestrogen-dependent and inflammatory gynaecological disease of which the pathogenesis remains unclear. This study aimed to investigate the cellular heterogeneity and reveal the effect of CD8+ T cells on the progress of endometriosis. Three ovarian endometriosis patients were collected, and single-cell RNA sequencing (scRNA-seq) progressed and delineated the cellular landscape of endometriosis containing five cell clusters. The endometrial cells (EMCs) were the major component, of which the mesenchymal cells were preponderant and characterized with increased inflammation and oestrogen synthesis in endometriosis. The proportion of T cells, mainly CD8+ T cells rather than CD4+, was reduced in endometriotic lesions, and the cytokines and cytotoxicity of ectopic T cells were depressed. CD8+ T cells depressed the proliferation of ESCs through inhibiting CDK1/CCNB1 pathway to arrest the cell cycle and triggered inflammation through activating STAT1 pathway. Correspondingly, the coculture with ESCs resulted in the dysfunction of CD8+ T cells through upregulating STAT1/PDCD1 pathway and glycolysis-promoted metabolism reprogramming. The endometriotic lesions were larger in nude mouse models with T-cell deficiency than the normal mouse models. The inhibition of T cells via CD90.2 or CD8A antibody increased the endometriotic lesions in mouse models, and the supplement of T cells to nude mouse models diminished the lesion sizes. In conclusion, this study revealed the global cellular variation of endometriosis among which the cellular count and physiology of EMCs and T cells were significantly changed. The depressed cytotoxicity and aberrant metabolism of CD8+ T cells were induced by ESCs with the activation of STAT1/PDCD1 pathway resulting in immune survival to promote endometriosis.


Asunto(s)
Linfocitos T CD8-positivos , Endometriosis , Factor de Transcripción STAT1 , Células del Estroma , Endometriosis/inmunología , Endometriosis/patología , Endometriosis/metabolismo , Femenino , Linfocitos T CD8-positivos/inmunología , Humanos , Animales , Ratones , Células del Estroma/inmunología , Células del Estroma/metabolismo , Factor de Transcripción STAT1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Endometrio/inmunología , Endometrio/patología , Modelos Animales de Enfermedad , Transducción de Señal , Ratones Desnudos , Adulto , Proteína Quinasa CDC2/metabolismo , Técnicas de Cocultivo , Citocinas/metabolismo
17.
Acta Cytol ; 68(2): 128-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38471464

RESUMEN

INTRODUCTION: Patients with polymerase epsilon (POLE) mutation (POLEmut) subtype, MMR-deficient (MMR-d) subtype as classified by The Cancer Genome Atlas (TCGA), and a high tumor mutation burden (TMB-high) potentially benefit from immunotherapy. However, characteristics of the cytological morphology within these populations remain unknown. METHODS: DNA extracted from formalin-fixed paraffin-embedded tissues was subjected to next-generation sequencing analysis. Genomic mutations related to gynecological cancers, TMB, and microsatellite instability were analyzed and were placed in four TCGA classification types. The following morphological cytological investigations were conducted on endometrial cancer using a liquid-based preparation method, prior to the commencement of initial treatment: (i) cytological backgrounds; (ii) differences between each count of neutrophils and lymphocytes as described below. RESULTS: Insignificant differences in the cytological background patterns of TCGA groups and TMB status were found. Although there was no significant difference in neutrophil count (p = 0.955) in the TCGA groups, POLEmut and MMR-d had significantly higher lymphocyte counts than no specific molecular profile (NSMP) (p = 0.019 and 0.037, respectively); furthermore, p53mut also tended to be significant (p = 0.064). Lymphocyte counts in TMB-high were also significantly greater than TMB-low (p = 0.002). POLEmut showed a positive correlation between TMB levels and lymphocyte counts. For predicting patients with POLEmut plus MMR-d, lymphocyte counts demonstrated a superior diagnostic accuracy of area under the curve (AUC) (0.70, 95% CI: 0.57-0.84), with a cutoff value of 26 high-power field. CONCLUSION: Lymphocyte count using liquid-based cytology for patients with endometrial cancer may predict POLEmut plus MMR-d of TCGA groups and TMB-high in those who can benefit from immunotherapy.


Asunto(s)
Biomarcadores de Tumor , ADN Polimerasa II , Neoplasias Endometriales , Endometrio , Inmunoterapia , Mutación , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/terapia , Persona de Mediana Edad , Inmunoterapia/métodos , Anciano , Biomarcadores de Tumor/genética , Endometrio/patología , Endometrio/inmunología , ADN Polimerasa II/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Neutrófilos/patología , Adulto , Recuento de Linfocitos/métodos , Inestabilidad de Microsatélites , Valor Predictivo de las Pruebas , Anciano de 80 o más Años , Selección de Paciente , Análisis Mutacional de ADN , Linfocitos/patología , Toma de Decisiones Clínicas , Citología
18.
J Reprod Immunol ; 163: 104223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489930

RESUMEN

Autophagy is a process that occurs in almost all eukaryotic cells and this process is controlled by several molecular processes. Its biological roles include the provision of energy, the maintenance of cell homeostasis, and the promotion of aberrant cell death. The importance of autophagy in pregnancy is gradually becoming recognized. In literature, it has been indicated that autophagy has three different effects on the onset and maintenance of pregnancy: embryo (embryonic development), feto-maternal immune crosstalk, and maternal (decidualization). In humans, proper decidualization is a major predictor of pregnancy accomplishment and it can be influenced by different factors. This review highlights the genes, pathways, regulation, and function of autophagy in endometrial decidualization and other involved factors in this process.


Asunto(s)
Autofagia , Decidua , Endometrio , Complicaciones del Embarazo , Transducción de Señal , Humanos , Femenino , Embarazo , Autofagia/inmunología , Transducción de Señal/inmunología , Complicaciones del Embarazo/inmunología , Decidua/inmunología , Decidua/metabolismo , Endometrio/inmunología , Endometrio/metabolismo , Animales , Desarrollo Embrionario/inmunología , Desarrollo Embrionario/genética , Implantación del Embrión/inmunología
19.
J Reprod Immunol ; 163: 104218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38422808

RESUMEN

This study aimed to evaluate the effectiveness of the endometrial receptivity array (ERA), endometrial immune profiling, and a combination of both in improving the pregnancy outcomes for multiple implantation failure patients. According to patients' willingness, 1429 women who incurred at least two or more consecutive implantation failures in IVF/ICSI treatment opted for frozen embryo transfer and were divided into four groups: 'No test', 'Immune Profiling', 'ERA' and 'ERA+ Immune Profiling'. Women in three test groups underwent timed endometrial biopsy for ERA, immune profiling, a combination of both. We observed the overall incidence rates of the displaced window of implantation (WOI) and endometrial immune dysregulation were 75.14% and 79.29%, respectively. After 1:1 propensity score matching (PSM), our data revealed that the 'ERA' and 'ERA + Immune Profiling' groups demonstrated significantly higher rates of biochemical, clinical, ongoing pregnancy, and implantation compared to the 'No test' group (p < 0.01). The 'Immune Profiling' group showed a higher implantation rate compared to 'No test' group (p < 0.05). Furthermore, when comparing three test groups, the 'ERA + Immune Profiling' group exhibited notably higher rates of clinical and ongoing pregnancy compared to the 'Immune Profiling' group (p < 0.017). However, there was no association between endometrial immune profiling and ERA phases, and their results did not differ between embryo implantation and non-implantation in these patients. Our findings underline the increased implantation rates by use of ERA and endometrial immune profiling in patients with multiple implantation failure, either individually or corporately. Moreover, a combination of both could improve their pregnancy outcomes significantly.


Asunto(s)
Implantación del Embrión , Transferencia de Embrión , Endometrio , Fertilización In Vitro , Puntaje de Propensión , Humanos , Femenino , Endometrio/inmunología , Endometrio/patología , Embarazo , Implantación del Embrión/inmunología , Adulto , Estudios Retrospectivos , Transferencia de Embrión/métodos , Fertilización In Vitro/métodos , Resultado del Embarazo , Índice de Embarazo
20.
J Assist Reprod Genet ; 40(2): 381-387, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574140

RESUMEN

PURPOSE: Using a comprehensive flow cytometric panel, simultaneously obtained mid-luteal immunophenotypes from peripheral blood and endometrium were compared and values correlated. Is a peripheral blood evaluation of reproductive immunophenotype status meritorious relative to local endometrial evaluation to directly assess the peri-implantation environment? METHODS: Fifty-five patients had a mid-luteal biopsy to assess the local endometrial immunophenotype, while simultaneously providing a peripheral blood sample for analysis. Both samples were immediately assessed using a comprehensive multi-parameter panel, and lymphocyte subpopulations were described and compared. RESULTS: Distinct lymphocyte proportions and percentage differences were noted across the two compartments, confirming the hypothesis that they are distinct environments. The ratio of CD4 + to CD8 + T cells were reversed between the two compartments, as were Th1 and Th2-type CD4 + T cell ratios. Despite these differences, some direct relationships were noted. Positive Pearson correlations were found between the levels of CD57 + expressing natural killer cells, CD3 + NK-T cells and CD4 + Th1 cells in both compartments. CONCLUSIONS: Flow cytometric evaluation provides a rapid and objective analysis of lymphocyte subpopulations. Endometrial biopsies have become the gold standard technique to assess the uterine immunophenotype in adverse reproductive outcome, but there may still a place for peripheral blood evaluation in this context. The findings demonstrate significant variations in cellular proportions across the two regions, but some positive correlations are present. Immunological assessment of these specific peripheral blood lymphocyte subtypes may provide insight into patients with potential alterations of the uterine immune environment, without the risks and inconveniences associated with an invasive procedure.


Asunto(s)
Endometrio , Citometría de Flujo , Inmunofenotipificación , Femenino , Humanos , Endometrio/inmunología , Citometría de Flujo/métodos , Inmunofenotipificación/métodos , Células Asesinas Naturales , Reproducción , Útero , Implantación del Embrión/inmunología , Técnicas Reproductivas Asistidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA