RESUMEN
Is there only one electric eel species? For two and a half centuries since its description by Linnaeus, Electrophorus electricus has captivated humankind by its capacity to generate strong electric discharges. Despite the importance of Electrophorus in multiple fields of science, the possibility of additional species-level diversity in the genus, which could also reveal a hidden variety of substances and bioelectrogenic functions, has hitherto not been explored. Here, based on overwhelming patterns of genetic, morphological, and ecological data, we reject the hypothesis of a single species broadly distributed throughout Greater Amazonia. Our analyses readily identify three major lineages that diverged during the Miocene and Pliocene-two of which warrant recognition as new species. For one of the new species, we recorded a discharge of 860 V, well above 650 V previously cited for Electrophorus, making it the strongest living bioelectricity generator.
Asunto(s)
Órgano Eléctrico/fisiología , Electrophorus/clasificación , Electrophorus/fisiología , Animales , Ecosistema , Electrophorus/anatomía & histología , Electrophorus/genética , Fenómenos Electrofisiológicos , Filogenia , América del Sur , Especificidad de la EspecieRESUMEN
The Mg(2+)-dependent (Na(+),K(+))ATPase maintains several cellular processes and is essential for cell excitability. In view of the importance of the enzyme activity, the interaction and binding affinities to substrates and metal ions have been studied. We determined the effect of Zinc ion (Zn(2+)) on the (Na(+),K(+))ATPase activity present in both conducting (non-innervated) and post-synaptic (innervated) membranes of electrocyte from Electrophorus electricus (L.). Zn(2+) is involved in many biological functions and is present in pre-synaptic nerve terminals. This metal, which has affinity for thiol groups, acted as a potent competitive inhibitor of (Na(+),K(+))ATPase of both membrane fractions, which were obtained by differential centrifugation of the E. electricus main electric organ homogenate. We tried to recover the enzyme activity using dithiothreitol, a reducing agent. Kinetic analysis showed that dithiothreitol acted as a non-essential non-competitive activator of (Na(+),K(+))ATPase from both membrane fractions and was able to revert the Zn(2+) inhibition at mM concentrations. In the presence of dithiothreitol, this metal behaved as a competitive inhibitor of (Na(+),K(+))ATPase in the non-innervated membrane fractions and presented a non-competitive inhibition of (Na(+),K(+))ATPase in innervated membrane fractions. This difference may be attributed to formation of a Zn-dithiothreitol complex, as well as the involvement of other binding sites for both agents. The consequences of the enzyme inhibition by Zn(2+) may be considered in regard to its neurotoxic effects.
Asunto(s)
Ditiotreitol/farmacología , Órgano Eléctrico/enzimología , Electrophorus/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Zinc/farmacología , Animales , Fraccionamiento Celular , Quelantes/farmacología , Ácido Edético/farmacología , Órgano Eléctrico/citología , Órgano Eléctrico/efectos de los fármacos , Electrophorus/anatomía & histología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidoresRESUMEN
The electric eel Electrophorus electricus is a fresh water teleost showing an electrogenic tissue that produces electric discharges. This electrogenic tissue is distributed in three well-defined electric organs which may be found symmetrically along both sides of the eel. These electric organs develop from muscle and exhibit several biochemical properties and morphological features of the muscle sarcolema. This review examines the contribution of the cytoskeletal meshwork to the maintenance of the polarized organization of the electrocyte, the cell that contains all electric properties of each electric organ. The cytoskeletal filaments display an important role in the establishment and maintenance of the highly specialized membrane model system of the electrocyte. As a muscular tissue, these electric organs expresses actin and desmin. The studies that characterized these cytoskeletal proteins and their implications on the electrophysiology of the electric tissues are revisited.