Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.621
Filtrar
1.
Biomaterials ; 313: 122796, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226654

RESUMEN

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Asunto(s)
Neoplasias de la Mama , Senescencia Celular , Resistencia a Antineoplásicos , Células Madre Neoplásicas , Humanos , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Senescencia Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ingeniería Genética/métodos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Nanopartículas/química , Anticuerpos de Cadena Única/química , Escape del Tumor/efectos de los fármacos , Antígeno B7-H1/metabolismo , Apoptosis/efectos de los fármacos , Biomimética/métodos , Antígenos B7
2.
AAPS PharmSciTech ; 25(7): 211, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39242397

RESUMEN

Pirarubicin attracted considerable attention in clinical studies because of its high therapeutic efficacy and reduced toxicity in comparison with other anthracyclines. Nevertheless, ~ 30% patients undergoing PIRA treatment still experience relapse and metastasis. Clinical advancements unveiled that cancer stem cells (CSCs) residing in the tumor constitutes a major factor for such limitations and subsequently are the reason for treatment failure. Consequently, eradicating CSCs alongside bulk tumor is a crucial undertaking to attain utmost therapeutic efficacy of the treatment. Nevertheless, majority of the CSCs inhibitors currently under examination lack specificity, show unsynchronized bioavailability with other primary treatments and exhibit notable toxicity in their therapeutic applications, which is primarily attributable to their inadequate tumor-targeting capabilities. Therefore, we have developed a biodegradable polylactic acid based blend block copolymeric NPs for concomitant delivery of CSCs inhibitor Salinomycin (SAL) & chemotherapeutic drug Pirarubicin (PIRA) with an aim to improve the efficacy of treatment and prevent cancer relapse. Prepared NPs showed < 100 nm size and excellent loading with sustained release for both the drugs. Also, PIRA:SAL co-loaded NPs exhibits synergistically enhanced cytotoxicity against cancer cell as well as CSCs. Most importantly, NPs mediated co-delivery of the drugs showed complete tumor eradication, without any reoccurrence throughout the surveillance period. Additionally, NPs treatment didn't show any histopathological alteration in vital organs confirming their non-toxic nature. Altogether, present study concludes that the developed PIRA:SAL NPs have excellent efficacy for tumor regression as well as prevention of cancer relapse, hence can be used as a potential combination therapy for cancer treatment.


Asunto(s)
Doxorrubicina , Piranos , Piranos/administración & dosificación , Piranos/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Humanos , Animales , Línea Celular Tumoral , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Nanopartículas/química , Sinergismo Farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Ratones , Poliésteres/química , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Femenino , Liberación de Fármacos , Policétidos Poliéteres
3.
Sci Rep ; 14(1): 20822, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242631

RESUMEN

A new type of hybrid polymer particles capable of carrying the cytostatic drug doxorubicin and labeled with a gallium compound was prepared. These microparticles consist of a core and a hydrogel shell, which serves as the structural matrix. The shell can be employed to immobilize gallium oxide hydroxide (GaOOH) nanoparticles and the drug, resulting in hybrid beads with sizes of approximately 3.81 ± 0.09 µm. The microparticles exhibit the ability to incorporate a remarkably large amount of doxorubicin, approximately 0.96 mg per 1 mg of the polymeric carrier. Additionally, GaOOH nanoparticles can be deposited within the hydrogel layer at an amount of 0.64 mg per 1 mg of the carrier. These nanoparticles, resembling rice grains with an average size of 593 nm by 155 nm, are located on the surface of the polymer carrier. In vitro studies on breast and colon cancer cell lines revealed a pronounced cytotoxic effect of the hybrid polymer particles loaded with doxorubicin, indicating their potential for cancer therapies. Furthermore, investigations on doping the hybrid particles with the Ga-68 radioisotope demonstrated their potential application in positron emission tomography (PET) imaging. The proposed structures present a promising theranostic platform, where particles could be employed in anticancer therapies while monitoring their accumulation in the body using PET.


Asunto(s)
Doxorrubicina , Galio , Hidrogeles , Nanopartículas , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Humanos , Galio/química , Nanopartículas/química , Hidrogeles/química , Portadores de Fármacos/química , Línea Celular Tumoral , Radioisótopos de Galio/química , Tomografía de Emisión de Positrones , Hidróxidos/química , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula
4.
Int J Nanomedicine ; 19: 8949-8970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246424

RESUMEN

Introduction: RNA interference (RNAi) stands as a widely employed gene interference technology, with small interfering RNA (siRNA) emerging as a promising tool for cancer treatment. However, the inherent limitations of siRNA, such as easy degradation and low bioavailability, hamper its efficacy in cancer therapy. To address these challenges, this study focused on the development of a nanocarrier system (HLM-N@DOX/R) capable of delivering both siRNA and doxorubicin for the treatment of breast cancer. Methods: The study involved a comprehensive investigation into various characteristics of the nanocarrier, including shape, diameter, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), encapsulation efficiency, and drug loading. Subsequently, in vitro and in vivo studies were conducted on cytotoxicity, cellular uptake, cellular immunofluorescence, lysosome escape, and mouse tumor models to evaluate the efficacy of the nanocarrier in reversing tumor multidrug resistance and anti-tumor effects. Results: The results showed that HLM-N@DOX/R had a high encapsulation efficiency and drug loading capacity, and exhibited pH/redox dual responsive drug release characteristics. In vitro and in vivo studies showed that HLM-N@DOX/R inhibited the expression of P-gp by 80%, inhibited MDR tumor growth by 71% and eliminated P protein mediated multidrug resistance. Conclusion: In summary, HLM-N holds tremendous potential as an effective and targeted co-delivery system for DOX and P-gp siRNA, offering a promising strategy for overcoming MDR in breast cancer.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Liposomas , ARN Interferente Pequeño , Animales , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/administración & dosificación , Femenino , Liposomas/química , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Células MCF-7 , Ratones Endogámicos BALB C , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Liberación de Fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Nanobiotechnology ; 22(1): 531, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218878

RESUMEN

Ferroptosis, triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DOX-induced cardiomyopathy (DIC), and thus limits the use of doxorubicin (DOX) in clinic. Here, we further showed that cardiac ferroptosis induced by DOX in mice was attributed to up-regulation of Hmox1, as knockdown of Hmox1 effectively inhibited cardiomyocyte ferroptosis. To targeted delivery of siRNA into cardiomyocytes, siRNA-encapsulated exosomes were injected followed by ultrasound microbubble targeted destruction (UTMD) in the heart region. UTMD greatly facilitated exosome delivery into heart. Consistently, UTMD assisted exosomal delivery of siHomox1 nearly blocked the ferroptosis and the subsequent cardiotoxicity induced by doxorubicin. In summary, our findings reveal that the upregulation of HMOX1 induces ferroptosis in cardiomyocytes and UTMD-assisted exosomal delivery of siHmox1 can be used as a potential therapeutic strategy for DIC.


Asunto(s)
Doxorrubicina , Exosomas , Ferroptosis , Hemo-Oxigenasa 1 , Microburbujas , Miocitos Cardíacos , ARN Interferente Pequeño , Ferroptosis/efectos de los fármacos , Animales , Doxorrubicina/farmacología , Exosomas/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Hemo-Oxigenasa 1/metabolismo , ARN Interferente Pequeño/farmacología , Ratones Endogámicos C57BL , Masculino , Sistemas de Liberación de Medicamentos , Cardiomiopatías/metabolismo , Proteínas de la Membrana
6.
Clin Exp Pharmacol Physiol ; 51(10): e13920, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39227014

RESUMEN

This study aimed to investigate the effects and possible mechanisms of adenylate cyclase 1 (ADCY1) on pirarubicin-induced cardiomyocyte injury. HL-1 cells were treated with pirarubicin (THP) to induce intracellular toxicity, and the extent of damage to mouse cardiomyocytes was assessed using CCK-8, Edu, flow cytometry, ROS, ELISA, RT-qPCR and western blotting. THP treatment reduced the viability of HL-1 cells, inhibited proliferation, induced apoptosis and triggered oxidative stress. In addition, the RT-qPCR results revealed that ADCY1 expression was significantly elevated in HL-1 cells, and molecular docking showed a direct interaction between ADCY1 and THP. Western blotting showed that ADCY1, phospho-protein kinase A and GRIN2D expression were also significantly elevated. Knockdown of ADCY1 attenuated THP-induced cardiotoxicity, possibly by regulating the ADCY1/PKA/GRIN2D pathway.


Asunto(s)
Adenilil Ciclasas , Cardiotoxicidad , Doxorrubicina , Técnicas de Silenciamiento del Gen , Miocitos Cardíacos , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Animales , Ratones , Cardiotoxicidad/genética , Doxorrubicina/toxicidad , Doxorrubicina/farmacología , Doxorrubicina/análogos & derivados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Línea Celular , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/toxicidad
7.
Funct Integr Genomics ; 24(5): 150, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222264

RESUMEN

MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.


Asunto(s)
Doxorrubicina , Resistencia a Antineoplásicos , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética
8.
J Nanobiotechnology ; 22(1): 533, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223666

RESUMEN

The poor prognosis of hepatocellular carcinoma (HCC) is still an urgent challenge to be solved worldwide. Hence, assembling drugs and targeted short peptides together to construct a novel medicine delivery strategy is crucial for targeted and synergy therapy of HCC. Herein, a high-efficiency nanomedicine delivery strategy has been constructed by combining graphdiyne oxide (GDYO) as a drug-loaded platform, specific peptide (SP94-PEG) as a spear to target HCC cells, sorafenib, doxorubicin-Fe2+ (DOX-Fe2+), and siRNA (SLC7A11-i) as weapons to exert a three-path synergistic attack against HCC cells. In this work, SP94-PEG and GDYO form nanosheets with HCC-targeting properties, the chemotherapeutic drug DOX linked to ferrous ions increases the free iron pool in HCC cells and synergizes with sorafenib to induce cell ferroptosis. As a key gene of ferroptosis, interference with the expression of SLC7A11 makes the ferroptosis effect in HCC cells easier, stronger, and more durable. Through gene interference, drug synergy, and short peptide targeting, the toxic side effects of chemotherapy drugs are reduced. The multifunctional nanomedicine GDYO@SP94/DOX-Fe2+/sorafenib/SLC7A11-i (MNMG) possesses the advantages of strong targeting, good stability, the ability to continuously induce tumor cell ferroptosis and has potential clinical application value, which is different from traditional drugs.


Asunto(s)
Carcinoma Hepatocelular , Doxorrubicina , Ferroptosis , Neoplasias Hepáticas , Nanomedicina , Péptidos , Sorafenib , Ferroptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/química , Nanomedicina/métodos , Sorafenib/farmacología , Sorafenib/química , Línea Celular Tumoral , Animales , Péptidos/química , Péptidos/farmacología , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Sinergismo Farmacológico , Sistema de Transporte de Aminoácidos y+/metabolismo , Ratones Desnudos , ARN Interferente Pequeño , Ratones Endogámicos BALB C , Sistemas de Liberación de Medicamentos/métodos
9.
Anal Chem ; 96(37): 14998-15007, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39241035

RESUMEN

Intracellular cargo delivery is crucial for drug evaluation, nanomedicine development, and gene therapy, in which high efficiency while maintaining cell viability is needed for downstream analysis. Here, an acoustic-mediated precise drug delivering mechanism is proposed by directly modulating cell micro-oscillation mode and membrane permeability. Through phase shifting keying-based spatiotemporal acoustic tweezers, controllable oscillating cell arrays can be achieved in shaking potentials. At the same time, continually oscillating radiation force and fluid shear stress exerted on cells effectively disturbs cellular membrane mobility and enhances permeability, thereby facilitating nanodrug entrance. In experiments, cell oscillation is tunable in frequency (10-2 to 102 Hz), shaking direction, amplitude (0 to quarter acoustic wavelength), and speed. Doxorubicin is actively delivered across cellular membranes and accumulates in inner cells, with a concentration more than 8 times that of the control group. Moreover, there is no obvious compromise in cell activity during oscillation, exhibiting excellent biocompatibility. This "dancing acoustic waves" scheme introduces a new dimension of cell manipulation in both space and time domains and an effective drug delivering strategy, offering advantages of flexibility, gentleness, and high throughput. It may advance related fields like nanobiological research, drug and nanomedicine development, and medical treatment.


Asunto(s)
Acústica , Doxorrubicina , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología , Doxorrubicina/química , Humanos , Supervivencia Celular/efectos de los fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química
10.
J Biochem Mol Toxicol ; 38(10): e23851, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39267350

RESUMEN

Doxorubicin (Dox) is frequently employed as a chemotherapy agent for breast cancer. As the chemotherapy moves forward, breast cancer cells tend to develop resistance to Dox, besides that, Dox are also easy to cause cardiotoxicity related to cumulative dose. Therefore, how to potentiate the chemosensitivity of breast cancer cells to Dox while attenuating its cardiotoxicity has become a research hotspot. Tanshinone IIA (Tan IIA) is known for its anticancer activity as well as for its cardioprotective effects. In view of the aforementioned facts, we assessed whether Tan IIA possesses synergism and attenuation effect on Dox for breast cancer chemotherapy. Our studies in vitro indicated that, Tan IIA could potentiate the effect of Dox on breast cancer cells proliferation inhibition and apoptosis promotion by inhibiting ERK1/2 pathway, but interestingly, Tan IIA attenuated the cytotoxicity of Dox to myocardial cells by activating ERK1/2 pathway. Additionally, our studies in vivo also suggested that Tan IIA potentiated the chemotherapeutic effect of Dox against breast cancer while attenuating Dox-induced myocardial injury. Given that Tan IIA had a synergism and attenuation effect on Dox, we believed that Tan IIA can be used as an ideal drug in combination with Dox for breast cancer therapy.


Asunto(s)
Abietanos , Neoplasias de la Mama , Cardiotoxicidad , Doxorrubicina , Sistema de Señalización de MAP Quinasas , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Abietanos/farmacología , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Sinergismo Farmacológico , Células MCF-7 , Ratones , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo
11.
J Ovarian Res ; 17(1): 187, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272193

RESUMEN

BACKGROUND: Most ovarian cancer cases are diagnosed at an advanced stage, leading to poor outcomes and a relatively low 5-year survival rate. While tumor resection in the early stages can be highly effective, recurrence following primary treatment remains a significant cause of mortality. Propofol is a commonly used intravenous anesthetic agent in cancer resection surgery. Previous research has shown that propofol anesthesia was associated with improved survival in patients undergoing elective surgery for epithelial ovarian cancer. However, the underlying antitumor mechanisms are not yet fully understood. METHODS: This study aimed to uncover the antitumor properties of propofol alone and combined with cisplatin or doxorubicin, in human SKOV3 and OVCAR3 ovarian cancer cells. We applied flowcytometry analysis for mitochondrial membrane potential, apoptosis, and autophagy, colony formation, migration, and western blotting analysis. RESULTS: Given that chemotherapy is a primary clinical approach for managing advanced and recurrent ovarian cancer, it is essential to address the limitations of current chemotherapy, particularly in the use of cisplatin and doxorubicin, which are often constrained by their side effects and the development of resistance. First of all, propofol acted synergistically with cisplatin and doxorubicin in SKOV3 cells. Moreover, our data further showed that propofol suppressed colony formation, disrupted mitochondrial membrane potential, and induced apoptosis and autophagy in SKOV3 and OVCAR3 cells. Finally, the effects of combined propofol with cisplatin or doxorubicin on mitochondrial membrane potential, apoptosis, autophagy, and epithelial-mesenchymal transition were different in SKOV3 and OVCAR3 cells, depending on the p53 status. CONCLUSION: In summary, repurposing propofol could provide novel insights into the existing chemotherapy strategies for ovarian cancer. It holds promise for overcoming resistance to cisplatin or doxorubicin and may potentially reduce the required chemotherapy dosages and associated side effects, thus improving treatment outcomes.


Asunto(s)
Apoptosis , Cisplatino , Doxorrubicina , Sinergismo Farmacológico , Neoplasias Ováricas , Propofol , Humanos , Propofol/farmacología , Propofol/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Autofagia/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
12.
Cells ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273017

RESUMEN

PAK4 and PD-L1 have been suggested as novel therapeutic targets in human cancers. Moreover, PAK4 has been suggested to be a molecule closely related to the immune evasion of cancers. Therefore, this study evaluated the roles of PAK4 and PD-L1 in the progression of osteosarcomas in 32 osteosarcomas and osteosarcoma cells. In human osteosarcomas, immunohistochemical positivity for the expression of PAK4 (overall survival, p = 0.028) and PD-L1 (relapse-free survival, p = 0.002) were independent indicators for the survival of patients in a multivariate analysis. In osteosarcoma cells, the overexpression of PAK4 increased proliferation and invasiveness, while the knockdown of PAK4 suppressed proliferation and invasiveness. The expression of PAK4 was associated with the expression of the molecules related to cell cycle regulation, invasion, and apoptosis. PAK4 was involved in resistance to apoptosis under a treatment regime with doxorubicin for osteosarcoma. In U2OS cells, PAK4 was involved in the stabilization of PD-L1 from ubiquitin-mediated proteasomal degradation and the in vivo infiltration of immune cells such as regulatory T cells and PD1-, CD4-, and CD8-positive cells in mice tumors. In conclusion, this study suggests that PAK4 is involved in the progression of osteosarcoma by promoting proliferation, invasion, and resistance to doxorubicin and stabilized PD-L1 from proteasomal degradation.


Asunto(s)
Antígeno B7-H1 , Proliferación Celular , Doxorrubicina , Resistencia a Antineoplásicos , Osteosarcoma , Quinasas p21 Activadas , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Osteosarcoma/genética , Humanos , Antígeno B7-H1/metabolismo , Femenino , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Animales , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Masculino , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Adulto , Adolescente , Estabilidad Proteica/efectos de los fármacos , Ratones Desnudos , Adulto Joven , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Invasividad Neoplásica
13.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274943

RESUMEN

In this study, we report a novel platinum-doxorubicin conjugate that demonstrates superior therapeutic indices to cisplatin, doxorubicin, or their combination, which are commonly used in cancer treatment. This new molecular structure (1) was formed by conjugating an amphiphilic Pt(IV) prodrug of cisplatin with doxorubicin. Due to its amphiphilic nature, the Pt(IV)-doxorubicin conjugate effectively penetrates cell membranes, delivering both cisplatin and doxorubicin payloads intracellularly. The intracellular accumulation of these payloads was assessed using graphite furnace atomic absorption spectrometry and fluorescence imaging. Since the therapeutic effects of cisplatin and doxorubicin stem from their ability to target nuclear DNA, we hypothesized that the amphiphilic Pt(IV)-doxorubicin conjugate (1) would effectively induce nuclear DNA damage toward killing cancer cells. To test this hypothesis, we used flow the cytometric analysis of phosphorylated H2AX (γH2AX), a biomarker of nuclear DNA damage. The Pt(IV)-doxorubicin conjugate (1) markedly induced γH2AX in treated MDA-MB-231 breast cancer cells, showing higher levels than cells treated with either cisplatin or doxorubicin alone. Furthermore, MTT cell viability assays revealed that the enhanced DNA-damaging capability of complex 1 resulted in superior cytotoxicity and selectivity against human cancer cells compared to cisplatin, doxorubicin, or their combination. Overall, the development of this amphiphilic Pt(IV)-doxorubicin conjugate represents a new form of combination therapy with improved therapeutic efficacy.


Asunto(s)
Cisplatino , Doxorrubicina , Cisplatino/farmacología , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Platino (Metal)/química , Platino (Metal)/farmacología , Profármacos/farmacología , Profármacos/química , Histonas
14.
Colloids Surf B Biointerfaces ; 244: 114179, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39217727

RESUMEN

Oral squamous cell carcinoma (OSCC) is highly heterogeneous and aggressive, but therapies based on single-targeted nanoparticles frequently address these tumors as a single illness. To achieve more efficient drug transport, it is crucial to develop nanodrug-carrying systems that simultaneously target two or more cancer biomarkers. In addition, combining chemotherapy with near-infrared (NIR) light-mediated thermotherapy allows the thermal ablation of local malignancies via photothermal therapy (PTT), and triggers drug release to improve chemosensitivity. Thus, a novel dual-targeted nano-loading system, DOX@GO-HA-HN-1 (GHHD), was created for synergistic chemotherapy and PTT by the co-modification of carboxylated graphene oxide (GO) with hyaluronic acid (HA) and HN-1 peptide and loading with the anticancer drug doxorubicin (DOX). Targeted delivery using GHHD was shown to be superior to single-targeted nanoparticle delivery. NIR radiation will encourage the absorption of GHHD by tumor cells and cause the site-specific release of DOX in conjunction with the acidic microenvironment of the tumor. In addition, chemo-photothermal combination therapy for cancer treatment was realized by causing cell apoptosis under the irradiation of 808-nm laser. In summary, the application of GHHD to chemotherapy combined with photothermal therapy for OSCC is shown to have important potential as a means of combatting the low accumulation of single chemotherapeutic agents in tumors and drug resistance generated by single therapeutic means, enhancing therapeutic efficacy.


Asunto(s)
Carcinoma de Células Escamosas , Doxorrubicina , Sistemas de Liberación de Medicamentos , Grafito , Rayos Infrarrojos , Neoplasias de la Boca , Doxorrubicina/farmacología , Doxorrubicina/química , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/terapia , Grafito/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química , Nanopartículas/química , Liberación de Fármacos , Animales , Apoptosis/efectos de los fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Terapia Fototérmica , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Ácido Hialurónico/química , Supervivencia Celular/efectos de los fármacos , Ratones , Tamaño de la Partícula , Propiedades de Superficie
15.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 90-95, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39262259

RESUMEN

Multi-drug resistance (MDR) might be acquired by the cancer cells during chemotherapy, and ATP-binding cassette (ABC) transporters play a significant role in MDR. Interferon-γ (IFN-γ) and IFN-ß can inhibit cancer cell proliferation; however, the effects and mechanism of these cytokines on the growth and MDR are still unclear. To investigate the effects of IFN-γ and IFN-ß, alone or in combination, on viability, resistance, and the expression of ABC transporters of the MDA-MB-231 breast cancer cell line. Using the MDA-MB-231 cell line, we assessed the effects of 20, 100, and 500 IU/ml of IFN-γ and IFN-ß, alone or in combination, on cell viability by methyl thiazolyl tetrazolium (MTT) assay; and then we performed the Uptake and Efflux experiment to evaluate the effect of these IFNs on the cell resistance. Then, using quantitative real-time PCR, we evaluated changes in the expression of ABCB1, ABCC1, and ABCG2 mRNA levels. We discovered that IFN-γ and IFN-ß might both reduce viability, either alone or in combination. The combination of IFNs also displayed synergistic responses, particularly when utilizing equivalent dosages of 500 or 100 IU/ml. The combination of IFN-γ and IFN-ß resulted in a significant increase in Doxorubicin accumulation and down-regulation of the ABCC1 gene at the mRNA level. Our study suggested that equal doses of IFN-γ and IFN-ß in combination might result in potentiated responses against cancer, especially, along with chemotherapy agents.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Supervivencia Celular , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Interferón beta , Interferón gamma , Humanos , Interferón gamma/farmacología , Interferón gamma/metabolismo , Interferón beta/farmacología , Interferón beta/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Proliferación Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Doxorrubicina/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
16.
J Transl Med ; 22(1): 845, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285385

RESUMEN

BACKGROUND: Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS: Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS: The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.


Asunto(s)
Cardiomiopatías , Doxorrubicina , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-abl , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína p53 Supresora de Tumor/metabolismo , Transducción de Señal/efectos de los fármacos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/efectos de los fármacos , Atrios Cardíacos/patología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Muerte Celular/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
17.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273127

RESUMEN

As a novel therapeutic approach, photothermal therapy (PTT) combined with chemotherapy can synergistically produce antitumor effects. Herein, dithiodipropionic acid (DTDP) was used as a donor of disulfide bonds sensitive to the tumor microenvironment for establishing chemical bonding between the photosensitizer indocyanine green amino (ICG-NH2) and acidified single-walled carbon nanotubes (CNTs). The CNT surface was then coated with conjugates (HD) formed by the targeted modifier hyaluronic acid (HA) and 1,2-tetragacylphosphatidyl ethanolamine (DMPE). After doxorubicin hydrochloride (DOX), used as the model drug, was loaded by CNT carriers, functional nano-delivery systems (HD/CNTs-SS-ICG@DOX) were developed. Nanosystems can effectively induce tumor cell (MCF-7) death in vitro by accelerating cell apoptosis, affecting cell cycle distribution and reactive oxygen species (ROS) production. The in vivo antitumor activity results in tumor-bearing model mice, further verifying that HD/CNTs-SS-ICG@DOX inhibited tumor growth most significantly by mediating a synergistic effect between chemotherapy and PTT, while various functional nanosystems have shown good biological tissue safety. In conclusion, the composite CNT delivery systems developed in this study possess the features of high biocompatibility, targeted delivery, and responsive drug release, and can achieve the efficient coordination of chemotherapy and PTT, with broad application prospects in cancer treatment.


Asunto(s)
Doxorrubicina , Nanotubos de Carbono , Terapia Fototérmica , Microambiente Tumoral , Nanotubos de Carbono/química , Animales , Humanos , Microambiente Tumoral/efectos de los fármacos , Terapia Fototérmica/métodos , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Verde de Indocianina/química , Células MCF-7 , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Terapia Combinada/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Ácido Hialurónico/química
18.
Biomacromolecules ; 25(9): 5650-5669, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39162323

RESUMEN

Liposomes, made up of phospholipid bilayers, are efficient nanocarriers for drug delivery because they can encapsulate both hydrophilic and lipophilic drugs. Conventional cancer treatments sometimes involve considerable toxicities and adverse drug reactions (ADRs), which limits their clinical value. Despite liposomes' promise in addressing these concerns, clinical trials have revealed significant limitations, including stability, targeted distribution, and scaling challenges. Recent clinical trials have focused on enhancing liposome formulations to increase therapeutic efficacy while minimizing negative effects. Notably, the approval of liposomal medications like Doxil demonstrates their potential in cancer treatment. However, the intricacy of liposome preparation and the requirement for comprehensive regulatory approval remain substantial impediments. Current clinical trial updates show continued efforts to improve liposome stability, targeting mechanisms, and payload capacity in order to address these issues. The future of liposomal drug delivery in cancer therapy depends on addressing these challenges in order to provide patients with more effective and safer treatment alternatives.


Asunto(s)
Neoplasias del Colon , Liposomas , Polímeros , Humanos , Liposomas/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Polímeros/química , Ensayos Clínicos como Asunto , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
19.
Biomacromolecules ; 25(9): 5834-5846, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39191734

RESUMEN

Bioorthogonal reactions present a promising strategy for minimizing off-target toxicity in cancer chemotherapy, yet a dependable nanoplatform is urgently required. Here, we have fabricated an acid-responsive polymer micelle for the specific delivery and activation of the prodrug within tumor cells through Ru catalyst-mediated bioorthogonal reactions. The decomposition of micelles, triggered by the cleavage of the hydrazone bond in the acidic lysosomal environment, facilitated the concurrent release of Alloc-DOX and the Ru catalyst within the cells. Subsequently, the uncaging process of Alloc-DOX was demonstrated to be induced by the high levels of glutathione within tumor cells. Notably, the limited glutathione inside normal cells prevented the conversion of Alloc-DOX into active DOX, thereby minimizing the toxicity toward normal cells. In tumor-bearing mice, this nanoplatform exhibited enhanced efficacy in tumor suppression while minimizing off-target toxicity. Our study provides an innovative approach for in situ drug activation that combines safety and effectiveness in cancer chemotherapy.


Asunto(s)
Doxorrubicina , Micelas , Polímeros , Profármacos , Rutenio , Profármacos/química , Profármacos/farmacología , Animales , Humanos , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Rutenio/química , Polímeros/química , Catálisis , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos
20.
Elife ; 132024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196610

RESUMEN

Senescent cells are characterized by multiple features such as increased expression of senescence-associated ß-galactosidase activity (SA ß-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase-Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.


Asunto(s)
Diferenciación Celular , Senescencia Celular , Mioblastos , Prostaglandina D2 , Proteínas Proto-Oncogénicas p21(ras) , Animales , Ratones , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacología , Senescencia Celular/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Diferenciación Celular/efectos de los fármacos , Fenotipo Secretor Asociado a la Senescencia , Línea Celular , Doxorrubicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA