Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Curr Opin Neurol ; 37(5): 536-548, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39132784

RESUMEN

PURPOSE OF REVIEW: In the last 30 years, there have many publications describing the pattern of muscle involvement of different neuromuscular diseases leading to an increase in the information available for diagnosis. A high degree of expertise is needed to remember all the patterns described. Some attempts to use artificial intelligence or analysing muscle MRIs have been developed. We review the main patterns of involvement in limb girdle muscular dystrophies (LGMDs) and summarize the strategies for using artificial intelligence tools in this field. RECENT FINDINGS: The most frequent LGMDs have a widely described pattern of muscle involvement; however, for those rarer diseases, there is still not too much information available. patients. Most of the articles still include only pelvic and lower limbs muscles, which provide an incomplete picture of the diseases. AI tools have efficiently demonstrated to predict diagnosis of a limited number of disease with high accuracy. SUMMARY: Muscle MRI continues being a useful tool supporting the diagnosis of patients with LGMD and other neuromuscular diseases. However, the huge variety of patterns described makes their use in clinics a complicated task. Artificial intelligence tools are helping in that regard and there are already some accessible machine learning algorithms that can be used by the global medical community.


Asunto(s)
Imagen por Resonancia Magnética , Distrofia Muscular de Cinturas , Humanos , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/patología , Imagen por Resonancia Magnética/métodos , Inteligencia Artificial , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología
2.
Neuromuscul Disord ; 42: 36-42, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39121631

RESUMEN

Limb-girdle muscular dystrophy recessive 27 is associated with biallelic variants in JAG2, encoding the JAG2 notch ligand. Twenty-four affected individuals from multiple families have been described in two reports. We present two Australian families with three novel JAG2 missense variants: (c.1021G>T, p.(Gly341Cys)) homozygous in two siblings of Pakistani origin, and compound heterozygous variants (c.703T>C, p.(Trp235Arg); c.2350C>T, p.(Arg784Cys)) in a proband of European ancestry. Patients presented with childhood-onset limb-girdle-like myopathy with difficulty or inability walking. MRI revealed widespread torso and limb muscle involvement. Muscle pathology showed myopathic changes with fatty infiltration. Muscle RNA sequencing revealed significant downregulation of myogenesis genes PAX7, MYF5, and MEGF10 similar to previous JAG2-related muscular dystrophy cases or Jag2-knockdown cells. In absence of functional assays to characterise JAG2 variants, clinical, MRI and transcriptomic profiling collectively may help discern JAG2-related muscular dystrophy, diagnosis of which is essential for patients and families given the severity of disease and reoccurrence risk.


Asunto(s)
Proteína Jagged-2 , Distrofia Muscular de Cinturas , Mutación Missense , Linaje , Niño , Femenino , Humanos , Masculino , Australia , Proteína Jagged-2/genética , Imagen por Resonancia Magnética , Músculo Esquelético/patología , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Preescolar
3.
Sci Rep ; 14(1): 19267, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164335

RESUMEN

Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.


Asunto(s)
Encéfalo , Magnesio , Humanos , Masculino , Femenino , Niño , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Magnesio/metabolismo , Disferlina/metabolismo , Disferlina/genética , Imagen por Resonancia Magnética , Metabolismo Energético , Adolescente , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Cinturas/genética , Mutación , Espectroscopía de Resonancia Magnética , Adulto , Atrofia Muscular , Miopatías Distales
4.
Skelet Muscle ; 14(1): 19, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123261

RESUMEN

BACKGROUND: Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength. METHODS: To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen. RESULTS: At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis. CONCLUSION: These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.


Asunto(s)
Dexametasona , Disferlina , Glucocorticoides , Músculo Esquelético , Distrofia Muscular de Cinturas , Animales , Disferlina/genética , Disferlina/metabolismo , Dexametasona/efectos adversos , Dexametasona/farmacología , Masculino , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Glucocorticoides/efectos adversos , Proyectos Piloto , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Animales de Enfermedad , Fuerza Muscular/efectos de los fármacos
5.
Lipids Health Dis ; 23(1): 247, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138561

RESUMEN

BACKGROUND: Dysferlin-deficient limb-girdle muscular dystrophy type 2B (Dysf) mice are notorious for their mild phenotype. Raising plasma total cholesterol (CHOL) via apolipoprotein E (ApoE) knockout (KO) drastically exacerbates muscle wasting in Dysf mice. However, dysferlinopathic patients have abnormally reduced plasma high-density lipoprotein cholesterol (HDL-C) levels. The current study aimed to determine whether HDL-C lowering can exacerbate the mild phenotype of dysferlin-null mice. METHODS: Human cholesteryl ester transfer protein (CETP), a plasma lipid transfer protein not found in mice that reduces HDL-C, and/or its optimal adapter protein human apolipoprotein B (ApoB), were overexpressed in Dysf mice. Mice received a 2% cholesterol diet from 2 months of age and characterized through ambulatory and hanging functional tests, plasma analyses, and muscle histology. RESULTS: CETP/ApoB expression in Dysf mice caused reduced HDL-C (54.5%) and elevated ratio of CHOL/HDL-C (181.3%) compared to control Dysf mice in plasma, but without raising CHOL. Compared to the severe muscle pathology found in high CHOL Dysf/ApoE double knockout mice, Dysf/CETP/ApoB mice did not show significant changes in ambulation, hanging capacity, increases in damaged area, collagen deposition, or decreases in cross-sectional area and healthy myofibre coverage. CONCLUSIONS: CETP/ApoB over-expression in Dysf mice decreases HDL-C without increasing CHOL or exacerbating muscle pathology. High CHOL or nonHDL-C caused by ApoE KO, rather than low HDL-C, likely lead to rodent muscular dystrophy phenotype humanization.


Asunto(s)
Apolipoproteínas E , Proteínas de Transferencia de Ésteres de Colesterol , HDL-Colesterol , Disferlina , Ratones Noqueados , Distrofia Muscular de Cinturas , Animales , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/deficiencia , Disferlina/genética , Disferlina/deficiencia , HDL-Colesterol/sangre , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/deficiencia , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Masculino , Apolipoproteínas B/sangre , Apolipoproteínas B/genética , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732148

RESUMEN

Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.


Asunto(s)
Lamina Tipo A , Proteínas Asociadas a Microtúbulos , Proteínas Musculares , Músculo Esquelético , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lamina Tipo A/genética , Proteínas Musculares/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Mutación , Linaje , Proteínas Asociadas a Microtúbulos/genética
7.
J Muscle Res Cell Motil ; 45(3): 123-138, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38635147

RESUMEN

The cell membrane protein, dystroglycan, plays a crucial role in connecting the cytoskeleton of a variety of mammalian cells to the extracellular matrix. The α-subunit of dystroglycan (αDG) is characterized by a high level of glycosylation, including a unique O-mannosyl matriglycan. This specific glycosylation is essential for binding of αDG to extracellular matrix ligands effectively. A subset of muscular dystrophies, called dystroglycanopathies, are associated with aberrant, dysfunctional glycosylation of αDG. This defect prevents myocytes from attaching to the basal membrane, leading to contraction-induced injury. Here, we describe a novel Western blot (WB) assay for determining levels of αDG glycosylation in skeletal muscle tissue. The assay described involves extracting proteins from fine needle tibialis anterior (TA) biopsies and separation using SDS-PAGE followed by WB. Glycosylated and core αDG are then detected in a multiplexed format using fluorescent antibodies. A practical application of this assay is demonstrated with samples from normal donors and patients diagnosed with LGMD2I/R9. Quantitative analysis of the WB, which employed the use of a normal TA derived calibration curve, revealed significantly reduced levels of αDG in patient biopsies relative to unaffected TA. Importantly, the assay was able to distinguish between the L276I homozygous patients and a more severe form of clinical disease observed with other FKRP variants. Data demonstrating the accuracy and reliability of the assay are also presented, which further supports the potential utility of this novel assay to monitor changes in ⍺DG of TA muscle biopsies in the evaluation of potential therapeutics.


Asunto(s)
Western Blotting , Distroglicanos , Músculo Esquelético , Distrofia Muscular de Cinturas , Humanos , Distroglicanos/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Western Blotting/métodos , Glicosilación , Masculino , Femenino
8.
Mol Genet Metab ; 142(1): 108469, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564972

RESUMEN

The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.


Asunto(s)
Proteínas de Transporte Vesicular , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Cinturas/diagnóstico , Mutación Missense , Fenotipo , Proteínas de Transporte Vesicular/genética , Informes de Casos como Asunto
9.
Hum Mol Genet ; 33(14): 1195-1206, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38621658

RESUMEN

Mutations in DNAJB6 are a well-established cause of limb girdle muscular dystrophy type D1 (LGMD D1). Patients with LGMD D1 develop progressive muscle weakness with histology showing fibre damage, autophagic vacuoles, and aggregates. Whilst there are many reports of LGMD D1 patients, the role of DNAJB6 in the muscle is still unclear. In this study, we developed a loss of function zebrafish model in order to investigate the role of Dnajb6. Using a double dnajb6a and dnajb6b mutant model, we show that loss of Dnajb6 leads to a late onset muscle weakness. Interestingly, we find that adult fish lacking Dnajb6 do not have autophagy or myofibril defects, however, they do show mitochondrial changes and damage. This study demonstrates that loss of Dnajb6 causes mitochondrial defects and suggests that this contributes to muscle weakness in LGMD D1. These findings expand our knowledge of the role of Dnajb6 in the muscle and provides a model to screen novel therapies for LGMD D1.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas del Choque Térmico HSP40 , Mitocondrias , Chaperonas Moleculares , Debilidad Muscular , Distrofia Muscular de Cinturas , Pez Cebra , Animales , Humanos , Autofagia/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Debilidad Muscular/genética , Debilidad Muscular/patología , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Mutación , Proteínas del Tejido Nervioso , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Brain ; 147(8): 2867-2883, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366623

RESUMEN

Alterations in RNA-splicing are a molecular hallmark of several neurological diseases, including muscular dystrophies, where mutations in genes involved in RNA metabolism or characterized by alterations in RNA splicing have been described. Here, we present five patients from two unrelated families with a limb-girdle muscular dystrophy (LGMD) phenotype carrying a biallelic variant in SNUPN gene. Snurportin-1, the protein encoded by SNUPN, plays an important role in the nuclear transport of small nuclear ribonucleoproteins (snRNPs), essential components of the spliceosome. We combine deep phenotyping, including clinical features, histopathology and muscle MRI, with functional studies in patient-derived cells and muscle biopsies to demonstrate that variants in SNUPN are the cause of a new type of LGMD according to current definition. Moreover, an in vivo model in Drosophila melanogaster further supports the relevance of Snurportin-1 in muscle. SNUPN patients show a similar phenotype characterized by proximal weakness starting in childhood, restrictive respiratory dysfunction and prominent contractures, although inter-individual variability in terms of severity even in individuals from the same family was found. Muscle biopsy showed myofibrillar-like features consisting of myotilin deposits and Z-disc disorganization. MRI showed predominant impairment of paravertebral, vasti, sartorius, gracilis, peroneal and medial gastrocnemius muscles. Conservation and structural analyses of Snurportin-1 p.Ile309Ser variant suggest an effect in nuclear-cytosol snRNP trafficking. In patient-derived fibroblasts and muscle, cytoplasmic accumulation of snRNP components is observed, while total expression of Snurportin-1 and snRNPs remains unchanged, which demonstrates a functional impact of SNUPN variant in snRNP metabolism. Furthermore, RNA-splicing analysis in patients' muscle showed widespread splicing deregulation, in particular in genes relevant for muscle development and splicing factors that participate in the early steps of spliceosome assembly. In conclusion, we report that SNUPN variants are a new cause of limb girdle muscular dystrophy with specific clinical, histopathological and imaging features, supporting SNUPN as a new gene to be included in genetic testing of myopathies. These results further support the relevance of splicing-related proteins in muscle disorders.


Asunto(s)
Distrofia Muscular de Cinturas , Humanos , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Masculino , Femenino , Adulto , Animales , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Linaje , Drosophila melanogaster , Miofibrillas/patología , Miofibrillas/genética , Miofibrillas/metabolismo , Persona de Mediana Edad , Fenotipo , Adolescente , Adulto Joven , Niño
11.
Skelet Muscle ; 14(1): 3, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389096

RESUMEN

BACKGROUND: Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often difficult to distinguish disease-related readouts from random variability. The generation of genetically matched isogenic controls using gene editing can reduce variability, but the generation of isogenic hiPSC-derived 3D-TESMs can take up to 6 months, thereby reducing throughput. METHODS: Here, by combining 3D-TESM and shRNA technologies, we developed a disease modelling strategy to induce distinct genetic deficiencies in a single hiPSC-derived myogenic progenitor cell line within 1 week. RESULTS: As proof of principle, we recapitulated disease-associated pathology of Duchenne muscular dystrophy and limb-girdle muscular dystrophy type 2A caused by loss of function of DMD and CAPN3, respectively. shRNA-mediated knock down of DMD or CAPN3 induced a loss of contractile function, disruption of tissue architecture, and disease-specific proteomes. Pathology in DMD-deficient 3D-TESMs was partially rescued by a candidate gene therapy treatment using micro-dystrophin, with similar efficacy compared to animal models. CONCLUSIONS: These results show that isogenic shRNA-based humanized 3D-TESM models provide a fast, cheap, and efficient tool to model muscular dystrophies and are useful for the preclinical evaluation of novel therapies.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofia Muscular de Duchenne , Animales , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , Distrofia Muscular de Cinturas/patología , Contracción Muscular , ARN Interferente Pequeño
12.
Cells ; 13(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391941

RESUMEN

OBJECTIVE: To identify novel biomarkers as an alternative diagnostic tool for limb girdle muscular dystrophy (LGMD). BACKGROUND: LGMD encompasses a group of muscular dystrophies characterized by proximal muscles weakness, elevated CK levels and dystrophic findings on muscle biopsy. Heterozygous CAPN3 mutations are associated with autosomal dominant LGMD-4, while biallelic mutations can cause autosomal recessive LGMD-1. Diagnosis is currently often based on invasive methods requiring muscle biopsy or blood tests. In most cases Western blotting (WB) analysis from muscle biopsy is essential for a diagnosis, as muscle samples are currently the only known tissues to express the full-length CAPN3 isoform. METHODS: We analyzed CAPN3 in a cohort including 60 LGMD patients. Selected patients underwent a complete neurological examination, electromyography, muscle biopsy, and skin biopsies for primary fibroblasts isolation. The amount of CAPN3 was evaluated by WB analysis in muscle and skin tissues. The total RNA isolated from muscle, fibroblast and urine was processed, and cDNA was used for qualitative analysis. The expression of CAPN3 was investigated by qRT-PCR. The CAPN3 3D structure has been visualized and analyzed using PyMOL. RESULTS: Among our patients, seven different CAPN3 mutations were detected, of which two were novel. After sequencing CAPN3 transcripts from fibroblast and urine, we detected different CAPN3 isoforms surprisingly including the full-length transcript. We found comparable protein levels from fibroblasts and muscle tissue; in particular, patients harboring a novel CAPN3 mutation showed a 30% reduction in protein compared to controls from both tissues. CONCLUSIONS: Our findings showed for the first time the presence of the CAPN3 full-length transcript in urine and skin samples. Moreover, we demonstrated surprisingly comparable CAPN3 protein levels between muscle and skin samples, thus allowing us to hypothesize the use of skin biopsy and probably of urine samples as an alternative less invasive method to assess the amount of CAPN3 when molecular diagnosis turns out to be inconclusive.


Asunto(s)
Músculos , Distrofia Muscular de Cinturas , Humanos , Mutación/genética , Músculos/patología , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Heterocigoto , Biomarcadores
13.
Muscle Nerve ; 69(4): 472-476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38299438

RESUMEN

INTRODUCTION/AIMS: Limb-girdle muscular dystrophy R1 (LGMDR1) calpain 3-related usually presents as a recessively transmitted weakness of proximal limb-girdle muscles due to pathogenic variants in the CAPN3 gene. Pathogenic variants in this gene have also been found in patients with an autosomal dominantly inherited transmission pattern (LGMDD4). The mechanism underlying this difference in transmission patterns has not yet been elucidated. Camptocormia, progressive limb weakness, myalgia, back pain, and increased CK levels are common clinical features associated with dominant forms. The p.Lys254del pathogenic variant was associated with camptocormia in two LGMDD4 families. This study aimed to present carriers found in recessively transmitted LGMDR1 families bearing the p.Lys254del variant that do not show muscle weakness. METHODS: DNA sequencing was performed on exon 5 of CAPN3 in family members to establish the carrier status of the pathogenic variant. They were evaluated clinically and MRI was performed when available. RESULTS: Two families presented with the p.Lys254del pathogenic variant in a homozygous or compound heterozygous state. Family members carrying only the pathogenic variant in the heterozygous state did not demonstrate the myopathic characteristics described in dominant patients. Camptocormia and other severe clinical symptoms were not observed. DISCUSSION: We conclude that the p.Lys254del pathogenic variant per se cannot be solely responsible for camptocormia in dominant patients. Other undisclosed factors may regulate the phenotype associated with the dominant inheritance pattern in CAPN3 pathogenic variant carriers.


Asunto(s)
Calpaína , Atrofia Muscular Espinal , Distrofia Muscular de Cinturas , Curvaturas de la Columna Vertebral , Humanos , Calpaína/genética , Distrofia Muscular de Cinturas/patología , Debilidad Muscular , Familia , Paresia , Mutación/genética , Proteínas Musculares/genética
14.
J Mol Histol ; 54(4): 405-413, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358754

RESUMEN

Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of ß-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Ratones , Animales , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Músculo Esquelético/fisiología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Ratones Noqueados
15.
Hum Mol Genet ; 32(15): 2502-2510, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37216648

RESUMEN

Limb-girdle muscular dystrophy R7 (LGMDR7) is an autosomal recessive hereditary muscular dystrophy caused by mutations in titin-cap (TCAP). Here, we summarized the clinical characteristics and TCAP mutations in a Chinese cohort of 30 patients with LGMDR7. The onset age of Chinese patients was 19.89 ± 6.70 years old, which is later than European and South Asian patients (P < 0.05). Clinically speaking, 20.0% of patients presented with predominant distal weakness, and 73.3% of patients presented with predominant pelvic girdle weakness. Radiological study revealed semitendinosus and magnus adductor were severely involved in Chinese LGMDR7 patients. Rectus femoris, vastus lateralis, vastus intermedius, soleus and tibialis anterior were moderately to severely involved. The most prevalent mutation in this cohort is c.26_33dupAGGTGTCG, while c.165dupG and c.110 + 5G > A are unique in Chinese population as two of the common mutations. Besides, variant c.26_33dupAGGGTGTCG might be a founder mutation in Asian patients. Internal nuclei, lobulated fibers, and scattered rimmed vacuoles were typical morphological changes in Chinese LGMDR7 patients. This is the largest LGMDR7 cohort in the Chinese population and in the world. This article also expands the clinical, pathological, mutational and radiological spectrum of patients with LGMDR7 in China and in the world.


Asunto(s)
Pueblos del Este de Asia , Distrofia Muscular de Cinturas , Adolescente , Adulto , Humanos , Adulto Joven , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Mutación
16.
J Cachexia Sarcopenia Muscle ; 14(3): 1468-1481, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078404

RESUMEN

BACKGROUND: Despite the widespread use of proton density fat fraction (PDFF) measurements with magnetic resonance imaging (MRI) to track disease progression in muscle disorders, it is still unclear how these findings relate to histopathological changes in muscle biopsies of patients with limb-girdle muscular dystrophy autosomal recessive type 12 (LGMDR12). Furthermore, although it is known that LGMDR12 leads to a selective muscle involvement distinct from other muscular dystrophies, the spatial distribution of fat replacement within these muscles is unknown. METHODS: We included 27 adult patients with LGMDR12 and 27 age-matched and sex-matched healthy controls and acquired 6-point Dixon images of the thighs and T1 and short tau inversion recovery (STIR) MR images of the whole body. In 16 patients and 15 controls, we performed three muscle biopsies, one in the semimembranosus, vastus lateralis, and rectus femoris muscles, which are severely, intermediately, and mildly affected in LGMDR12, respectively. We correlated the PDFF to the fat percentage measured on biopsies of the corresponding muscles, as well as to the Rochester histopathology grading scale. RESULTS: In patients, we demonstrated a strong correlation of PDFF on MRI and muscle biopsy fat percentage for the semimembranosus (r = 0.85, P < 0.001) and vastus lateralis (r = 0.68, P = 0.005). We found similar results for the correlation between PDFF and the Rochester histopathology grading scale. Out of the five patients with inflammatory changes on muscle biopsy, three showed STIR hyperintensities in the corresponding muscle on MRI. By modelling the PDFF on MRI for 18 thigh muscles from origin to insertion, we observed a significantly inhomogeneous proximo-distal distribution of fat replacement in all thigh muscles of patients with LGMDR12 (P < 0.001), and different patterns of fat replacement within each of the muscles. CONCLUSIONS: We showed a strong correlation of fat fraction on MRI and fat percentage on muscle biopsy for diseased muscles and validated the use of Dixon fat fraction imaging as an outcome measure in LGMDR12. The inhomogeneous fat replacement within thigh muscles on imaging underlines the risk of analysing only samples of muscles instead of the entire muscles, which has important implications for clinical trials.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofias Musculares/patología , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/patología , Masculino , Femenino
17.
Neuromuscul Disord ; 33(5): 432-439, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37104941

RESUMEN

Recessive pathogenic variants in POPDC3 have recently been associated with the rare limb-girdle muscular dystrophy (LGMD) subtype LGMDR26. We studied three siblings and a distantly related individual with a skeletal muscle disorder, harboring the c.486-6T>A splice site variant in POPDC3 in homozygosity. Immunohistochemistry, western blot, and mRNA experiments on patients' skeletal muscle tissue as well as on patients' myoblasts were performed to study the pathogenicity of the predicted loss of function mechanism of the variant. Patients mainly presented with invalidating myalgia and exercise intolerance and limited to no segmentary muscle weakness. CK levels were markedly elevated in all patients. A loss of function mechanism at the RNA level was shown (r.485_486insauag, p.Ile163*). Muscle biopsies performed in three out of four patients showed non-specific myopathic features with a marked type 2 fiber predominance and the presence of a large number of severely atrophic fibers with pyknotic nuclear clumps. We show that skeletal muscle symptoms in LGMDR26 may range from an overt late juvenile to young adult-onset limb-girdle muscular dystrophy phenotype to severe exercise intolerance and myalgia, with consistently highly elevated CK levels. We further prove a clear LOF mechanism of POPDC3 in this rare disorder.


Asunto(s)
Enfermedades Musculares , Distrofia Muscular de Cinturas , Humanos , Mialgia/patología , Distrofia Muscular de Cinturas/patología , Músculo Esquelético/patología , Enfermedades Musculares/patología , Fenotipo , Mutación , Proteínas Musculares/genética , Moléculas de Adhesión Celular/genética
18.
Acta Neuropathol Commun ; 11(1): 15, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653852

RESUMEN

Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.


Asunto(s)
Proteínas de la Membrana , Distrofia Muscular de Cinturas , Ratones , Animales , Disferlina/genética , Disferlina/metabolismo , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Calpaína/genética , Proteómica , Distrofia Muscular de Cinturas/patología , Músculo Esquelético/patología , Exones/genética
19.
Methods Mol Biol ; 2587: 467-478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36401044

RESUMEN

In vivo testing of glucocorticoid steroids in dystrophic mice offers important insights in benefits and risks of those drugs in the pathological context of muscular dystrophy. Frequency of dosing changes the spectrum of glucocorticoid effects on muscle and metabolic homeostasis. Here, we describe a combination of non-invasive and invasive methods to quantitatively discriminate the specific effects of intermittent (once-weekly) versus mainstay (once-daily) regimens on muscle fibrosis, muscle function, and metabolic homeostasis in murine models of Duchenne and limb-girdle muscular dystrophies.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofia Muscular de Duchenne , Ratones , Animales , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/patología
20.
Int J Dev Neurosci ; 83(1): 23-30, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36217604

RESUMEN

OBJECTIVE: Mutations in protein O-mannosyltransferase 2 (POMT2) (MIM#607439) have been identified in severe congenital muscular dystrophy such as Walker-Warburg syndrome (WWS) and milder limb-girdle muscular dystrophy type 2N (LGMD2N). The aim of this study is to investigate the genetic causes in patients with LGMD2N. METHODS: Three patients diagnosed with mild limb-girdle muscular dystrophy were recruited. The genetically pathogenic variant was identified by clinical exome sequencing, and healthy controls were verified by Sanger sequencing. RESULTS: Novel compound heterozygous mutations c.800A > G and c.1074_1075delinsAT of POMT2 were revealed in one affected individual by clinical exome sequencing. There was no report of these two variants and predicted to be highly damaging to the function of the POMT2. CONCLUSION: The novel variants extend the spectrum of POMT2 mutations, which promotes the prognostic value of testing for POMT2 mutations in patients with LGMD2N.


Asunto(s)
Distrofia Muscular de Cinturas , Humanos , Secuenciación del Exoma , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Mutación/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA