Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.388
Filtrar
1.
Physiol Rep ; 12(17): e70026, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245804

RESUMEN

Pulmonary surfactant serves as a barrier to respiratory epithelium but can also regulate airway smooth muscle (ASM) tone. Surfactant (SF) relaxes contracted ASM, similar to ß2-agonists, anticholinergics, nitric oxide, and prostanoids. The exact mechanism of surfactant relaxation and whether surfactant relaxes hyperresponsive ASM remains unknown. Based on previous research, relaxation requires an intact epithelium and prostanoid synthesis. We sought to examine the mechanisms by which surfactant causes ASM relaxation. Organ bath measurements of isometric tension of ASM of guinea pigs in response to exogenous surfactant revealed that surfactant reduces tension of healthy and hyperresponsive tracheal tissue. The relaxant effect of surfactant was reduced if prostanoid synthesis was inhibited and/or if prostaglandin E2-related EP2 receptors were antagonized. Atomic force microscopy revealed that human ASM cells stiffen during contraction and soften during relaxation. Surfactant softened ASM cells, similarly to the known bronchodilator prostaglandin E2 (PGE2) and the cell softening was abolished when EP4 receptors for PGE2 were antagonized. Elevated levels of PGE2 were found in cultures of normal human bronchial epithelial cells exposed to pulmonary surfactant. We conclude that prostaglandin E2 and its EP2 and EP4 receptors are likely involved in the relaxant effect of pulmonary surfactant in airways.


Asunto(s)
Dinoprostona , Relajación Muscular , Músculo Liso , Surfactantes Pulmonares , Tráquea , Cobayas , Animales , Humanos , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Relajación Muscular/efectos de los fármacos , Dinoprostona/farmacología , Dinoprostona/metabolismo , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacología , Tráquea/efectos de los fármacos , Tráquea/fisiología , Tráquea/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Células Cultivadas , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
2.
Prostaglandins Other Lipid Mediat ; 174: 106880, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39121944

RESUMEN

Previous studies have shown prostaglandin E2 (PGE2) produced a marked increase in calcitonin secretion in human C-cells derived from medullary thyroid carcinoma. However, it's unclear whether PGE2 can increase the growth of C cells. In this study, we use TT cells as a C cell model to investigate the effect of PGE2 on the growth of C cells. The results revealed that both PGE2 and arachidonic acid (AA) significantly increased the count of TT cells, whereas indomethacin and Dup697 reduced this count. Notably, an increase in the level of AA was associated with an increase in the number of proliferating TT cells, indicating a dose-response relationship. PGE2 and its receptor agonists (sulprostone and butaprost) enhanced the proliferation of TT cells. By contrast, 17-phenyl-trinor-PGE2 exerted no significant effect on TT cell proliferation, whereas L161982 suppressed it. The positive effect of AA on TT cell proliferation was inhibited by indomethacin, NS398, Dup697 (complete inhibition), and SC560. Both PGE2 and AA increased the level of p-STAT5a. The positive effect of AA on p-STAT5a was completely inhibited by Dup697 but not indomethacin, NS398, or SC560. Treatment with indomethacin or Dup697 alone reduced the level of STAT5a in TT cells. AA increased the level of STAT5a, but this effect was inhibited by indomethacin, NS398, and Dup697. Overall, this study confirms the effect of PGE2 on the proliferation of TT cells. This effect is likely mediated through EP2, EP3, and EP4 receptors and associated with an increase in p-STAT5a level within TT cells.


Asunto(s)
Ácido Araquidónico , Proliferación Celular , Supervivencia Celular , Dinoprostona , Indometacina , Dinoprostona/farmacología , Dinoprostona/metabolismo , Dinoprostona/análogos & derivados , Humanos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Indometacina/farmacología , Ácido Araquidónico/farmacología , Línea Celular Tumoral , División Celular/efectos de los fármacos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Factor de Transcripción STAT5/metabolismo , Alprostadil/farmacología , Alprostadil/análogos & derivados
3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119810, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128596

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) constituting approximately 84 % of all lung cancer cases. The role of inflammation in the initiation and progression of NSCLC tumors has been the focus of extensive research. Among the various inflammatory mediators, prostaglandin E2 (PGE2) plays a pivotal role in promoting the aggressiveness of epithelial tumors through multiple mechanisms, including the stimulation of growth, evasion of apoptosis, invasion, and induction of angiogenesis. The Extracellular signal-Regulated Kinase 5 (ERK5), the last discovered member among conventional mitogen-activated protein kinases (MAPK), is implicated in cancer-associated inflammation. In this study, we explored whether ERK5 is involved in the process of tumorigenesis induced by PGE2. Using A549 and PC9 NSCLC cell lines, we found that PGE2 triggers the activation of ERK5 via the EP1 receptor. Moreover, both genetic and pharmacological inhibition of ERK5 reduced PGE2-induced proliferation, migration, invasion and stemness of A549 and PC9 cells, indicating that ERK5 plays a critical role in PGE2-induced tumorigenesis. In summary, our study underscores the pivotal role of the PGE2/EP1/ERK5 axis in driving the malignancy of NSCLC cells in vitro. Targeting this axis holds promise as a potential avenue for developing novel therapeutic strategies aimed at controlling the advancement of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Dinoprostona , Neoplasias Pulmonares , Proteína Quinasa 7 Activada por Mitógenos , Humanos , Dinoprostona/metabolismo , Dinoprostona/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Movimiento Celular/efectos de los fármacos , Células A549 , Línea Celular Tumoral , Carcinogénesis/genética , Carcinogénesis/metabolismo , Fenotipo
4.
Turk J Med Sci ; 54(3): 598-606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049997

RESUMEN

Background/aim: Our recent study revealed that the expression of lipoxygenase (LOX) and cyclooxygenase (COX) enzymes in the hypothalamus is activated by nesfatin-1, leading to the liberation of leukotrienes and prostaglandins (PG), respectively. Moreover, our prior report explained that intracerebroventricular (ICV) nesfatin-1 treatment triggers cardiovascular responses mediated by central LOX and COX enzymes. Building upon our prior reports, the present investigation sought to clarify the role of cardiovascularly active central COX products, such as thromboxane (TX) A2, PGF2α, PGE, and PGD, in orchestrating nesfatin-1-evoked reactions in mean arterial pressure (MAP) and heart rate (HR). Materials and methods: The Sprague Dawley rats, which had guide cannula in the lateral ventricle for intracerebroventricular (ICV) injections and catheter in arteria femoralis for monitoring MAP and HR, were underwent central pretreatment with furegrelate (the TXA2 synthase inhibitor), PGF2α-dimethylamine (PGF2α-DA, the PGF2α receptor antagonist), or AH6809 (the PGE and PGD receptor antagonist), 5 min prior to ICV nesfatin-1 administration. The cardiovascular parameters were observed and recorded for 60 min posttreatment. Results: Nesfatin-1 induced cardiovascular responses in rats leading to pressor effect in MAP, and tachycardia following bradycardia in HR. Interestingly, ICV furegrelate, PGF2α-DA, or AH6809 pretreatment partially mitigated the cardiovascular effects revealed by nesfatin-1. Conclusion: The findings illuminate the role of nesfatin-1 in modulating MAP and HR through the central activation of specifically TXA2, PGF2α, PGE, and PGD from COX metabolites. Additionally, the study may also suggest the potential involvement of other central COX or LOX metabolites beyond these COX metabolites in mediating the cardiovascular effects produced by nesfatin-1.


Asunto(s)
Nucleobindinas , Ratas Sprague-Dawley , Tromboxano A2 , Animales , Nucleobindinas/farmacología , Ratas , Masculino , Tromboxano A2/metabolismo , Dinoprost/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Dinoprostona/farmacología , Dinoprostona/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Presión Sanguínea/efectos de los fármacos
5.
Sci Rep ; 14(1): 17360, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075089

RESUMEN

Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.


Asunto(s)
Anoctamina-1 , Axones , Dinoprostona , Ganglios Espinales , Canal de Sodio Activado por Voltaje NAV1.8 , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Animales , Dinoprostona/farmacología , Dinoprostona/metabolismo , Axones/metabolismo , Axones/efectos de los fármacos , Axones/fisiología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ratas , Anoctamina-1/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Ratas Sprague-Dawley , Células Cultivadas , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , AMP Cíclico/metabolismo
6.
Pflugers Arch ; 476(8): 1209-1219, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829391

RESUMEN

The intestinal epithelium is covered by mucus that protects the tissue from the luminal content. Studies have shown that anion secretion via the cystic fibrosis conductance regulator (Cftr) regulates mucus formation in the small intestine. However, mechanisms regulating mucus formation in the colon are less understood. The aim of this study was to explore the role of anion transport in the regulation of mucus formation during steady state and in response to carbamylcholine (CCh) and prostaglandin E2 (PGE2). The broad-spectrum anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), CftrdF508 (CF) mice, and the slc26a3 inhibitor SLC26A3-IN-2 were used to inhibit anion transport. In the distal colon, steady-state mucus expansion was reduced by SLC26A3-IN-2 and normal in CF mice. PGE2 stimulated mucus expansion without de novo mucus release in wild type (WT) and CF colon via slc26a3 sensitive mechanisms, while CCh induced de novo mucus secretion in WT but not in CF colon. However, when added simultaneously, CCh and PGE2 stimulated de novo mucus secretion in the CF colon via DIDS-sensitive pathways. A similar response was observed in CF ileum that responded to CCh and PGE2 with DIDS-sensitive de novo mucus secretion. In conclusion, this study suggests that slc26a3 regulates colonic mucus expansion, while Cftr regulates CCh-induced de novo mucus secretion from ileal and distal colon crypts. Furthermore, these findings demonstrate that in the absence of a functional Cftr channel, parallel stimulation with CCh and PGE2 activates additional anion transport processes that help release mucus from intestinal goblet cells.


Asunto(s)
Carbacol , Colon , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Dinoprostona , Moco , Transportadores de Sulfato , Animales , Dinoprostona/metabolismo , Dinoprostona/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Ratones , Colon/metabolismo , Colon/efectos de los fármacos , Moco/metabolismo , Moco/efectos de los fármacos , Carbacol/farmacología , Ratones Endogámicos C57BL , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Antiportadores/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Masculino
7.
Stem Cells Dev ; 33(17-18): 496-504, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943285

RESUMEN

Prostaglandin E2 (PGE2) has recently gained attention in the field of regenerative medicine because of the beneficial effects of this molecule on stem cell proliferation and migration. Furthermore, PGE2 has the ability to mitigate immune rejection and fibrosis. In the colon and kidney, PGE2 induces YAP1, a transcription factor critical for cardiac regeneration. Establishing a similar connection in stem cells that can be transplanted in the heart could lead to the development of more effective therapeutics. In this report, we identify the effects of PGE2 on neonatal Islet-1+ stem cells. These stem cells synthesize PGE2, which functions by stimulating the transcription of the extracellular matrix protein Agrin. Agrin upregulates YAP1. Consequently, both YAP1 and Agrin are induced by PGE2 treatment. Our study shows that PGE2 upregulated the expression of both YAP1 and Agrin in Islet-1+ stem cells through the EP4 receptor and stimulated proliferation using the same mechanisms. PGE2 administration further elevated the expression of stemness markers and the matrix metalloproteinase MMP9, a key regulator of remodeling in the extracellular matrix post-injury. The expression of PGE2 in neonatal Islet-1+ cells is a factor which contributes to improving the functional efficacy of these cells for cardiac repair.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Agrina , Proliferación Celular , Dinoprostona , Subtipo EP4 de Receptores de Prostaglandina E , Células Madre , Proteínas Señalizadoras YAP , Proteínas Señalizadoras YAP/metabolismo , Animales , Dinoprostona/farmacología , Dinoprostona/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Agrina/metabolismo , Agrina/farmacología , Células Madre/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Proliferación Celular/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales Recién Nacidos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética
8.
BMC Urol ; 24(1): 117, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851678

RESUMEN

BACKGROUND: This study investigated the relaxation effect of PGE2 on the ureter and its role in promoting calculi expulsion following calculi development. METHODS: By using immunofluorescence and Western blot, we were able to locate EP receptors in the ureter. In vitro experiments assessed the impact of PGE2, receptor antagonists, and agonists on ureteral relaxation rate. We constructed a model of ureteral calculi with flowable resin and collected ureteral tissue from postoperative side of the ureter after obstruction surgery. Western blot analysis was used to determine the protein expression levels of EP receptors and the PGE2 terminal synthase mPGES-1. Additionally, PGE2 was added to smooth muscle cells to observe downstream cAMP and PKA changes. RESULTS: The expression of EP2 and EP4 proteins in ureteral smooth muscle was verified by Western blot analysis. According to immunofluorescence, EP2 was primarily found on the cell membrane, while EP4 was found in the nucleus. In vitro, PGE2 induced concentration-dependent ureteral relaxation. Maximum diastolic rate was 70.94 ± 4.57% at a concentration of 30µM. EP2 antagonists hindered this effect, while EP4 antagonists did not. Obstructed ureters exhibited elevated mPGES-1 and EP2 protein expression (P < 0.01). Smooth muscle cells treated with PGE2 displayed increased cAMP and phosphorylated PKA. CONCLUSIONS: PGE2 binding to EP2 induces ureteral relaxation through the cAMP-PKA pathway. This will provide a new theoretical basis for the development of new therapeutic approaches for the use of PGE2 in the treatment of ureteral stones.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Dinoprostona , Subtipo EP2 de Receptores de Prostaglandina E , Uréter , Cálculos Ureterales , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Uréter/metabolismo , Transducción de Señal/fisiología , Masculino , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología
9.
Mol Pain ; 20: 17448069241260348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828868

RESUMEN

Hyperalgesic priming is a preclinical model of the transition from acute to chronic pain characterized by a leftward shift in the dose-response curve for and marked prolongation of prostaglandin E2 (PGE2)-induced mechanical hyperalgesia, in vivo. In vitro, priming in nociceptors is characterized by a leftward shift in the concentration dependence for PGE2-induced nociceptor sensitization. In the present in vitro study we tested the hypothesis that a mu-opioid receptor (MOR) agonist opioid analgesic, morphine, can produce priming by its direct action on nociceptors. We report that treatment of nociceptors with morphine, in vitro, produces a leftward shift in the concentration dependence for PGE2-induced nociceptor sensitization. Our findings support the suggestion that opioids act directly on nociceptors to induce priming.


Asunto(s)
Dinoprostona , Morfina , Nociceptores , Morfina/farmacología , Animales , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacología , Masculino , Ratas , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga
10.
Acta Pharmacol Sin ; 45(9): 1832-1847, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38702500

RESUMEN

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.


Asunto(s)
Regulación de la Temperatura Corporal , Dinoprostona , Fiebre , Núcleos Parabraquiales , Área Preóptica , Subtipo EP3 de Receptores de Prostaglandina E , Animales , Masculino , Ratas , Regulación de la Temperatura Corporal/efectos de los fármacos , Dinoprostona/farmacología , Fiebre/inducido químicamente , Fiebre/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/fisiología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Ratas Sprague-Dawley , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo
11.
Shanghai Kou Qiang Yi Xue ; 33(1): 85-89, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583031

RESUMEN

PURPOSE: To study the relationship between the expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) and the osteogenic activity and oxygen level of alveolar bone. METHODS: The alveolar bones of 56 patients with chronic periodontitis who received dental treatment from March 2021 to March 2023 were collected as the experimental (periodontitis) group, and the healthy alveolar bones of 53 patients who received dental treatment during the same period were selected as the control group. The osteoblasts were cultured by tissue block culture, and modified Kaplow's alkaline phosphatase (ALP) staining was used to identify the cells. COX-2, PGE2 and osteoclastogenesis inhibitory factor (OPG) receptor activator of nuclear factor-κb ligand (RANKL) and other indicators were determined by ELISA. PGE2, COX-2, OPG, internal oxygen level, ALP, RANKL and their correlation were compared between the two groups. Statistical analysis was performed with SPSS 27.0 software package. RESULTS: PGE2, COX-2 and RANKL in periodontitis group were significantly higher than those in the control group, but OPG, internal oxygen level and ALP were significantly lower than those in the control group (P<0.05). PGE2 and COX2 were highly positively correlated with OPG, internal oxygen level and ALP, but were highly positively correlated with RANKL(P<0.05). CONCLUSIONS: The expression of PGE2 and COX-2 is highly negatively correlated with ALP and oxygen levels. Clinical treatment may consider increasing oxygen levels, increasing oxygen partial pressure, and regulating ALP levels by drugs, so as to change the inflammatory condition of periodontitis or other dental diseases.


Asunto(s)
Dinoprostona , Periodontitis , Humanos , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Osteoblastos/metabolismo , Osteogénesis , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo
12.
Circ Heart Fail ; 17(4): e011089, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525608

RESUMEN

BACKGROUND: Prostaglandin E2 acts through 4 G-protein-coupled receptors (EP1-EP4). We previously reported that activation of the EP3 receptor reduces cardiac contractility, and its expression increases after a myocardial infarction (MI), mediating the reduction in cardiac function. In contrast, cardiac overexpression of the EP4 receptor in MI substantially improves cardiac function. Moreover, we recently reported that mice overexpressing EP3 have heart failure under basal conditions and worsened cardiac function after MI. Thus, the deleterious effects of the prostaglandin E2 EP receptors in the heart are mediated via its EP3 receptor. We, therefore, hypothesized that cardiomyocyte-specific knockout (CM-EP3 KO) or antagonism of the EP3 receptor protects the heart after MI. METHODS: To test our hypothesis, we made the novel CM-EP3 KO mouse and subjected CM-EP3 KO or controls to sham or MI surgery for 2 weeks. In separate experiments, C57BL/6 mice were subjected to 2 weeks of MI and treated with either the EP3 antagonist L798 106 or vehicle starting 3 days post-MI. RESULTS: CM-EP3 KO significantly prevented a decline in cardiac function after MI compared with WT animals and prevented an increase in hypertrophy and fibrosis. Excitingly, mice treated with L798 106 3 days after MI had significantly better cardiac function compared with vehicle-treated mice. CONCLUSIONS: Altogether, these data suggest that EP3 may play a direct role in regulating cardiac function, and pharmaceutical targeting of the EP3 receptor may be a therapeutic option in the treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Animales , Dinoprostona/metabolismo , Dinoprostona/farmacología , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Eliminación de Gen , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/prevención & control , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/genética , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo
13.
Int Ophthalmol ; 44(1): 158, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530532

RESUMEN

PURPOSE: Rhegmatogenous retinal detachment is a severe vision-threatening complication that can result into proliferative vitreoretinopathy (PVR) and re-detachment of the retina if recovery from surgery fails. Inflammation and changes in retinal pigment epithelial (RPE) cells are important contributors to the disease. Here, we studied the effects of simvastatin and amfenac on ARPE-19 cells under inflammatory conditions. METHODS: ARPE-19 cells were pre-treated with simvastatin and/or amfenac for 24 h after which interleukin (IL)-1α or IL-1ß was added for another 24 h. After treatments, lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) processing, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity, prostaglandin E2 (PGE2) level, and extracellular levels of IL-6, IL-8, monocytic chemoattractant protein (MCP-1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor, as well as the production of reactive oxygen species (ROS) were determined. RESULTS: Pre-treatment of human ARPE-19 cells with simvastatin reduced the production of IL-6, IL-8, and MCP-1 cytokines, PGE2 levels, as well as NF-κB activity upon inflammation, whereas amfenac reduced IL-8 and MCP-1 release but increased ROS production. Together, simvastatin and amfenac reduced the release of IL-6, IL-8, and MCP-1 cytokines as well as NF-κB activity but increased the VEGF release upon inflammation in ARPE-19 cells. CONCLUSION: Our present study supports the anti-inflammatory capacity of simvastatin as pre-treatment against inflammation in human RPE cells, and the addition of amfenac complements the effect. The early modulation of local conditions in the retina can prevent inflammation induced PVR formation and subsequent retinal re-detachment.


Asunto(s)
Fenilacetatos , Desprendimiento de Retina , Vitreorretinopatía Proliferativa , Humanos , Vitreorretinopatía Proliferativa/metabolismo , Desprendimiento de Retina/cirugía , FN-kappa B/metabolismo , FN-kappa B/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Epitelio Pigmentado de la Retina , Simvastatina/metabolismo , Simvastatina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Citocinas/metabolismo , Antiinflamatorios , Inflamación/metabolismo
14.
J Anesth ; 38(2): 215-221, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38300361

RESUMEN

OBJECTIVE: To clarify whether the duration from cervical ripening induction to labor onset is prolonged when epidural analgesia is administered following application of dinoprostone vaginal inserts vs. cervical ripening balloon. METHODS: This retrospective study included mothers with singleton deliveries at a single center between 2020-2021. Nulliparous women who underwent labor induction and requested epidural analgesia during labor after 37 weeks of gestation were included. The duration from cervical ripening induction to labor onset was compared between women using a dinoprostone vaginal insert and those using a cervical ripening balloon and between women who received epidural analgesia before and after labor onset. RESULTS: In the dinoprostone vaginal insert group, the duration was significantly shorter in the subgroup that received epidural analgesia after labor onset (estimated median, 545 [95% confidence interval: 229-861 min]) than the subgroup that received it before labor onset (estimated median, 1,570 [95% confidence interval: 1,226-1,914] min, p = 0.004). However, in the cervical ripening balloon group, the difference between subgroups was not significant. The length of labor among the groups was also not significantly different. CONCLUSION: Epidural analgesia as labor relaxant adversely affected the progression of uterine cervical ripening when dinoprostone vaginal inserts were used, whereas it did not affect cervical ripening when a mechanical cervical dilatation balloon was used. The present results are significant for choosing the appropriate ripening method.


Asunto(s)
Analgesia Epidural , Oxitócicos , Embarazo , Femenino , Humanos , Dinoprostona/farmacología , Estudios Retrospectivos , Maduración Cervical , Trabajo de Parto Inducido/métodos
15.
Int Immunopharmacol ; 128: 111557, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266451

RESUMEN

BACKGROUND AND PURPOSE: Lung macrophages (LMs) are critically involved in respiratory diseases. The primary objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 (PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and CCL22) by human LMs. EXPERIMENTAL APPROACH: Primary macrophages isolated from resected human lungs were incubated with NECA, PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the culture supernatants were measured using ELISAs and enzyme immunoassays. KEY RESULTS: Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phosphodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not modulate their IL-13-induced production, regardless of the presence or absence of PGE2. CONCLUSIONS: NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced release of tumor necrosis factor alpha and M1 chemokines in human LMs.


Asunto(s)
Adenosina , Aminopiridinas , Benzamidas , Dinoprostona , Humanos , Dinoprostona/farmacología , Adenosina/farmacología , Interleucina-4/farmacología , Interleucina-13/farmacología , Adenosina-5'-(N-etilcarboxamida)/farmacología , Quimiocinas , Macrófagos , Factor de Necrosis Tumoral alfa/farmacología , Quimiocina CCL17 , Pulmón , Células Cultivadas , Ciclopropanos
16.
J Obstet Gynaecol Res ; 50(1): 40-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37821098

RESUMEN

OBJECTIVE: To investigate the predictive value of obstetric findings when using dinoprostone (prostaglandin E2 [PGE2]) vaginal inserts for cervical ripening, and to assess the optimal cervical-ripening method between PGE2 vaginal insert and/or cervical dilators. METHODS: This prospective observational study enrolled pregnant women who underwent cervical ripening for labor induction in 37-41 week' gestation in 2020. In evaluation 1, optimal obstetric findings predictive of rapid cervical ripening using PGE2 were assessed. In evaluation 2, the duration from PGE2 administration to labor onset and perinatal outcomes were compared between cases in which only PGE2 was used and cases that were treated with PGE2 after mechanical cervical dilators (Dilapan®) for extremely immature cervical ripening (uterine cervical os <2 cm). RESULTS: In evaluation 1, uterine dilatation before the use of a PGE2 vaginal insert was mostly correlated with the time from PGE2 administration to labor onset (r = -0.428, p < 0.001). When the uterine cervical os dilatation was ≥2 cm, a shorter time-to-labor onset was found. In addition, os dilatation, effacement, and station at the time of PGE2 vaginal insert removal also significantly progressed. In evaluation 2, the median duration from PGE2 administration to labor onset was 1740 min in cases where only PGE2 was used, and 610 min in those where PGE2 was used after mechanical cervical dilators (p = 0.011). CONCLUSION: PGE2 vaginal inserts are relatively effective when the uterine cervical os is ≥2 cm in diameter. However, in cases of extremely immature cervical-ripening, it was feasible to use PGE2 vaginal inserts before mechanical cervical dilatation.


Asunto(s)
Dinoprostona , Oxitócicos , Femenino , Embarazo , Humanos , Dinoprostona/farmacología , Oxitócicos/farmacología , Maduración Cervical , Preparaciones de Acción Retardada , Japón , Trabajo de Parto Inducido/métodos , Administración Intravaginal
17.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37952941

RESUMEN

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Asunto(s)
Calcio , Dinoprostona , Animales , Femenino , Masculino , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Dinoprostona/farmacología , Dinoprostona/metabolismo , Adyuvante de Freund/toxicidad , Adyuvante de Freund/metabolismo , Ganglios Espinales/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dolor
18.
J Adv Res ; 58: 79-91, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37169220

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA) is a systemic autoimmune disease with limited treatment success, characterized by chronic inflammation and progressive cartilage and bone destruction. Accumulating evidence has shown that neutrophil extracellular traps (NETs) released by activated neutrophils are important for initiating and perpetuating synovial inflammation and thereby could be a promising therapeutic target for RA. K/B × N serum transfer-induced arthritis (STIA) is a rapidly developed joint inflammatory model that somehow mimics the inflammatory response in patients with RA. Human gingival-derived mesenchymal stem cells (GMSCs) have been previously shown to possess immunosuppressive effects in arthritis and humanized animal models. However, it is unknown whether GMSCs can manage neutrophils in autoimmune arthritis. OBJECTIVES: To evaluate whether infusion of GMSCs can alleviate RA by regulating neutrophils and NETs formation. If this is so, we will explore the underlying mechanism(s) in an animal model of inflammatory arthritis. METHODS: The effects of GMSCs on RA were assessed by comparing the symptoms of the K/B × N serum transfer-induced arthritis (STIA) model administered either with GMSCs or with control cells. Phenotypes examined included clinical scores, rear ankle thickness, paw swelling, inflammation, synovial cell proliferation, and immune cell frequency. The regulation of GMSCs on NETs was examined through immunofluorescence and immunoblotting in GMSCs-infused STIA mice and in an in vitro co-culture system of neutrophils with GMSCs. The molecular mechanism(s) by which GMSCs regulate NETs was explored both in vitro and in vivo by silencing experiments. RESULTS: We found in this study that adoptive transfer of GMSCs into STIA mice significantly ameliorated experimental arthritis and reduced neutrophil infiltration and NET formation. In vitro studies also showed that GMSCs inhibited the generation of NETs in neutrophils. Subsequent investigations revealed that GMSCs secreted prostaglandin E2 (PGE2) to activate protein kinase A (PKA), which ultimately inhibited the downstream extracellular signal-regulated kinase (ERK) pathway that is essential for NET formation. CONCLUSION: Our results demonstrate that infusion of GMSCs can ameliorate inflammatory arthritis mainly by suppressing NET formation via the PGE2-PKA-ERK signaling pathway. These findings further support the notion that the manipulation of GMSCs is a promising stem cell-based therapy for patients with RA and other autoimmune and inflammatory diseases.


Asunto(s)
Artritis Reumatoide , Trampas Extracelulares , Humanos , Animales , Ratones , Trampas Extracelulares/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Dinoprostona/uso terapéutico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Inflamación/metabolismo
19.
Pestic Biochem Physiol ; 197: 105693, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072548

RESUMEN

Prostaglandins (PGs) mediates the immune response of insects to multiple stimuli. Mammalian cyclooxygenase (COXs) is a key enzyme in the synthesis of PGs, and peroxinectin (Pxt) may have similar functions in some sequenced insect genomes. As a representative of Lepidoptera, the silkworm also contains PGs, but its synthetic pathway is not clear. We cloned a full-length cDNA encoding a Pxt, designated as BmPxt1, from silkworm. Sequence alignment analysis showed that the protein encoded by BmPxt1 has a conserved domain similar to Pxts, and its catalytic site is shared with the Pxt of Manduca sexta, which also produces PGs. The expression of BmPxt1 gene was the highest in the hemocytes and was induced by Nuclear Polyhedrosis Virus (NPV) challenge in the detected tissues. Moreover, we found that dsPxt1 treatment deficiency down-regulated BmPxt1 transcript levels and efficiently inhibiting hemocyte-spreading and nodule formation in silkworm. Hemocyte-spreading, nodule formation, phenoloxidase (PO) and AMP genes (attacin, defencin and moricin) were also inhibited by aspirin, a COX inhibitor. Treatment by PGE2 but not arachidonic acid (AA) rescued the immunosuppression; PGs concentrations was also inhibited by aspirin. PGE2, but not AA, treatment rescued the PGs concentrations. The COX inhibitor, aspirin, impaired the innate immune response including nodulation, encapsulation, and melanization in silkworm, while PGE2, but not arachidonic acid (AA), partially reversed these effects of aspirin. Recombinant BmsPxt1 significantly induced PO activation in larvae hemolymph, PGs concentrations and encapsulation of agarose beads. Injection of recombinant BmsPxt1 into larvae resulted in increased transcript levels of AMP genes. Our results confirmed that BmPxt1 was involved in the synthesis of PGs in the innate immune response of silkworm larvae, and provided new information for the role of BmsPxt1 secreted by silkworm in activating PO and antimicrobial peptides.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Bombyx/metabolismo , Dinoprostona/farmacología , Dinoprostona/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Prostaglandinas/metabolismo , Monofenol Monooxigenasa/metabolismo , Larva/metabolismo , Inmunidad , Aspirina/metabolismo , Mamíferos/metabolismo
20.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069269

RESUMEN

Caveolin-1 (CAV1) is a membrane-bound protein that suppresses tumor development yet also promotes metastasis. E-cadherin is important in CAV1-dependent tumor suppression and prevents CAV1-enhanced lung metastasis. Here, we used murine B16F10 and human A375 melanoma cells with low levels of endogenous CAV1 and E-cadherin to unravel how co-expression of E-cadherin modulates CAV1 function in vitro and in vivo in WT C57BL/6 or Rag-/- immunodeficient mice and how a pro-inflammatory environment generated by treating cells with prostaglandin E2 (PGE2) alters CAV1 function in the presence of E-cadherin. CAV1 expression augmented migration, invasion, and metastasis of melanoma cells, and these effects were abolished via transient co-expression of E-cadherin. Importantly, exposure of cells to PGE2 reverted the effects of E-cadherin expression and increased CAV1 phosphorylation on tyrosine-14 and metastasis. Moreover, PGE2 administration blocked the ability of the CAV1/E-cadherin complex to prevent tumor formation. Therefore, our results support the notion that PGE2 can override the tumor suppressor potential of the E-cadherin/CAV1 complex and that CAV1 released from the complex is phosphorylated on tyrosine-14 and promotes migration/invasion/metastasis. These observations provide direct evidence showing how a pro-inflammatory environment caused here via PGE2 administration can convert a potent tumor suppressor complex into a promoter of malignant cell behavior.


Asunto(s)
Dinoprostona , Melanoma Experimental , Animales , Humanos , Ratones , Cadherinas/metabolismo , Caveolina 1/metabolismo , Línea Celular Tumoral , Movimiento Celular , Dinoprostona/farmacología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Tirosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA