RESUMEN
Ambient air pollution is a significant environmental risk factor for adverse pregnancy outcomes, including preterm birth. However, the impact of different pollutants across various regions and trimesters of pregnancy has not been fully investigated in Brazil. This study aimed to examine the associations between exposure to PM2.5, NO2, and O3 during different trimesters of pregnancy and the risk of preterm birth across five regions of Brazil. We used logistic regression models to estimate the odds ratios (OR) of preterm birth associated with PM2.5, NO2, and O3 adjusting for potential confounders such as maternal age, education, and socioeconomic status. Our study included over 9.9 million live births from 2001 to 2018, with data obtained from the Ministry of Health in Brazil. On average, for each 1-µg/m3 increase in PM2.5, we estimated a 0.26â¯% (95â¯% CI: 0.08-0.44â¯%) increase in the risk of preterm birth nationally in the first trimester. For NO2, each 1ppb increase was associated with a percentage increase in preterm birth risk of 7.26â¯% (95â¯% CI: 4.77-9.74â¯%) in the first trimester, 8.05â¯% (95â¯% CI: 5.73-10.38â¯%) in the second trimester, and 7.48â¯% (95â¯% CI: 5.25-9.72â¯%) in the third trimester. For O3, each 1ppb increase was associated with a percentage increase in preterm birth risk of 1.24â¯% (95â¯% CI: 0.29-2.18â¯%) in the first trimester, 1.51â¯% (95â¯% CI: 0.60-2.41â¯%) in the second trimester, and 0.72â¯% (95â¯% CI: -0.18-1.62â¯%) in the third trimester. This study highlights the significant impact of ambient air pollution on preterm birth risk in Brazil, with significant regional variations. Our findings underscore the need for targeted public health interventions to mitigate the effects of air pollution on pregnancy outcomes, particularly in the most affected regions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición Materna , Nacimiento Prematuro , Embarazo , Nacimiento Prematuro/epidemiología , Femenino , Brasil/epidemiología , Humanos , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Adulto , Exposición Materna/estadística & datos numéricos , Exposición Materna/efectos adversos , Material Particulado/análisis , Adulto Joven , Ozono/análisis , Dióxido de Nitrógeno/análisisRESUMEN
Low birth weight (LBW) is a global health concern. While it is commonly associated with maternal health and behavior, exposure to ambient air pollution, can also play a role in contributing to LBW. In Brazil, where diverse environmental conditions and regional disparities exist, assessing the impact of ambient air pollution on LBW becomes particularly pertinent. To our knowledge, there is a gap in the existing literature, as no previous study has specifically investigated the relationship between ambient air pollution and LBW nationwide in Brazil. This study aims to fill this gap by examining the association between ambient air pollution and LBW in each trimester of pregnancy across the Brazilian states. In this work, birth data from January 1, 2001, to December 31, 2018 has been used. We utilized logistic regression models to estimate the odds ratio (OR) for low birth weight (LBW) associated with ambient air pollution (PM2.5, NO2, and O3) during each trimester of pregnancy (1st to 3rd trimester) across all 27 Brazilian states in our nationwide case-control study. We adjusted our model for several variables, including ambient temperature, relative humidity, and socioeconomic status (SES) variables at the individual level. We also conducted effect modification analyses by infant sex, mother's age, and the number of prenatal visits. Our study comprises over 10,213,144 birth records nationwide. Of these, 479,204 (4.92%) infants were included as cases of LBW. Our results indicate positive associations between PM2.5 and LBW, mainly in the Southern region. For example, in the state of Santa Catarina (South region), ORs were 1.003 (95% CI: 1.002, 1.004), 1.003 (95% CI: 1.002, 1.004), and 1.005 (95% CI: 1.003, 1.007) for the 1st, 2nd, and 3rd trimesters of exposure, respectively. NO2 had a robust association with LBW in the Northern and Northeastern states, including the state of Amapá (North region, where the Amazon Forest is located) with ORs of 1.377 (95% CI: 1.010, 1.878), 1.390 (95% CI: 1.020, 1.894), and 1.747 (95% CI: 1.297, 2.352) for the 1st, 2nd, and 3rd trimesters of exposure, respectively. Similarly, O3 had a robust association in the North and Midwest states, as observed in the state of Amapá with ORs of 1.033 (95% CI: 1.012, 1.054), and 1.033 (95% CI: 1.013, 1.053) for the 2nd, and 3rd trimesters, respectively. In the stratified analysis, boys were more vulnerable than girls, and the lower number of prenatal visits was associated with higher OR. Our findings are essential to the development of guidelines to prevent maternal exposure and protection of newborns in Brazil. This study provides valuable insights for region-specific strategies to improve maternal and neonatal health.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Recién Nacido de Bajo Peso , Exposición Materna , Material Particulado , Humanos , Brasil , Contaminación del Aire/estadística & datos numéricos , Femenino , Embarazo , Recién Nacido , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Adulto , Exposición Materna/estadística & datos numéricos , Masculino , Estudios de Casos y Controles , Ozono/análisis , Adulto Joven , Oportunidad Relativa , Dióxido de Nitrógeno/análisis , Modelos LogísticosRESUMEN
OBJECTIVE: To evaluate the influence of environmental factors and prematurity relating to juvenile dermatomyositis (JDM), its course and refractoriness to treatment. METHODS: A case-control study with 35 patients followed up at a tertiary hospital and 124 healthy controls, all residents of São Paulo. Patients were classified according to monocyclic, polycyclic or chronic disease courses and refractoriness to treatment. The daily concentrations of pollutants (inhalable particulate matter-PM10, sulfur dioxide-SO2, nitrogen dioxide-NO2, ozone-O3 and carbon monoxide-CO) were provided by the Environmental Company of São Paulo. Data from the population were obtained through a questionnaire. RESULTS: Fifteen patients had monocyclic courses, and 19 polycyclic/chronic courses. Eighteen patients were refractory to treatment. Maternal occupational exposure to inhalable agents (OR = 17.88; IC 95% 2.15-148.16, p = 0.01) and exposure to O3 in the fifth year of life (third tertile > 86.28µg/m3; OR = 6.53, IC95% 1.60-26.77, p = 0.01) were risk factors for JDM in the multivariate logistic regression model. The presence of a factory/quarry at a distance farther than 200 meters from daycare/school (OR = 0.22; IC 95% 0.06-0.77; p = 0.02) was a protective factor in the same analysis. Prematurity, exposure to air pollutants/cigarette smoke/sources of inhalable pollutants in the mother's places of residence and work during the gestational period were not associated with JDM. Prematurity, maternal exposure to occupational pollutants during pregnancy as well as patient's exposure to ground-level pollutants up to the fifth year of life were not associated with disease course and treatment refractoriness. CONCLUSION: Risk factors for JDM were maternal occupational exposure and exposure to O3 in the fifth year of life.
Asunto(s)
Dermatomiositis , Exposición Profesional , Material Particulado , Humanos , Dermatomiositis/etiología , Femenino , Estudios de Casos y Controles , Masculino , Factores de Riesgo , Material Particulado/análisis , Material Particulado/efectos adversos , Niño , Brasil/epidemiología , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Embarazo , Ozono/análisis , Ozono/efectos adversos , Exposición Materna/efectos adversos , Monóxido de Carbono/análisis , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Azufre/análisis , Dióxido de Azufre/efectos adversos , Preescolar , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Modelos Logísticos , Nacimiento PrematuroRESUMEN
Although benthic microbial community offers crucial insights into ecosystem services, they are underestimated for coastal sediment monitoring. Sepetiba Bay (SB) in Rio de Janeiro, Brazil, holds long-term metal pollution. Currently, SB pollution is majorly driven by domestic effluents discharge. Here, functional prediction analysis inferred from 16S rRNA gene metabarcoding data reveals the energy metabolism profiles of benthic microbial assemblages along the metal pollution gradient. Methanogenesis, denitrification, and N2 fixation emerge as dominant pathways in the eutrophic/polluted internal sector (Spearman; p < 0.05). These metabolisms act in the natural attenuation of sedimentary pollutants. The methane (CH4) emission (mcr genes) potential was found more abundant in the internal sector, while the external sector exhibited higher CH4 consumption (pmo + mmo genes) potential. Methanofastidiosales and Exiguobacterium, possibly involved in CH4 emission and associated with CH4 consumers respectively, are the main taxa detected in SB. Furthermore, SB exhibits higher nitrous oxide (N2O) emission potential since the norB/C gene proportions surpass nosZ up to 4 times. Blastopirellula was identified as the main responsible for N2O emissions. This study reveals fundamental contributions of the prokaryotic community to functions involved in greenhouse gas emissions, unveiling their possible use as sentinels for ecosystem monitoring.
Asunto(s)
Monitoreo del Ambiente , Gases de Efecto Invernadero , Contaminantes del Agua , Gases de Efecto Invernadero/análisis , Clima Tropical , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Código de Barras del ADN Taxonómico , Metano/análisis , Brasil , Urbanización , Contaminación del Agua/estadística & datos numéricos , Contaminantes del Agua/análisis , Microbiota , Ascomicetos , Dióxido de Nitrógeno/análisisRESUMEN
BACKGROUND: Recent evidence has linked air pollution with frailty, yet little is known about the role of NO2 in this association. Our aim was to assess the association between frailty and NO2 air concentrations in Mexican older adults. METHODS: We used georeferenced data from the population-based Nutrition and Health Survey in Mexico (NHNS) 2021, representative of national and subnational regions, to measure a frailty index based on 31 health deficits in adults aged 50 and older. Air pollution due to NO2 concentrations was estimated from satellite images validated with data from surface-level stations. Maps were produced using Jensen's Natural break method. The association of frailty and NO2 concentrations was measured using the frailty index (multivariate fractional response logit regression) and a frailty binary variable (frailty index [FI]â ≥0.36, multivariate logit regression). RESULTS: There was a positive and significant association of the frailty index with the NO2 concentrations, adjusting for age, sex, urban and rural area, years of education, socioeconomic status, living arrangement, particulate matter smaller than 2.5 microns, and indoor pollution. For each standard deviation increase in NO2 concentrations measured 10 years before the survey, the odds of being frail were 15% higher, and the frailty index was 14.5% higher. The fraction of frailty attributable to NO2 exposure ranged from 1.8% to 23.5% according to different scenarios. CONCLUSIONS: Frailty was positively associated with exposure to NO2 concentrations. Mapping frailty and its associated factors like NO2 air concentrations can contribute to the design of targeted pro-healthy aging policies.
Asunto(s)
Contaminación del Aire , Fragilidad , Dióxido de Nitrógeno , Humanos , Masculino , Femenino , Anciano , Fragilidad/epidemiología , México/epidemiología , Persona de Mediana Edad , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Anciano de 80 o más Años , Exposición a Riesgos Ambientales/efectos adversos , Anciano Frágil/estadística & datos numéricos , Análisis Espacial , Material Particulado/análisis , Material Particulado/efectos adversosRESUMEN
Morbidity and mortality from several diseases are increased on days of higher ambient air pollution. We carried out a daily time-series analysis with distributive lags to study the influence of short-term air pollution exposure on COVID-19 related hospitalization in Santiago, Chile between March 16 and August 31, 2020. Analyses were adjusted for temporal trends, ambient temperature, and relative humidity, and stratified by age and sex. 26,579 COVID-19 hospitalizations were recorded of which 24,501 were laboratory confirmed. The cumulative percent change in hospitalizations (95% confidence intervals) for an interquartile range increase in air pollutants were: 1.1 (0.2, 2.0) for carbon monoxide (CO), 0.30 (0.0, 0.50) for nitrogen dioxide (NO2), and 2.7 (1.9, 3.0) for particulate matter of diameter ≤ 2.5 microns (PM2.5). Associations with ozone (O3), particulate matter of diameter ≤ 10 microns (PM10) and sulfur dioxide (SO2) were not significant. The observed effect of PM2.5 was significantly greater for females and for those individuals ≥ 65 years old. This study provides evidence that daily increases in air pollution, especially PM2.5, result in a higher observed risk of hospitalization from COVID-19. Females and the elderly may be disproportionately affected.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Hospitalización , Material Particulado , Humanos , COVID-19/epidemiología , Chile/epidemiología , Hospitalización/estadística & datos numéricos , Femenino , Masculino , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Anciano , Persona de Mediana Edad , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Monóxido de Carbono/análisis , SARS-CoV-2/aislamiento & purificación , Dióxido de Nitrógeno/análisis , Ozono/análisis , Dióxido de Azufre/análisis , Adulto JovenRESUMEN
Daily violations of air quality have an impact on urban populations and cause damage to the environment. Thus, the study evaluated the violations of the daily concentrations of SO2, NO2, and PM10, in regions of the State of São Paulo (SSP), based on the National Environment Council (CONAMA) resolution no 491/2018 and the World Health Organization (WHO - World Health Organization. (2016). Ambient air pollution: a global assessment of exposure and burden of disease.) criteria. Daily SO2, NO2, and PM10data from 6 air quality stations operated by Environmental Company of the State of São Paulo CETESB (1996-2011) were organized and submitted to quality control, with data faults (gaps) being identified. The imputation of data via spline proved satisfactory in filling in the gaps (r > 0.7 and low values of Standard Error of the Estimate (SEE) and Root Mean Square Error (RMSE). The cluster analysis (CA) applied to SO2 formed only one homogeneous group (G1). Contrariwise, NO2 and PM10 formed two homogeneous groups (G1 and G2) each. The stations that showed the greatest similarity according to the CA were Cerqueira Cesar and Osasco. The cophenetic matrix generated for SO2 (0.83), NO2 (0.79), and PM10 (0.77) indicate a satisfactory adjustment of the dendrograms. The exploratory statistics applied to groups G1 and G2 point to the high variability of outliers. The WHO criteria are more restrictive than CONAMA regarding daily violations, with a reduction in SO2 and an increase in specific years for NO2 and PM10. Such variability is due to the adoption of public policies by the SSP and the influence of meteorological systems, being confirmed by the Run test that indicated oscillations in the time series, mainly in PM10, and also recognized well-defined biannual cycles.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Brasil , Monitoreo del Ambiente , Contaminación del Aire/análisis , Material Particulado/análisisRESUMEN
Rapidly urbanizing cities in Latin America experience high levels of air pollution which are known risk factors for population health. However, the estimates of long-term exposure to air pollution are scarce in the region. We developed intraurban land use regression (LUR) models to map long-term exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) in the five largest cities in Colombia. We conducted air pollution measurement campaigns using gravimetric PM2.5 and passive NO2 sensors for 2 weeks during both the dry and rainy seasons in 2021 in the cities of Barranquilla, Bucaramanga, Bogotá, Cali, and Medellín, and combined these data with geospatial and meteorological variables. Annual models were developed using multivariable spatial regression models. The city annual PM2.5 mean concentrations measured ranged between 12.32 and 15.99 µg/m3 while NO2 concentrations ranged between 24.92 and 49.15 µg/m3. The PM2.5 annual models explained 82% of the variance (R2) in Medellín, 77% in Bucaramanga, 73% in Barranquilla, 70% in Cali, and 44% in Bogotá. The NO2 models explained 65% of the variance in Bucaramanga, 57% in Medellín, 44% in Cali, 40% in Bogotá, and 30% in Barranquilla. Most of the predictor variables included in the models were a combination of specific land use characteristics and roadway variables. Cross-validation suggests that PM2.5 outperformed NO2 models. The developed models can be used as exposure estimate in epidemiological studies, as input in hybrid models to improve personal exposure assessment, and for policy evaluation.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Ciudades , Dióxido de Nitrógeno/análisis , Colombia , Monitoreo del Ambiente , Contaminación del Aire/análisis , Material Particulado/análisis , Exposición a Riesgos AmbientalesRESUMEN
BACKGROUND: Previous studies found exposure to air pollution leads to exacerbations of asthma in paediatric and adult patients and increases asthma-related emergency hospital admissions (AREHA). METHODS: AREHAs and levels of air pollutants (PM10, PM2.5 and NO2) were obtained from Mexico City for the period 2017-2019. A time-series approach was used to explore the relationship between air pollutants and AREHA. Relative risks of AREHA were estimated using a negative binomial regression in young children (less than 5 years) and adults (greater than 18 years). RESULTS: There was a positive association between AREHA and PM10, PM2.5 and NO2 in adults, which remained after mutual adjustment for these pollutants. The relative risk (RR) of admission in adults increased by 3% (95% CI 1% to 4%) for a 10 µg/m3 increase in PM10, 1% (0.03% to 3%) for a 5 µg/m3 increase in PM2.5 and by 1% (0.06% to 2%) for a 5 µg/m3 increase in NO2. In contrast, in young children, AREHAs were negatively associated with PM10 after adjustment for NO2 (RR 0.97 (0.95 to 0.99) for a 10 µg/m3 and with NO2 after adjustment for PM10 and PM2.5 (RR 0.98 (0.96 to 0.99) and 0.97 (0.96 to 0.99), respectively, for a 5 µg/m3 increase in NO2). AREHAs in children were not associated with PM2.5 after adjustment for NO2. CONCLUSIONS: Ambient air pollution, within the previous week, was associated with emergency hospital admissions for asthma to public hospitals in adults in Mexico City. The relationship in children was less consistent. Further work is needed to explore why differences between adults and children exist to inform appropriate interventions to benefit public health.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Adulto , Humanos , Niño , Preescolar , México/epidemiología , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Asma/epidemiología , Asma/etiología , Material Particulado/efectos adversos , Material Particulado/análisis , Hospitales , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisisRESUMEN
Urban air pollution is a major factor that affects the respiratory health of children and adolescents. Less studied is exposure during the first two years of life. This study analyzed the influence of acute and subchronic exposure to urban air pollutants on the severity of acute respiratory failure (ARF) in the first two years of life. This population-based study included 7364 infants hospitalized with ARF. Acute exposure was considered to have occurred 1, 3 and 7 days before hospitalization and subchronic exposure was considered the mean of the last 30 and 60 days. We found that for acute exposure, significant increases in days of hospitalization (LOS) occurred at lag 1 day for NO2 (0.24), SO2 (6.64), and CO (1.86); lag 3 days for PM10 (0.30), PM2.5 (0.37), SO2 (10.8), and CO (0.71); and lag 7 days for NO2 (0.16), SO2 (5.07) and CO (0.87). Increases in the risk of death occurred at lag 1 day for NO2 (1.06), SO2 (3.64), and CO (1.28); and lag 3 days for NO2 (1.04), SO2 (2.04), and CO (1.19). Subchronic exposures at 30 and 60 days occurred for SO2 (9.18, 3.77) and CO (6.53, 2.97), respectively. The associations were more pronounced with higher temperatures and lower relative humidity levels. We concluded that acute and subchronic exposure to higher atmospheric concentrations of all the pollutants studied were associated with greater severity of ARF. The greatest increases in LOS and risk of death occurred with hot and dry weather.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Insuficiencia Respiratoria , Niño , Adolescente , Humanos , Lactante , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , ChinaRESUMEN
Sulfur dioxide (SO2), despite its ubiquitousness, there is relatively less epidemiological evidence regarding the health risks associated with SO2 compared to other pollutants, especially in low-income countries where there are high levels of SO2 emissions. In this study, we estimated the association between ambient SO2 exposure and daily mortality in Brazil over a period of 15 years (2003-2017). We used an extension of the two-stage time-series design in a time-series analytic approach with a distributed lag model. The study population consisted of 2,872,084 death records, with a higher proportion of male deaths observed across all-cause mortality (58%). The majority of the individuals were aged above 65 years. The mean SO2 concentration across the study period was 1.5 µg/m³ (range: 0.0 to 71.0). The national meta-analysis for the whole dataset (without stratification by sex and age) showed an uncertain association, in which a 10 µg/m3 increase in daily SO2 was associated with an RR of mortality of 1.015 (95%CI: 0.992; 1.037). Robust associations were observed only for the subgroup analysis of people 46-65 years old [RR = 1.050 (95%CI: 1.004; 1.096)] and men 46-65 years old [RR = 1.064 (95%CI: 1.005; 1.122)]. We found moderate heterogeneity in the national analysis, with an I2 of 21% for the subgroup of people 46-65 years old. Excess mortality fraction for people between 46 and 65 years old attributable to per 10 µg/m3 increase in SO2 was 2.93% (95% eCI: 0.29%-6.78%). These results highlight the need for targeted air pollution control policies to reduce the health burden of SO2 exposure in Brazil. Further research is needed to fully understand the mechanisms behind the age-specific and regional effects of SO2 on mortality.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Humanos , Masculino , Anciano , Persona de Mediana Edad , Dióxido de Azufre/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Brasil/epidemiología , Contaminantes Ambientales/análisis , Exposición a Riesgos Ambientales/análisis , Material Particulado/análisis , Dióxido de Nitrógeno/análisis , China/epidemiología , MortalidadRESUMEN
Relatively few studies on the adverse health impacts of outdoor air pollution have been conducted in Latin American cities, whose pollutant mixtures and baseline health risks are distinct from North America, Europe, and Asia. This study evaluates respiratory morbidity risk associated with ambient air pollution in Quito, Ecuador, and specifically evaluates if the local air quality index accurately reflects population-level health risks. Poisson generalized linear models using air pollution, meteorological, and hospital admission data from 2014 to 2015 were run to quantify the associations of air pollutants and index values with respiratory outcomes in single- and multi-pollutant models. Significant associations were observed for increased respiratory hospital admissions and ambient concentrations of fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), although some of these associations were attenuated in two-pollutant models. Significant associations were also observed for index values, but these values were driven almost entirely by daily O3 concentrations. Modifications to index formulation to more fully incorporate the health risks of multiple pollutants, particularly for NO2, have the potential to greatly improve risk communication in Quito. This work also increases the equity of the existing global epidemiological literature by adding new air pollution health risk values from a highly understudied region of the world.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Humanos , Dióxido de Nitrógeno/análisis , Ecuador/epidemiología , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Ozono/análisis , ComunicaciónRESUMEN
This study investigates the relation between exposure to critical air pollution events with multipollutant (CO, PM10, PM2.5, NO2, O3, and SO2) and hospitalizations for respiratory diseases in the metropolitan area of São Paulo (RMSP) and in the countryside and coastline, from 2017 to 2021. Data mining analysis by temporal association rules searched for frequent patterns of respiratory diseases and multipollutants associated with time intervals. In the results, pollutants PM10, PM2.5, and O3 showed high concentration values in the three regions, SO2 on the coast, and NO2 in the RMSP. Seasonality was similar between pollutants and between cities and concentrations significantly higher in winter, except for O3, which was present in warm seasons. Hospitalizations were recurrent during the transition from summer to colder periods. In approximately 35% of the total days with hospitalization greater than the annual average, one or more pollutants had a high concentration. The rules showed that PM2.5, PM10, and O3 pollutants are strongly associated with increased hospitalizations in the RMSP (PM2.5 and PM10 with 38.5% support and 77% confidence) and in Campinas (PM2.5 with 66.1% support and 94% confidence) and the pollutant O3 with maximum support of 17.5%. On the coast, SO2 was related to high hospitalizations (43.85% support and 80% confidence). The pollutants CO and NO2 were not associated with the increase in hospitalizations. The ratio delay indicates the pollutants that were associated with hospitalizations, having concentration remained above the limit for three days, oscillating in smaller hospitalizations on the 1st day and again higher on the 2nd and 3rd days of delay, in a decreasing way. In conclusion, high pollutant exposure is significantly associated with daily hospitalization for respiratory problems. The cumulative effect of air pollutants increased hospitalization in the following days, in addition to identifying the pollutants and which pollutant combinations are most harmful to health in each region.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Trastornos Respiratorios , Enfermedades Respiratorias , Humanos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Monitoreo del Ambiente , Brasil , Contaminación del Aire/análisis , Enfermedades Respiratorias/epidemiología , Hospitalización , Material Particulado/análisis , ChinaRESUMEN
Maritime activity has diverse environmental consequences impacts in port areas, especially for air quality, and the post-COVID-19 cruise tourism market's potential to recover and grow is causing new environmental concerns in expanding port cities. This research proposes an empirical and modelling approach for the evaluation of cruise ships' influence on air quality concerning NO2 and SO2 in the city of La Paz (Mexico) using indirect measurements. EPA emission factors and the AERMOD modelling system coupled to WRF were used to model dispersions, while street-level mobile monitoring data of air quality from two days of 2018 were used and processed using a radial base function interpolator. The local differential Moran's Index was estimated at the intersection level using both datasets and a co-location clustering analysis was performed to address spatial constancy and to identify the pollution levels. The modelled results showed that cruise ships' impact on air quality had maximum values of 13.66 µg/m3 for NO2 and 15.71 µg/m3 for SO2, while background concentrations of 8.80 for NOx and 0.05 for SOx (µg/m3) were found by analysing the LISA index values for intersections not influenced by port pollution. This paper brings insights to the use of hybrid methodologies as an approach to studying the influence of multiple-source pollutants on air quality in contexts totally devoid of environmental data.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Emisiones de Vehículos/análisis , Navíos , México , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Material Particulado/análisisRESUMEN
Traditionally, studies that associate air pollution with health effects relate individual pollutants to outcomes such as mortality or hospital admissions. However, models capable of analyzing the effects resulting from the atmosphere mixture are demanded. In this study, multilayer perceptron neural networks were evaluated to associate PM10, NO2, and SO2 concentrations, temperature, wind speed, and relative air humidity with cardiorespiratory mortality among the elderly in São Paulo, Brazil. Daily data from 2007 to 2019 were considered and different numbers of neurons on the hidden layer, algorithms, and a combination of activation functions were tested. The best-fitted artificial neural network (ANN) resulted in a MAPE equal to 13.46%. When individual season data were analyzed, the MAPE decreased to 11%. The most influential variables in cardiorespiratory mortality among the elderly were PM10 and NO2 concentrations. The relative humidity variable is more important during the dry season, and temperature is more important during the rainy season. The models were not subjected to the multicollinearity issue as with classical regression models. The use of ANNs to relate air quality to health outcomes is still very incipient, and this work highlights that it is a powerful tool that should be further explored.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Ambientales/análisis , Dióxido de Nitrógeno/análisis , Brasil/epidemiología , Contaminación del Aire/análisis , Redes Neurales de la Computación , Material Particulado/análisisRESUMEN
Ambient air pollution is a major global public health concern; little evidence exists about the effects of short-term exposure to ozone on components of metabolic syndrome in young obese adolescents. The inhalation of air pollutants, such as ozone, can participate in the development of oxidative stress, systemic inflammation, insulin resistance, endothelium dysfunction, and epigenetic modification. Metabolic alterations in blood in components of metabolic syndrome (MS) and short-term ambient air ozone exposure were determined and evaluated longitudinally in a cohort of 372 adolescents aged between 9 to 19 years old. We used longitudinal mixed-effects models to evaluate the association between ozone exposure and the risk of components of metabolic syndrome and its parameters separately, adjusted using important variables. We observed statistically significant associations between exposure to ozone in tertiles in different lag days and the parameters associated with MS, especially for triglycerides (20.20 mg/dL, 95% CI: 9.5, 30.9), HDL cholesterol (-2.56 mg/dL (95% CI: -5.06, -0.05), and systolic blood pressure (1.10 mmHg, 95% CI: 0.08, 2.2). This study supports the hypothesis that short-term ambient air exposure to ozone may increase the risk of some components of MS such as triglycerides, cholesterol, and blood pressure in the obese adolescent population.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Síndrome Metabólico , Ozono , Obesidad Infantil , Humanos , Adolescente , Niño , Adulto Joven , Adulto , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ozono/análisis , Triglicéridos , Exposición a Riesgos Ambientales/análisis , Dióxido de Nitrógeno/análisisRESUMEN
BACKGROUND: Both air pollution and noise exposures have separately been shown to affect cognitive impairment. Here, we examine how air pollution and noise exposures interact to influence the development of incident dementia or cognitive impairment without dementia (CIND). METHODS: We used 1,612 Mexican American participants from the Sacramento Area Latino Study on Aging conducted from 1998 to 2007. Air pollution (nitrogen dioxides, particulate matter, ozone) and noise exposure levels were modeled with a land-use regression and via the SoundPLAN software package implemented with the Traffic Noise Model applied to the greater Sacramento area, respectively. Using Cox proportional hazard models, we estimated the hazard of incident dementia or CIND from air pollution exposure at the residence up to 5-years prior to diagnosis for the members of each risk set at event time. Further, we investigated whether noise exposure modified the association between air pollution exposure and dementia or CIND. RESULTS: In total, 104 incident dementia and 159 incident dementia/CIND cases were identified during the 10 years of follow-up. For each â¼2 µg/m3 increase in time-varying 1- and 5-year average PM2.5 exposure, the hazard of dementia increased 33% (HR = 1.33, 95%CI: 1.00, 1.76). The hazard ratios for NO2-related dementia/CIND and PM2.5-related dementia were stronger in high-noise (≥65 dB) exposed than low-noise (<65 dB) exposed participants. CONCLUSION: Our study indicates that PM2.5 and NO2 air pollution adversely affect cognition in elderly Mexican Americans. Our findings also suggest that air pollutants may interact with traffic-related noise exposure to affect cognitive function in vulnerable populations.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Demencia , Ruido del Transporte , Humanos , Anciano , Americanos Mexicanos , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , CogniciónRESUMEN
BACKGROUND: The adverse effects of air pollution on human health include many diseases and health conditions associated with mortality, morbidity and disability. One example of these outcomes that can be translated into economic costs is the number of days of restricted activity. The aim of this study was to assess the effect of outdoor exposure to particulate matter with an aerodynamic diameter less than or equal to 10 and 2.5 µm (PM10, PM2.5), nitrogen dioxide (NO2), and ozone (O3), on restricted activity days. METHODS: Observational epidemiological studies with different study designs were included, and pooled relative risks (RR) with 95% confidence intervals (95%CI) were calculated for an increase of 10 µg/m3 of the pollutant of interest. Random-effects models were chosen because of the environmental differences between the studies. Heterogeneity was estimated using prediction intervals (PI) and I-Squared (I2) values, while risk of bias was assessed using a tool developed by the World Health Organization specifically designed for air pollution studies, and based on different domains. Subgroup and sensitivity analyses were performed where possible. The protocol for this review was registered with PROSPERO (CRD42022339607). RESULTS: We included 18 articles in the quantitative analysis. Associations between pollutants and restricted activity days in time-series studies of short-term exposures, measured as work-loss days, school-loss days, or both were significant for PM10 (RR: 1.0191; 95%CI: 1.0058-1.0326; 80%PI: 0.9979-1.0408; I2: 71%) and PM2.5 (RR: 1.0166; 95%CI: 1.0050-1.0283; 80%PI: 0.9944-1.0397; I2: 99%), but not for NO2 or O3. Some degree of heterogeneity between studies was observed, but sensitivity analysis showed no differences in the direction of the pooled relative risks when studies with a high risk of bias were excluded. Cross-sectional studies also showed significant associations for PM2.5 and restricted activity days. We could not perform the analysis for long-term exposures because only two studies analysed this type of association. CONCLUSION: Restricted activity days and related outcomes were associated with some of the pollutants under evaluation, as shown in studies with different designs. In some cases, we were able to calculate pooled relative risks that can be used for quantitative modelling.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Ozono , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Estudios Transversales , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Ozono/efectos adversos , Ozono/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Estudios Observacionales como AsuntoRESUMEN
Atmospheric pollutants present environmental threats to health and have been investigated in different environments, such as highways, squares, parks, and gyms. These environments are frequented by older adults, who are considered fragile to the harmful impacts of pollution present in the air. The aim was to analyze the state of the art on the effects of air pollution on the health of older adults during physical activities (PAs) through a mapping review. The search was performed in PubMed, Web of Science, Scopus, and Cinahl databases until June 2022. Of the 10,109 studies initially identified, 58 met the inclusion criteria. The most investigated health outcome was cardiovascular disease, followed by respiratory outcomes. Particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and ozone (O3) were the most investigated pollutants. Of the 75 health outcomes investigated, in 29, air pollution had harmful effects on the health of the older adults during the practice of PA, more frequently in cardiovascular diseases. In 25 outcomes, the beneficial effects of PA to the health of the older adults remained, despite exposure to high and low concentrations of pollutants, most often in terms of mental disorders. We conclude that poor air quality is a harmful factor for the health of older adults during the practice of PAs, more frequently in cardiovascular and respiratory diseases. On the other hand, for mental-health-related outcomes (depression and cognition), in most studies, the beneficial effects of PA in older adults were maintained, even after exposure to pollutants.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Contaminantes Ambientales , Ozono , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Ozono/análisis , Dióxido de Nitrógeno/análisisRESUMEN
Background: Lockdowns have been fundamental to decreasing disease transmission during the COVID-19 pandemic even after vaccines were available. We aimed to evaluate and compare changes in air quality during the first year of the pandemic in different cities around the world, investigate how these changes correlate with changes in mobility, and analyse how lockdowns affected air pollutants' annual means. Methods: We compared the concentrations of NO2, PM2.5, and PM10 in 42 cities around the world in the first months of the pandemic in 2020 to data from 2016-2019 and correlated them with changes in mobility using Human Development Indexes (HDIs). Cities with the highest decreases in air pollutants during this period were evaluated for the whole year 2020. We calculated the annual means for these cities and compared them to the new World Health Organization (WHO) Air Quality Guidelines. A Student's t-test (95% confidence interval) was used to evaluate significant changes. Results: Highest decreases in NO2, PM2.5, and PM10 were between -50 and -70%. Cities evaluated for the whole year 2020 generally showed a recovery in air pollution levels after the initial months of the pandemic, except for London. These changes positively correlated with year-long mobility indexes for NO2 and PM2.5 for some cities. The highest reductions in air pollutants' annual means were from -20 to -35%. In general, decreases were higher for NO2, compared to PM2.5 and PM10. All analysed cities showed annual means incompliant with the new WHO Air Quality Guidelines for NO2 of 10 µg/m3, with values 1.7 and 4.3 times higher. For PM2.5, all cities showed values 1.3 to 7.6 times higher than the WHO Guidelines of 5 µg/m3, except for New Delhi, with a value 18 times higher. For PM10, only New York complied with the new guidelines of 15 µg/m3 and all the other cities were 1.1 to 4.2 times higher, except for New Delhi, which was 11 times higher. Conclusions: These data show that even during a pandemic that highly affected mobility and economic activities and decreased air pollution around the world, complying with the new WHO Guidelines will demand a global strategical effort in the way we generate energy, move in and around the cities, and manufacture products.