Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.915
Filtrar
1.
Elife ; 132024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219499

RESUMEN

Real-world actions often comprise a series of movements that cannot be entirely planned before initiation. When these actions are executed rapidly, the planning of multiple future movements needs to occur simultaneously with the ongoing action. How the brain solves this task remains unknown. Here, we address this question with a new sequential arm reaching paradigm that manipulates how many future reaches are available for planning while controlling execution of the ongoing reach. We show that participants plan at least two future reaches simultaneously with an ongoing reach. Further, the planning processes of the two future reaches are not independent of one another. Evidence that the planning processes interact is twofold. First, correcting for a visual perturbation of the ongoing reach target is slower when more future reaches are planned. Second, the curvature of the current reach is modified based on the next reach only when their planning processes temporally overlap. These interactions between future planning processes may enable smooth production of sequential actions by linking individual segments of a long sequence at the level of motor planning.


Asunto(s)
Brazo , Movimiento , Desempeño Psicomotor , Humanos , Brazo/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Masculino , Femenino , Adulto , Adulto Joven
2.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227311

RESUMEN

The present study aimed to describe the cortical connectivity of a sector located in the ventral bank of the superior temporal sulcus in the macaque (intermediate area TEa and TEm [TEa/m]), which appears to represent the major source of output of the ventral visual stream outside the temporal lobe. The retrograde tracer wheat germ agglutinin was injected in the intermediate TEa/m in four macaque monkeys. The results showed that 58-78% of labeled cells were located within ventral visual stream areas other than the TE complex. Outside the ventral visual stream, there were connections with the memory-related medial temporal area 36 and the parahippocampal cortex, orbitofrontal areas involved in encoding subjective values of stimuli for action selection, and eye- or hand-movement related parietal (LIP, AIP, and SII), prefrontal (12r, 45A, and 45B) areas, and a hand-related dysgranular insula field. Altogether these data provide a solid substrate for the engagement of the ventral visual stream in large scale cortical networks for skeletomotor or oculomotor control. Accordingly, the role of the ventral visual stream could go beyond pure perceptual processes and could be also finalized to the neural mechanisms underlying the control of voluntary motor behavior.


Asunto(s)
Vías Visuales , Animales , Masculino , Vías Visuales/fisiología , Lóbulo Temporal/fisiología , Macaca mulatta , Mapeo Encefálico , Femenino , Desempeño Psicomotor/fisiología , Actividad Motora/fisiología
3.
PLoS One ; 19(9): e0308642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283837

RESUMEN

Intercepting moving targets is a fundamental skill in human behavior, influencing various domains such as sports, gaming, and other activities. In these contexts, precise visual processing and motor control are crucial for adapting and navigating effectively. Nevertheless, there are still some gaps in our understanding of how these elements interact while intercepting a moving target. This study explored the dynamic interplay among eye movements, pupil size, and interceptive hand movements, with visual and motion uncertainty factors. We developed a simple visuomotor task in which participants used a joystick to interact with a computer-controlled dot that moved along two-dimensional trajectories. This virtual system provided the flexibility to manipulate the target's speed and directional uncertainty during chase trials. We then conducted a geometric analysis based on optimal angles for each behavior, enabling us to distinguish between simple tracking and predictive trajectories that anticipate future positions of the moving target. Our results revealed the adoption of a strong interception strategy as participants approached the target. Notably, the onset and amount of optimal interception strategy depended on task parameters, such as the target's speed and frequency of directional changes. Furthermore, eye-tracking data showed that participants continually adjusted their gaze speed and position, continuously adapting to the target's movements. Finally, in successful trials, pupillary responses predicted the amount of optimal interception strategy while exhibiting an inverse relationship in trials without collisions. These findings reveal key interactions among visuomotor parameters that are crucial for solving complex interception tasks.


Asunto(s)
Movimientos Oculares , Desempeño Psicomotor , Humanos , Masculino , Femenino , Desempeño Psicomotor/fisiología , Adulto , Movimientos Oculares/fisiología , Adulto Joven , Pupila/fisiología , Percepción de Movimiento/fisiología , Tecnología de Seguimiento Ocular , Mano/fisiología , Movimiento/fisiología
4.
Learn Mem ; 31(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39284619

RESUMEN

"Pavlovian" or "motivational" biases are the phenomenon that the valence of prospective outcomes modulates action invigoration: the prospect of reward invigorates actions, while the prospect of punishment suppresses actions. Effects of the valence of prospective outcomes are well established, but it remains unclear how the magnitude of outcomes ("stake magnitude") modulates these biases. In this preregistered study (N = 55), we manipulated stake magnitude (high vs. low) in an orthogonalized Motivational Go/NoGo Task. We tested whether higher stakes (a) strengthen biases or (b) elicit cognitive control recruitment, enhancing the suppression of biases in motivationally incongruent conditions. Confirmatory tests showed that high stakes slowed down responding, especially in motivationally incongruent conditions. However, high stakes did not affect whether a response was made or not, and did not change the magnitude of Pavlovian biases. Reinforcement-learning drift-diffusion models (RL-DDMs) fit to the data suggested that response slowing was best captured by stakes prolonging the non-decision time. There was no effect of the stakes on the response threshold (as in typical speed-accuracy trade-offs). In sum, these results suggest that high stakes slow down responses without affecting the expression of Pavlovian biases in behavior. We speculate that this slowing under high stakes might reflect heightened cognitive control, which is however ineffectively used, or reflect positive conditioned suppression, i.e., the interference between goal-directed and consummatory behaviors, a phenomenon previously observed in rodents that might also exist in humans. Pavlovian biases and slowing under high stakes may arise in parallel to each other.


Asunto(s)
Condicionamiento Clásico , Motivación , Recompensa , Humanos , Masculino , Motivación/fisiología , Adulto Joven , Femenino , Condicionamiento Clásico/fisiología , Adulto , Tiempo de Reacción/fisiología , Adolescente , Castigo , Refuerzo en Psicología , Desempeño Psicomotor/fisiología
5.
Commun Biol ; 7(1): 1117, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261584

RESUMEN

While the sensorimotor cortices are central neural substrates for motor control and learning, how the interaction between their subregions with visual cortices contributes to acquiring de novo visuomotor skills is poorly understood. We design a continuous visuomotor task in fMRI where participants control a cursor using their fingers while learning an arbitrary finger-to-cursor mapping. To investigate visuomotor interaction in the de novo motor task, we manipulate visual feedback of a cursor such that they learn to control using fingers under two alternating conditions: online cursor feedback is available or unavailable except when a target is reached. As a result, we find double dissociation of fMRI activity in subregions of the sensorimotor and visual cortices. Specifically, motor and late visual cortices are more active with online cursor feedback, and somatosensory and early visual cortices are more active without online cursor feedback. We also find a significant reduction in functional connectivity between somatosensory cortices and early visual cortices, which is highly correlated with performance improvement. These findings support the distinct interaction between subregions of sensorimotor cortices and visual cortices, while the connectivity analysis highlights the critical role of somatosensory cortices during de novo motor learning.


Asunto(s)
Retroalimentación Sensorial , Aprendizaje , Imagen por Resonancia Magnética , Desempeño Psicomotor , Corteza Visual , Humanos , Masculino , Aprendizaje/fisiología , Femenino , Retroalimentación Sensorial/fisiología , Adulto , Adulto Joven , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Desempeño Psicomotor/fisiología , Destreza Motora/fisiología , Mapeo Encefálico , Corteza Sensoriomotora/fisiología
6.
J Neuroeng Rehabil ; 21(1): 160, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277755

RESUMEN

BACKGROUND: Children with developmental coordination disorder (DCD) have impaired online motor control. Researchers posit that this impairment could be due to a deficit in utilizing the internal model control process. However, there is little neurological evidence to support this view because few neuroimaging studies have focused specifically on tasks involving online motor control. Therefore, the aim of this study was to investigate the differences in cortical hemodynamic activity during an online movement adjustment task between children with and without DCD. METHODS: Twenty children with DCD (mean age: 9.88 ± 1.67 years; gender: 14M/6F) and twenty age-and-gender matched children with typical development (TD) (mean age: 9.87 ± 1.59 years; gender: 14M/6F) were recruited via convenience sampling. Participants performed a double-step reaching task under two conditions (with and without online adjustment of reaching). Cortical hemodynamic activity during task in ten regions of interest, including bilateral primary somatosensory cortex, primary motor cortex, premotor cortex, superior parietal cortex, and inferior parietal cortex was recorded using functional near-infrared spectroscopy. In the analyses, change in oxyhemoglobin (ΔHbO) concentration was used to characterize hemodynamic response. Two-way analyses of variance were conducted for each region of interest to compare hemodynamic responses between groups and conditions. Additionally, Pearson's r correlations between hemodynamic response and task performance were performed. RESULTS: Outcome showed that children with DCD required significantly more time to correct their reaching movements compared to the control group (t = 3.948, P < 0.001). Furthermore, children with DCD have a significantly lower ΔHbO change in the left superior parietal cortex during movement correction, compared to children with TD (F = 4.482, P = 0.041). Additionally, a significant negative correlation (r = - 0.598, P < 0.001) was observed between the difference in movement time of reaching and the difference in ΔHbO between conditions in the left superior parietal cortex. CONCLUSIONS: The findings of this study suggest that deficiencies in processing real-time sensory feedback, considering the function of the superior parietal cortex, might be related to the impaired online motor control observed in children with DCD. Interventions could target this issue to enhance their performance in online motor control.


Asunto(s)
Trastornos de la Destreza Motora , Espectroscopía Infrarroja Corta , Humanos , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Niño , Trastornos de la Destreza Motora/fisiopatología , Trastornos de la Destreza Motora/diagnóstico por imagen , Estudios Transversales , Desempeño Psicomotor/fisiología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Hemodinámica/fisiología
7.
J Neuroeng Rehabil ; 21(1): 154, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232841

RESUMEN

BACKGROUND: Restoration of limb function for individuals with unilateral weakness typically requires volitional muscle control, which is often not present for individuals with severe impairment. Mirror therapy-interventions using a mirror box to reflect the less-impaired limb onto the more-impaired limb-can facilitate corticospinal excitability, leading to enhanced recovery in severely impaired clinical populations. However, the mirror box applies limitations on mirror therapy, namely that all movements appear bilateral and are confined to a small area, impeding integration of complex activities and multisensory feedback (e.g., visuo-tactile stimulation). These limitations can be addressed with virtual reality, but the resulting effect on corticospinal excitability is unclear. OBJECTIVE: Examine how virtual reality-based unilateral mirroring, complex activities during mirroring, and visuo-tactile stimulation prior to mirroring affect corticospinal excitability. MATERIALS AND METHODS: Participants with no known neurological conditions (n = 17) donned a virtual reality system (NeuRRoVR) that displayed a first-person perspective of a virtual avatar that matched their motions. Transcranial magnetic stimulation-induced motor evoked potentials in the nondominant hand muscles were used to evaluate corticospinal excitability in four conditions: resting, mirroring, mirroring with prior visuo-tactile stimulation (mirroring + TACT), and control. During mirroring, the movements of each participant's dominant limb were reflected onto the nondominant limb of the virtual avatar, and the avatar's dominant limb was kept immobile (i.e., unilateral mirroring). The mirroring + TACT condition was the same as the mirroring condition, except that mirroring was preceded by visuo-tactile stimulation of the nondominant limb. During the control condition, unilateral mirroring was disabled. During all conditions, participants performed simple (flex/extend fingers) and complex (stack virtual blocks) activities. RESULTS: We found that unilateral mirroring increased corticospinal excitability compared to no mirroring (p < 0.001), complex activities increased excitability compared to simple activities during mirroring (p < 0.001), and visuo-tactile stimulation prior to mirroring decreased excitability (p = 0.032). We also found that these features did not interact with each other. DISCUSSIONS: The findings of this study shed light onto the neurological mechanisms of mirror therapy and demonstrate the unique ways in which virtual reality can augment mirror therapy. The findings have important implications for rehabilitation for design of virtual reality systems for clinical populations.


Asunto(s)
Potenciales Evocados Motores , Retroalimentación Sensorial , Tractos Piramidales , Estimulación Magnética Transcraneal , Realidad Virtual , Humanos , Masculino , Femenino , Adulto , Estimulación Magnética Transcraneal/métodos , Tractos Piramidales/fisiología , Retroalimentación Sensorial/fisiología , Potenciales Evocados Motores/fisiología , Adulto Joven , Músculo Esquelético/fisiología , Desempeño Psicomotor/fisiología , Electromiografía
8.
PLoS One ; 19(9): e0309998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39241025

RESUMEN

The subjective feeling of being the author of one's actions and the subsequent consequences is referred to as a sense of agency. Such a feeling is crucial for usability in human-computer interactions, where eye movement has been adopted, yet this area has been scarcely investigated. We examined how the temporal action-feedback discrepancy affects the sense of agency concerning eye movement. Participants conducted a visual search for an array of nine Chinese characters within a temporally-delayed gaze-contingent display, blurring the peripheral view. The relative delay between each eye movement and the subsequent window movement varied from 0 to 4,000 ms. In the control condition, the window played a recorded gaze behavior. The mean authorship rating and the proportion of "self" responses in the categorical authorship report ("self," "delayed self," and "other") gradually decreased as the temporal discrepancy increased, with "other" being rarely reported, except in the control condition. These results generally mirror those of prior studies on hand actions, suggesting that sense of agency extends beyond the effector body parts to other modalities, and two different types of sense of agency that have different temporal characteristics are simultaneously operating. The mode of fixation duration shifted as the delay increased under 200-ms delays and was divided into two modes at 200-500 ms delays. The frequency of 0-1.5° saccades exhibited an increasing trend as the delay increased. These results demonstrate the influence of perceived action-effect discrepancy on action refinement and task strategy.


Asunto(s)
Movimientos Oculares , Fijación Ocular , Humanos , Masculino , Femenino , Fijación Ocular/fisiología , Adulto Joven , Movimientos Oculares/fisiología , Adulto , Factores de Tiempo , Desempeño Psicomotor/fisiología , Movimientos Sacádicos/fisiología
9.
Hum Brain Mapp ; 45(13): e70013, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39225144

RESUMEN

Insufficient sleep compromises cognitive performance, diminishes vigilance, and disrupts daily functioning in hundreds of millions of people worldwide. Despite extensive research revealing significant variability in vigilance vulnerability to sleep deprivation, the underlying mechanisms of these individual differences remain elusive. Locus coeruleus (LC) plays a crucial role in the regulation of sleep-wake cycles and has emerged as a potential marker for vigilance vulnerability to sleep deprivation. In this study, we investigate whether LC microstructural integrity, assessed by fractional anisotropy (FA) through diffusion tensor imaging (DTI) at baseline before sleep deprivation, can predict impaired psychomotor vigilance test (PVT) performance during sleep deprivation in a cohort of 60 healthy individuals subjected to a rigorously controlled in-laboratory sleep study. The findings indicate that individuals with high LC FA experience less vigilance impairment from sleep deprivation compared with those with low LC FA. LC FA accounts for 10.8% of the variance in sleep-deprived PVT lapses. Importantly, the relationship between LC FA and impaired PVT performance during sleep deprivation is anatomically specific, suggesting that LC microstructural integrity may serve as a biomarker for vigilance vulnerability to sleep loss.


Asunto(s)
Imagen de Difusión Tensora , Locus Coeruleus , Desempeño Psicomotor , Privación de Sueño , Humanos , Privación de Sueño/diagnóstico por imagen , Privación de Sueño/fisiopatología , Privación de Sueño/patología , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Masculino , Femenino , Adulto , Adulto Joven , Desempeño Psicomotor/fisiología , Nivel de Alerta/fisiología , Anisotropía , Pruebas Neuropsicológicas
10.
Cognition ; 253: 105940, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39226734

RESUMEN

A simple button press towards a prime stimulus enhances subsequent visual search for objects that match the prime. The present study investigated whether this action effect is a general phenomenon across different task domains, and the underlying neural mechanisms. The action effect was measured in an unspeeded size-matching task, with the presentation of the central target and the surrounding inducers of the Ebbinghaus illusion together to one eye or separately to each eye, and when repetitive TMS was applied over right primary motor cortex (M1). The results showed that a prior key-press significantly reduced the illusion effect compared to passive viewing. Notably, the action effect persisted with dichoptic presentation of the Ebbinghaus configuration, but disappeared with the right M1 disruption. These results suggest that action guides visual perception to influence human behavior, which mainly affects the late visual processing stage and probably relies on feedback projections from the motor cortex.


Asunto(s)
Corteza Motora , Desempeño Psicomotor , Percepción del Tamaño , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Corteza Motora/fisiología , Percepción del Tamaño/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Estimulación Luminosa
11.
Cogn Res Princ Implic ; 9(1): 60, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256243

RESUMEN

The reliability of cognitive demand measures in controlled laboratory settings is well-documented; however, limited research has directly established their stability under real-life and high-stakes conditions, such as operating automated technology on actual highways. Partially automated vehicles have advanced to become an everyday mode of transportation, and research on driving these advanced vehicles requires reliable tools for evaluating the cognitive demand on motorists to sustain optimal engagement in the driving process. This study examined the reliability of five cognitive demand measures, while participants operated partially automated vehicles on real roads across four occasions. Seventy-one participants (aged 18-64 years) drove on actual highways while their heart rate, heart rate variability, electroencephalogram (EEG) alpha power, and behavioral performance on the Detection Response Task were measured simultaneously. Findings revealed that EEG alpha power had excellent test-retest reliability, heart rate and its variability were good, and Detection Response Task reaction time and hit-rate had moderate reliabilities. Thus, the current study addresses concerns regarding the reliability of these measures in assessing cognitive demand in real-world automation research, as acceptable test-retest reliabilities were found across all measures for drivers across occasions. Despite the high reliability of each measure, low intercorrelations among measures were observed, and internal consistency was better when cognitive demand was estimated as a multi-factorial construct. This suggests that they tap into different aspects of cognitive demand while operating automation in real life. The findings highlight that a combination of psychophysiological and behavioral methods can reliably capture multi-faceted cognitive demand in real-world automation research.


Asunto(s)
Automatización , Conducción de Automóvil , Frecuencia Cardíaca , Humanos , Adulto , Adulto Joven , Masculino , Adolescente , Femenino , Frecuencia Cardíaca/fisiología , Persona de Mediana Edad , Reproducibilidad de los Resultados , Desempeño Psicomotor/fisiología , Electroencefalografía , Ritmo alfa/fisiología , Cognición/fisiología , Tiempo de Reacción/fisiología , Automóviles
12.
Cogn Res Princ Implic ; 9(1): 61, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256289

RESUMEN

Partially autonomous vehicles can help minimize human errors. However, being free from some driving subtasks can result in a low vigilance state, which can affect the driver's attention towards the road. The present study first tested whether drivers of partially autonomous vehicles would benefit from the addition of auditory versions of the messages presented in variable message signs (VMS), particularly, when they find themselves in a monotonous driving situation. A second aim was to test whether the addition of auditory messages would also produce an indirect effect on the driver's vigilance, improving performance on other driving subtasks not related to the message processing. Forty-three volunteers participated in a driving simulator study. They completed two tasks: (a) a VMS task, where they had to regain manual control of the car if the VMS message was critical, and (b) a car-following task, where they had to pay attention to the preceding car to respond to occasional brake events. Behavioral and EEG data were registered. Overall, results indicated that the addition of audio messages helped drivers process VMS information more effectively and maintain a higher level of vigilance throughout the driving time. These findings would provide useful information for the development of partially automated vehicles, as their design must guarantee that the driver remains attentive enough to assume control when necessary.


Asunto(s)
Atención , Conducción de Automóvil , Electroencefalografía , Humanos , Atención/fisiología , Masculino , Adulto , Femenino , Adulto Joven , Percepción Auditiva/fisiología , Automatización , Desempeño Psicomotor/fisiología , Estimulación Acústica
13.
Hum Brain Mapp ; 45(13): e70024, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258339

RESUMEN

Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.


Asunto(s)
Electroencefalografía , Inhibición Psicológica , Memoria a Corto Plazo , Red Nerviosa , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Femenino , Adulto Joven , Conectoma , Función Ejecutiva/fisiología , Desempeño Psicomotor/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adolescente
14.
Sci Rep ; 14(1): 20978, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251651

RESUMEN

This study investigated gaze behavior during visuo-cognitive-motor tasks with a change of movement direction in glaucoma patients and healthy controls. Nineteen glaucoma patients (10 females, 9 males) and 30 healthy sighted controls (17 females, 13 males) participated in this cross-sectional study. Participants performed two visuo-cognitive-motor tasks with a change of movement direction: (i) the "Speed-Court-Test" that involved stepping on different sensors in response to a visual sign displayed on either a large or small screen (165″ and 55″, respectively); (ii) the "Trail-Walking-Test" that required walking to 15 cones labeled with numbers (1-8) or letters (A-G) in an alternately ascending order. During these tasks, the time needed for completing each task was determined and the gaze behavior (e.g., saccade duration, fixation duration) was recorded via eye tracking. Data were analyzed with repeated measures analyses of covariance (ANCOVA; GROUP × SCREEN) and one-way ANCOVA. No differences between groups were found for the time needed to complete the tasks. However, during the "Trail-Walking-Test", the fixation duration was longer for glaucoma patients than for controls (p = 0.016, η p 2  = 0.131). Furthermore, during the "Speed-Court-Test", there was a screen size effect. Irrespective of group, saccade amplitudes were lower (p < 0.001, η p 2  = 0.242) and fixation durations were higher (p = 0.021, η p 2  = 0.125) for the small screen. Fixation durations were longer in glaucoma patients during the cognitively demanding "Trail-Walking-Test", which might indicate a strategy to compensate for their visual impairment.


Asunto(s)
Cognición , Fijación Ocular , Glaucoma de Ángulo Abierto , Humanos , Femenino , Masculino , Estudios Transversales , Persona de Mediana Edad , Glaucoma de Ángulo Abierto/fisiopatología , Fijación Ocular/fisiología , Anciano , Cognición/fisiología , Desempeño Psicomotor/fisiología , Estudios de Casos y Controles , Movimientos Oculares/fisiología , Adulto
15.
Sci Rep ; 14(1): 21003, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251727

RESUMEN

To enhance and sustain movement accuracy, humans make corrections in subsequent trials based on previous errors. Trial-by-trial learning occurs unconsciously and has mostly been studied using reaching movements. Goal-directed projection movements, such as archery, have an inherent delay between releasing an object and observing an outcome (e.g. the arrival position of the object), and this delay may prevent trial-by-trial implicit learning. We aimed to investigate the learning in the projection movement and the impacts of the inherent delay. During the experiment, a joystick was flicked once to transport a cursor from the starting location to a target. To manipulate the length of the delay between the cursor release and outcome observation, the speed of the cursor movement was varied: a fast speed can lead to a short delay. We found trial-by-trial implicit learning under all speed conditions, and the error sensitivity was not significantly different across speed conditions. Furthermore, the error sensitivity depended on the target location, that is, the movement direction. The results indicate that trial-by-trial implicit learning occurred in goal-directed projection movement, despite the length of the inherent delay. Additionally, the degree of this learning was affected by the movement direction.


Asunto(s)
Aprendizaje , Movimiento , Desempeño Psicomotor , Humanos , Aprendizaje/fisiología , Movimiento/fisiología , Masculino , Desempeño Psicomotor/fisiología , Femenino , Adulto , Adulto Joven
16.
J Neuroeng Rehabil ; 21(1): 155, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252006

RESUMEN

BACKGROUND: Planning and executing movements requires the integration of different sensory modalities, such as vision and proprioception. However, neurological diseases like stroke can lead to full or partial loss of proprioception, resulting in impaired movements. Recent advances focused on providing additional sensory feedback to patients to compensate for the sensory loss, proving vibrotactile stimulation to be a viable option as it is inexpensive and easy to implement. Here, we test how such vibrotactile information can be integrated with visual signals to estimate the spatial location of a reach target. METHODS: We used a center-out reach paradigm with 31 healthy human participants to investigate how artificial vibrotactile stimulation can be integrated with visual-spatial cues indicating target location. Specifically, we provided multisite vibrotactile stimulation to the moving dominant arm using eccentric rotating mass (ERM) motors. As the integration of inputs across multiple sensory modalities becomes especially relevant when one of them is uncertain, we additionally modulated the reliability of visual cues. We then compared the weighing of vibrotactile and visual inputs as a function of visual uncertainty to predictions from the maximum likelihood estimation (MLE) framework to decide if participants achieve quasi-optimal integration. RESULTS: Our results show that participants could estimate target locations based on vibrotactile instructions. After short training, combined visual and vibrotactile cues led to higher hit rates and reduced reach errors when visual cues were uncertain. Additionally, we observed lower reaction times in trials with low visual uncertainty when vibrotactile stimulation was present. Using MLE predictions, we found that integration of vibrotactile and visual cues followed optimal integration when vibrotactile cues required the detection of one or two active motors. However, if estimating the location of a target required discriminating the intensities of two cues, integration violated MLE predictions. CONCLUSION: We conclude that participants can quickly learn to integrate visual and artificial vibrotactile information. Therefore, using additional vibrotactile stimulation may serve as a promising way to improve rehabilitation or the control of prosthetic devices by patients suffering loss of proprioception.


Asunto(s)
Señales (Psicología) , Desempeño Psicomotor , Vibración , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Percepción Visual/fisiología , Desempeño Psicomotor/fisiología , Adulto Joven , Retroalimentación Sensorial/fisiología , Propiocepción/fisiología , Percepción del Tacto/fisiología , Incertidumbre , Estimulación Física/métodos , Percepción Espacial/fisiología , Movimiento/fisiología
17.
PeerJ ; 12: e17858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247546

RESUMEN

Background: The human upper extremity is characterized by inherent motor abundance, allowing a diverse array of tasks with agility and adaptability. Upper extremity functional limitations are a common sequela to Stroke, resulting in pronounced motor and sensory impairments in the contralesional arm. While many therapeutic interventions focus on rehabilitating the weaker arm, it is increasingly evident that it is necessary to consider bimanual coordination and motor control. Methods: Participants were recruited to two groups differing in age (Group 1 (n = 10): 23.4 ± 2.9 years, Group 2 (n = 10): 55.9 ± 10.6 years) for an exploratory study on the use of accelerometry to quantify bilateral coordination. Three tasks featuring coordinated reaching were selected to investigate the acceleration of the upper arm, forearm, and hand during activities of daily living (ADLs). Subjects were equipped with acceleration and inclination sensors on each upper arm, each forearm, and each hand. Data was segmented in MATLAB to assess inter-limb and intra-limb coordination. Inter-limb coordination was indicated through dissimilarity indices and temporal locations of congruous movement between upper arm, forearm, or hand segments of the right and left limbs. Intra-limb coordination was likewise assessed between upper arm-forearm, upper arm-hand, and forearm-hand segment pairs of the dominant limb. Findings: Acceleration data revealed task-specific movement features during the three distinct tasks. Groups demonstrated diminished similarity as task complexity increased. Groups differed significantly in the hand segments during the buttoning task, with Group 1 showing no coordination in the hand segments during buttoning, and strong coordination in reaching each button with the upper arm and forearm guiding extension. Group 2's dissimilarity scores and percentages of similarity indicated longer periods of inter-limb coordination, particularly towards movement completion. Group 1's dissimilarity scores and percentages of similarity indicated longer periods of intra-limb coordination, particularly in the coordination of the upper arm and forearm segments. Interpretation: The Expanding Procrustes methodology can be applied to compute objective coordination scores using accessible and highly accurate wearable acceleration sensors. The findings of task duration, angular velocity, and peak roll angle are supported by previous studies finding older individuals to present with slower movements, reduced movement stability, and a reduction of laterality between the limbs. The theory of a shift towards ambidexterity with age is supported by the finding of greater inter-limb coordination in the group of subjects above the age of thirty-five. The group below the age of thirty was found to demonstrate longer periods of intra-limb coordination, with upper arm and forearm coordination emerging as a possible explanation for the demonstrated greater stability.


Asunto(s)
Acelerometría , Actividades Cotidianas , Extremidad Superior , Dispositivos Electrónicos Vestibles , Humanos , Persona de Mediana Edad , Masculino , Femenino , Acelerometría/instrumentación , Acelerometría/métodos , Adulto , Extremidad Superior/fisiología , Adulto Joven , Anciano , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Antebrazo/fisiología
18.
Physiother Res Int ; 29(4): e2126, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39235186

RESUMEN

INTRODUCTION: Parkinson's disease (PD) is a progressive neurological condition resulting from the degeneration of dopaminergic neurons in the substantia nigra. Impaired manual dexterity and cognitive impairment are common symptoms and are often associated with recurrent adverse events in this population. OBJECTIVE: To verify the association between cognitive performance and manual dexterity in people with PD. METHODS: This is a cross-sectional observational study, with 29 participants, who underwent cognitive and manual dexterity assessments, and the following tools were used: Trail Making Test, box and block test (BBT), Learning Test of Rey and Nine Hole Peg Test. Descriptive statistics for clinical and demographic data were performed using mean and standard deviation, and data normality was assessed using the Shapiro-Wilk test. Spearman's nonparametric test was used to determine the correlation between variables. RESULTS: Our findings revealed significant associations between cognitive performance and manual dexterity. The nine-hole peg test positively correlated with TMT-Part A and Part B, establishing a relationship between manual dexterity and cognitive functions such as attention and mental flexibility. On the other hand, BBT showed an inverse relationship with TMT-Part B, indicating that longer time on this task was associated with lower manual dexterity. CONCLUSION: Fine manual dexterity had a significant correlation with visual search skills and motor speed, while gross motor dexterity had a negative correlation with cognitive skills. No significant results were demonstrated regarding the interaction between manual dexterity and memory.


Asunto(s)
Cognición , Destreza Motora , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Estudios Transversales , Masculino , Femenino , Anciano , Persona de Mediana Edad , Cognición/fisiología , Destreza Motora/fisiología , Disfunción Cognitiva/etiología , Desempeño Psicomotor/fisiología
19.
J Cogn Neurosci ; 36(10): 2166-2183, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136556

RESUMEN

A rapidly growing body of work suggests that visual working memory (VWM) is fundamentally action oriented. Consistent with this, we recently showed that attention is more strongly biased by VWM representations of objects when we plan to act on those objects in the future. Using EEG and eye tracking, here, we investigated neurophysiological correlates of the interactions between VWM and action. Participants (n = 36) memorized a shape for a subsequent VWM test. At test, a probe was presented along with a secondary object. In the action condition, participants gripped the actual probe if it matched the memorized shape, whereas in the control condition, they gripped the secondary object. Crucially, during the VWM delay, participants engaged in a visual selection task, in which they located a target as fast as possible. The memorized shape could either encircle the target (congruent trials) or a distractor (incongruent trials). Replicating previous findings, we found that eye gaze was biased toward the VWM-matching shape and, importantly, more so when the shape was directly associated with an action plan. Moreover, the ERP results revealed that during the selection task, future action-relevant VWM-matching shapes elicited (1) a stronger Ppc (posterior positivity contralateral), signaling greater attentional saliency; (2) an earlier PD (distractor positivity) component, suggesting faster suppression; (3) a larger inverse (i.e., positive) sustained posterior contralateral negativity in incongruent trials, consistent with stronger suppression of action-associated distractors; and (4) an enhanced response-locked positivity over left motor regions, possibly indicating enhanced inhibition of the response associated with the memorized item during the interim task. Overall, these results suggest that action planning renders objects in VWM more attentionally salient, supporting the notion of selection-for-action in working memory.


Asunto(s)
Atención , Electroencefalografía , Potenciales Evocados , Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Atención/fisiología , Femenino , Masculino , Adulto Joven , Adulto , Potenciales Evocados/fisiología , Tecnología de Seguimiento Ocular , Desempeño Psicomotor/fisiología , Reconocimiento Visual de Modelos/fisiología
20.
Artículo en Inglés | MEDLINE | ID: mdl-39196738

RESUMEN

The hybrid brain-computer interface (BCI) is verified to reduce disadvantages of conventional BCI systems. Transcranial electrical stimulation (tES) can also improve the performance and applicability of BCI. However, enhancement in BCI performance attained solely from the perspective of users or solely from the angle of BCI system design is limited. In this study, a hybrid BCI system combining MI and SSVEP was proposed. Furthermore, transcranial alternating current stimulation (tACS) was utilized to enhance the performance of the proposed hybrid BCI system. The stimulation interface presented a depiction of grabbing a ball with both of hands, with left-hand and right-hand flickering at frequencies of 34 Hz and 35 Hz. Subjects watched the interface and imagined grabbing a ball with either left hand or right hand to perform SSVEP and MI task. The MI and SSVEP signals were processed separately using filter bank common spatial patterns (FBCSP) and filter bank canonical correlation analysis (FBCCA) algorithms, respectively. A fusion method was proposed to fuse the features extracted from MI and SSVEP. Twenty healthy subjects took part in the online experiment and underwent tACS sequentially. The fusion accuracy post-tACS reached 90.25% ± 11.40%, which was significantly different from pre-tACS. The fusion accuracy also surpassed MI accuracy and SSVEP accuracy respectively. These results indicated the superior performance of the hybrid BCI system and tACS would improve the performance of the hybrid BCI system.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Imaginación/fisiología , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Adulto Joven , Voluntarios Sanos , Desempeño Psicomotor/fisiología , Mano/fisiología , Reproducibilidad de los Resultados , Potenciales Evocados Visuales/fisiología , Potenciales Evocados Motores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA