Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.663
Filtrar
1.
Nat Commun ; 15(1): 7152, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169041

RESUMEN

For accurate mitotic cell division, replicated chromatin must be assembled into chromosomes and faithfully segregated into daughter cells. While protein factors like condensin play key roles in this process, it is unclear how chromosome assembly proceeds as molecular events of nucleosomes in living cells and how condensins act on nucleosomes to organize chromosomes. To approach these questions, we investigate nucleosome behavior during mitosis of living human cells using single-nucleosome tracking, combined with rapid-protein depletion technology and computational modeling. Our results show that local nucleosome motion becomes increasingly constrained during mitotic chromosome assembly, which is functionally distinct from condensed apoptotic chromatin. Condensins act as molecular crosslinkers, locally constraining nucleosomes to organize chromosomes. Additionally, nucleosome-nucleosome interactions via histone tails constrain and compact whole chromosomes. Our findings elucidate the physical nature of the chromosome assembly process during mitosis.


Asunto(s)
Adenosina Trifosfatasas , Cromatina , Proteínas de Unión al ADN , Mitosis , Complejos Multiproteicos , Nucleosomas , Humanos , Nucleosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Complejos Multiproteicos/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Células HeLa , Cromosomas Humanos/metabolismo , Cromosomas Humanos/genética , Cromosomas/metabolismo
2.
J Cell Sci ; 137(13)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985540

RESUMEN

Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.


Asunto(s)
Caenorhabditis elegans , Cromosomas , Meiosis , Complejo Sinaptonémico , Animales , Meiosis/genética , Caenorhabditis elegans/genética , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/genética , Cromosomas/metabolismo , Cromosomas/genética , Segregación Cromosómica , Pez Cebra/genética , Humanos
3.
Cell Rep ; 43(7): 114494, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39003739

RESUMEN

Cell cycle progression is regulated by the orderly balance between kinase and phosphatase activities. PP2A phosphatase holoenzymes containing the B55 family of regulatory B subunits function as major CDK1-counteracting phosphatases during mitotic exit in mammals. However, the identification of the specific mitotic roles of these PP2A-B55 complexes has been hindered by the existence of multiple B55 isoforms. Here, through the generation of loss-of-function genetic mouse models for the two ubiquitous B55 isoforms (B55α and B55δ), we report that PP2A-B55α and PP2A-B55δ complexes display overlapping roles in controlling the dynamics of proper chromosome individualization and clustering during mitosis. In the absence of PP2A-B55 activity, mitotic cells display increased chromosome individualization in the presence of enhanced phosphorylation and perichromosomal loading of Ki-67. These data provide experimental evidence for a regulatory mechanism by which the balance between kinase and PP2A-B55 phosphatase activity controls the Ki-67-mediated spatial organization of the mass of chromosomes during mitosis.


Asunto(s)
Antígeno Ki-67 , Mitosis , Proteína Fosfatasa 2 , Animales , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Ratones , Antígeno Ki-67/metabolismo , Fosforilación , Cromosomas de los Mamíferos/metabolismo , Cromosomas de los Mamíferos/genética , Cromosomas/metabolismo
4.
Cell Rep ; 43(7): 114419, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985672

RESUMEN

The compaction of chromatin into mitotic chromosomes is essential for faithful transmission of the genome during cell division. In eukaryotes, chromosome morphogenesis is regulated by the condensin complex, though the exact mechanism used to target condensin to chromatin and initiate condensation is not understood. Here, we reveal that condensin contains an intrinsically disordered region (IDR) that modulates its association with chromatin in early mitosis and exhibits phase separation. We describe DNA-binding motifs within the IDR that, upon deletion, inflict striking defects in chromosome condensation and segregation, ill-timed condensin turnover on chromatin, and cell death. Importantly, we demonstrate that the condensin IDR can impart cell cycle regulatory functions when transferred to other subunits within the complex, indicating its autonomous nature. Collectively, our study unveils the molecular basis for the initiation of chromosome condensation in early mitosis and how this process ultimately promotes genomic stability and faultless cell division.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Unión al ADN , Mitosis , Complejos Multiproteicos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromosomas/metabolismo , Unión Proteica , Segregación Cromosómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Cell Struct Funct ; 49(2): 31-46, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38839376

RESUMEN

In metazoans, the nuclear envelope (NE) disassembles during the prophase and reassembles around segregated chromatids during the telophase. The process of NE formation has been extensively studied using live-cell imaging. At the early step of NE reassembly in human cells, specific pattern-like localization of inner nuclear membrane (INM) proteins, connected to the nuclear pore complex (NPC), was observed in the so-called "core" region and "noncore" region on telophase chromosomes, which corresponded to the "pore-free" region and the "pore-rich" region, respectively, in the early G1 interphase nucleus. We refer to these phenomena as NE subdomain formation. To biochemically investigate this process, we aimed to develop an in vitro NE reconstitution system using digitonin-permeabilized semi-intact mitotic human cells coexpressing two INM proteins, emerin and lamin B receptor, which were labeled with fluorescent proteins. The targeting and accumulation of INM proteins to chromosomes before and after anaphase onset in semi-intact cells were observed using time-lapse imaging. Our in vitro NE reconstitution system recapitulated the formation of the NE subdomain, as in living cells, although chromosome segregation and cytokinesis were not observed. This in vitro NE reconstitution required the addition of a mitotic cytosolic fraction supplemented with a cyclin-dependent kinase inhibitor and energy sources. The cytoplasmic soluble factor(s) dependency of INM protein targeting differed among the segregation states of chromosomes. Furthermore, the NE reconstituted on segregated chromosomes exhibited active nucleocytoplasmic transport competency. These results indicate that the chromosome status changes after anaphase onset for recruiting NPC components.


Asunto(s)
Mitosis , Membrana Nuclear , Proteínas Nucleares , Humanos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células HeLa , Receptor de Lamina B , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Cromosomas Humanos/metabolismo , Poro Nuclear/metabolismo , Cromosomas/metabolismo
7.
Nat Commun ; 15(1): 5393, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918438

RESUMEN

Although our understanding of the involvement of heterochromatin architectural factors in shaping nuclear organization is improving, there is still ongoing debate regarding the role of active genes in this process. In this study, we utilize publicly-available Micro-C data from mouse embryonic stem cells to investigate the relationship between gene transcription and 3D gene folding. Our analysis uncovers a nonmonotonic - globally positive - correlation between intragenic contact density and Pol II occupancy, independent of cohesin-based loop extrusion. Through the development of a biophysical model integrating the role of transcription dynamics within a polymer model of chromosome organization, we demonstrate that Pol II-mediated attractive interactions with limited valency between transcribed regions yield quantitative predictions consistent with chromosome-conformation-capture and live-imaging experiments. Our work provides compelling evidence that transcriptional activity shapes the 4D genome through Pol II-mediated micro-compartmentalization.


Asunto(s)
Células Madre Embrionarias de Ratones , ARN Polimerasa II , Transcripción Genética , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cohesinas , Heterocromatina/metabolismo , Heterocromatina/genética , Cromosomas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica
8.
Nucleus ; 15(1): 2360601, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38842147

RESUMEN

Cell division presents a challenge for eukaryotic cells: how can chromosomes effectively segregate within the confines of a membranous nuclear compartment? Different organisms have evolved diverse solutions by modulating the degree of nuclear compartmentalization, ranging from complete nuclear envelope breakdown to complete maintenance of nuclear compartmentalization via nuclear envelope expansion. Many intermediate forms exist between these extremes, suggesting that nuclear dynamics during cell division are surprisingly plastic. In this review, we highlight the evolutionary diversity of nuclear divisions, focusing on two defining characteristics: (1) chromosome compartmentalization and (2) nucleocytoplasmic transport. Further, we highlight recent evidence that nuclear behavior during division can vary within different cellular contexts in the same organism. The variation observed within and between organisms underscores the dynamic evolution of nuclear divisions tailored to specific contexts and cellular requirements. In-depth investigation of diverse nuclear divisions will enhance our understanding of the nucleus, both in physiological and pathological states.


Asunto(s)
División del Núcleo Celular , Humanos , Animales , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Cromosomas/metabolismo , Transporte Activo de Núcleo Celular
9.
Biophys J ; 123(16): 2574-2583, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38932457

RESUMEN

We propose a high-throughput chromosome conformation capture data-based many-polymer model that allows us to generate an ensemble of multi-scale genome structures. We demonstrate the efficacy of our model by validating the generated structures against experimental measurements and employ them to address key questions regarding genome organization. Our model first confirms a significant correlation between chromosome size and nuclear positioning. Specifically, smaller chromosomes are distributed at the core region, whereas larger chromosomes are at the periphery, interacting with the nuclear envelope. The spatial distribution of A- and B-type compartments, which is nontrivial to infer from the corresponding high-throughput chromosome conformation capture maps alone, can also be elucidated using our model, accounting for an issue such as the effect of chromatin-lamina interaction on the compartmentalization of conventional and inverted nuclei. In accordance with imaging data, the overall shape of the 3D genome structures generated from our model displays significant variation. As a case study, we apply our method to the yellow fever mosquito genome, finding that the predicted morphology displays, on average, a more globular shape than the previously suggested spindle-like organization and that our prediction better aligns with the fluorescence in situ hybridization data. Our model has great potential to be extended to investigate many outstanding issues concerning 3D genome organization.


Asunto(s)
Modelos Moleculares , Animales , Cromosomas/metabolismo , Genoma , Cromatina/metabolismo , Cromatina/química , Cromatina/genética
10.
Cell Death Dis ; 15(5): 342, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760378

RESUMEN

U3 snoRNA is essential for ribosome biogenesis during interphase. Upon mitotic onset, the nucleolus disassembles and U3 snoRNA relocates to the perichromosomal region (PR) to be considered as a chromosome passenger. Whether U3 controls mitosis remains unknown. Here, we demonstrate that U3 snoRNA is required for mitotic progression. We identified DDX21 as the predominant U3-binding protein during mitosis and confirmed that U3 snoRNA colocalizes with DDX21 in the PR. DDX21 knockdown induces mitotic catastrophe and similar mitotic defects caused by U3 snoRNA depletion. Interestingly, the uniform PR distribution of U3 snoRNA and DDX21 is interdependent. DDX21 functions in mitosis depending on its PR localization. Mechanistically, U3 snoRNA regulates DDX21 PR localization through maintaining its mobility. Moreover, Cy5-U3 snoRNA downsizes the fibrous condensates of His-DDX21 at proper molecular ratios in vitro. This work highlights the importance of the equilibrium between U3 snoRNA and DDX21 in PR formation and reveals the potential relationship between the PR assembly and mitotic regulation.


Asunto(s)
ARN Helicasas DEAD-box , Mitosis , ARN Nucleolar Pequeño , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Células HeLa , ARN Nucleolar Pequeño/metabolismo , ARN Nucleolar Pequeño/genética , Cromosomas/metabolismo
11.
Histochem Cell Biol ; 162(1-2): 149-159, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811432

RESUMEN

The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.


Asunto(s)
Núcleo Celular , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/química , Cromosomas/metabolismo , Orgánulos/metabolismo , Orgánulos/química
12.
Histochem Cell Biol ; 162(1-2): 109-131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758428

RESUMEN

The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.


Asunto(s)
ADN , ADN/química , Humanos , Cromosomas/metabolismo , Cromosomas/química , Cromatina/química , Cromatina/metabolismo
13.
Mol Cell ; 84(10): 1826-1841.e5, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38657614

RESUMEN

In meiotic cells, chromosomes are organized as chromatin loop arrays anchored to a protein axis. This organization is essential to regulate meiotic recombination, from DNA double-strand break (DSB) formation to their repair. In mammals, it is unknown how chromatin loops are organized along the genome and how proteins participating in DSB formation are tethered to the chromosome axes. Here, we identify three categories of axis-associated genomic sites: PRDM9 binding sites, where DSBs form; binding sites of the insulator protein CTCF; and H3K4me3-enriched sites. We demonstrate that PRDM9 promotes the recruitment of MEI4 and IHO1, two proteins essential for DSB formation. In turn, IHO1 anchors DSB sites to the axis components HORMAD1 and SYCP3. We discovered that IHO1, HORMAD1, and SYCP3 are associated at the DSB ends during DSB repair. Our results highlight how interactions of proteins with specific genomic elements shape the meiotic chromosome organization for recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , N-Metiltransferasa de Histona-Lisina , Meiosis , Meiosis/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Sitios de Unión , Cromosomas/genética , Cromosomas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinación Genética , Masculino
14.
Annu Rev Biochem ; 93(1): 21-46, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594943

RESUMEN

DNA replication and transcription occur in all living cells across all domains of life. Both essential processes occur simultaneously on the same template, leading to conflicts between the macromolecular machines that perform these functions. Numerous studies over the past few decades demonstrate that this is an inevitable problem in both prokaryotic and eukaryotic cells. We have learned that conflicts lead to replication fork reversal, breaks in the DNA, R-loop formation, topological stress, and mutagenesis and can ultimately impact evolution. Recent studies have also provided insight into the various mechanisms that mitigate, resolve, and allow tolerance of conflicts and how conflicts result in pathological consequences across divergent species. In this review, we summarize our current knowledge regarding the outcomes of the encounters between replication and transcription machineries and explore how these clashes are dealt with across species.


Asunto(s)
Replicación del ADN , Transcripción Genética , Humanos , Animales , Cromosomas/metabolismo , Cromosomas/genética , Cromosomas/química , Estructuras R-Loop , ADN/metabolismo , ADN/genética , ADN/química
15.
Epigenetics Chromatin ; 17(1): 10, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643244

RESUMEN

BACKGROUND: Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS: Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS: Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.


Asunto(s)
Cromatina , Cristalinas , Animales , Ratones , Humanos , Células Madre Embrionarias de Ratones/metabolismo , Cromosomas/metabolismo , Factores de Transcripción/metabolismo , ADN/metabolismo , Epitelio/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Factor de Unión a CCCTC/metabolismo
16.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594617

RESUMEN

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Plaguicidas , Animales , Larva/genética , Larva/metabolismo , Glycine max/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Control Biológico de Vectores/métodos , Mariposas Nocturnas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromosomas/metabolismo , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Resistencia a los Insecticidas/genética
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38447882

RESUMEN

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Asunto(s)
Aurora Quinasa A , Proteínas de Ciclo Celular , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína p53 Supresora de Tumor/genética , Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Inestabilidad Genómica , Inestabilidad Cromosómica/genética , Cromosomas/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(12): e2312820121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38478689

RESUMEN

Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Cromosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Recombinación Homóloga/genética , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell ; 84(5): 814-815, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458170

RESUMEN

In this issue of Molecular Cell, two papers provide insight into atypical structural maintenance of chromosomes protein complexes (SMCs). Jeppsson et al.1 link Smc5/6 to supercoiled DNA, and Roisné-Hamelin et al.2 show how Wadjet SMC bends and cleaves invading DNAs.


Asunto(s)
Proteínas de Ciclo Celular , Cromosomas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , ADN , Reparación del ADN , Proteínas de Unión al ADN/genética
20.
Methods Mol Biol ; 2784: 227-257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502490

RESUMEN

The simultaneous observation of three-dimensional (3D) chromatin structure and transcription in single cells is critical to understand how DNA is organized inside cells and how this organization influences or is affected by other processes, such as transcription. We have recently introduced an innovative technology known as Hi-M, which enables the sequential tagging, 3D visualization, and precise localization of multiple genomic DNA regions alongside RNA expression within individual cells. In this chapter, we present a comprehensive guide outlining the creation of probes, as well as sample preparation and labeling. Finally, we provide a step-by-step guide to conduct a complete Hi-M acquisition using our open-source software package, Qudi-HiM, which controls the robotic microscope handling the entire acquisition procedure.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , Cromosomas/metabolismo , ADN/química , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA