Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.522
Filtrar
1.
Biomacromolecules ; 25(9): 6038-6049, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39145672

RESUMEN

Marine mussels fabricate tough collagenous fibers known as byssal threads to anchor themselves. Threads are produced individually in minutes via secretion of liquid crystalline (LC) collagenous precursors (preCols); yet the physical and chemical parameters influencing thread formation remain unclear. Here, we characterized the structural anisotropy of native and artificially induced threads using quantitative polarized light microscopy and transmission electron microscopy to elucidate spontaneous vs regulated aspects of thread assembly, discovering that preCol LC phases form aligned domains of several hundred microns, but not the cm-level alignment of native threads. We then explored the hypothesized roles of mechanical shear, pH, and metal ions on thread formation through in vitro assembly studies employing a microfluidic flow focusing device using purified preCol secretory vesicles. Our results provide clear evidence for the role of all three parameters in modulating the structure and properties of the final product with relevance for fabrication of collagenous scaffolds for tissue engineering applications.


Asunto(s)
Colágeno , Cristales Líquidos , Animales , Cristales Líquidos/química , Colágeno/química , Bivalvos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Concentración de Iones de Hidrógeno
2.
J Mater Chem B ; 12(35): 8702-8715, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129447

RESUMEN

This study aims to develop a biomimetic nano-drug delivery system (nano-DDS) by employing a macrophage cell membrane camouflaging strategy to modify lyotropic liquid crystal nanoparticles (LLC-NPs). The cubic-structured LLC-NPs (Cubosomes, CBs) were prepared via a top-down approach (ultra-sonification) using monoolein (MO) and doped with the cationic lipid, DOTAP. The cell membrane camouflaging procedure induced changes in the cubic lipid phase from primitive cubic phase (QIIP) to a coexistence of QIIP and diamond cubic phase (QIID). The macrophage membrane camouflaging strategy protected CB cores from the destabilization by blood plasma and enhanced the stability of CBs. The in vitro experiment results revealed that the macrophage cell membrane coating significantly reduced macrophage uptake efficacy within 8 h of incubation compared to the non-camouflaged CBs, while it had minimal impact on cancer cell uptake efficacy. The macrophage membrane coated CBs showed lower accumulation in the heart, kidney and lungs in vivo. This study demonstrated the feasibility of employing cell membrane camouflaging on CBs and confirmed that the bio-functionalities of the CBs-based biomimetic nano-DDS were retained from the membrane source cells, and opened up promising possibilities for developing an efficient and safe drug delivery system based on the biomimetic approach.


Asunto(s)
Materiales Biomiméticos , Membrana Celular , Cristales Líquidos , Macrófagos , Nanopartículas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Ratones , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Nanopartículas/química , Cristales Líquidos/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células RAW 264.7 , Humanos , Biomimética , Tamaño de la Partícula
3.
Int J Pharm ; 663: 124594, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39154920

RESUMEN

3D printing has been introduced as a novel approach for the design of personalized dosage forms and support patient groups with special needs that require additional assistance for enhanced medication adherence. In this study liquid crystal display (LCD) is introduced for the development of sustained release bupropion.HCl printed tablets. The optimization of printing hydrogel inks was combined with the display of Braille patterns on the tablet surface for blind or visually impaired patients. Due to the high printing accuracy, the Braille patterns could be verified by blind patients and provide the required information. Further characterization revealed the presence of BUP in amorphous state within the photopolymerized resins. The selection of poly(ethylene glycol) (PEG)-diacrylate (PEGDA) of different molecular weights and the presence of surfactants or solubilizers disrupted the resin photopolymerization, thus controlling the BUP dissolution rates. A small batch scale-up study demonstrated the capacity of LCD to print rapidly a notable number of tablets within 24 min.


Asunto(s)
Bupropión , Preparaciones de Acción Retardada , Liberación de Fármacos , Polietilenglicoles , Impresión Tridimensional , Comprimidos , Bupropión/química , Bupropión/administración & dosificación , Polietilenglicoles/química , Humanos , Cristales Líquidos/química , Solubilidad
4.
J Hazard Mater ; 477: 135372, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106723

RESUMEN

Tree bark has been proven as an effective passive air sampler, particularly where access to active sampling methods is limited. In this study, 60 target liquid crystal monomers (LCMs; comprising 10 cyanobiphenyl and analogs (CBAs), 13 biphenyl and analogs (BAs), and 37 fluorinated biphenyl and analogs (FBAs)) were analyzed in 34 tree barks collected from the vicinity of a liquid crystal display (LCD) manufacturer situated in the Pearl River Delta, South China. The concentrations of LCMs in tree barks ranged from 1400 to 16000 ng/g lipid weight, with an average of 5900 ng/g lipid weight. Generally, bark levels of BAs exponentially decreased within 5 km of the LCD manufacturer. The profiles of LCMs in tree barks are similar to previously reported patterns in gaseous phase, suggesting bark's efficacy as a sampler for gaseous LCMs. The inclusion of different congeners in existing studies on the environmental occurrence of LCMs has hindered the horizontal comparisons. Therefore, this study established a list of priority LCMs based on environmental monitoring data and the publicly accessible production data. This list comprised 146 LCMs, including 63 REACH registered LCMs that haven't been analyzed in any study and 56 belonging to 4 types of mainstream LCMs.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Cristales Líquidos , Corteza de la Planta , Corteza de la Planta/química , Cristales Líquidos/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , China , Compuestos de Bifenilo
5.
J Hazard Mater ; 477: 135365, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088946

RESUMEN

The rapid and accurate identification of live pathogens with high proliferative ability is in great demand to mitigate foodborne infection outbreaks. Herein, we have developed an ultrasensitive image-based aptasensing array to directly detect live Salmonella typhimurium (S.T) cells. This method relies on the long-range orientation of surfactant-decorated liquid crystals (LCs) and the superiority of aptamers (aptST). The self-assembling of hydrophobic surfactant tails leads to a perpendicular/vertical ordered film at the aqueous/LC interface and signal-off response. The addition of aptST perturbed LCs' ordering into a planar/tilted state at the aqueous phase due to electrostatic interactions between the surfactant with the aptST, and a signal-on response. Following the conformational switch of aptST in the presence of live S. typhimurium, a relative reversing signal-off response was observed upon the target concentration. This aptasensor could promptly confirm the presence of S. typhimurium without intricate DNA-extraction or pre-enrichment stats over a linear range of 1-1.1 × 106 CFU/mL and a detection limit of 1.2 CFU/mL within ∼30 min. These results were successfully validated using molecular and culture-based methods in spiked-milk samples, with a 92.61-104.61 % recovery value. Meanwhile, the flexibility of this portable sensing platform allows for its development and adoption for the precise detection of various pathogens in food and the environment.


Asunto(s)
Aptámeros de Nucleótidos , Cristales Líquidos , Salmonella typhimurium , Salmonella typhimurium/aislamiento & purificación , Cristales Líquidos/química , Aptámeros de Nucleótidos/química , Tensoactivos/química , Técnicas Biosensibles/métodos , Leche/microbiología , Leche/química , Límite de Detección , Microbiología de Alimentos , Animales
6.
J Colloid Interface Sci ; 674: 982-992, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964002

RESUMEN

HYPOTHESIS: We hypothesize that simultaneous incorporation of ion channel peptides (in this case, potassium channel as a model) and hydrophobic magnetite Fe3O4 nanoparticles (hFe3O4NPs) within lipidic hexagonal mesophases, and aligning them using an external magnetic field can significantly enhance ion transport through lipid membranes. EXPERIMENTS: In this study, we successfully characterized the incorporation of gramicidin membrane ion channels and hFe3O4NPs in the lipidic hexagonal structure using SAXS and cryo-TEM methods. Additionally, we thoroughly investigated the conductive characteristics of freestanding films of lipidic hexagonal mesophases, both with and without gramicidin potassium channels, utilizing a range of electrochemical techniques, including impedance spectroscopy, normal pulse voltammetry, and chronoamperometry. FINDINGS: Our research reveals a state-of-the-art breakthrough in enhancing ion transport in lyotropic liquid crystals as matrices for integral proteins and peptides. We demonstrate the remarkable efficacy of membranes composed of hexagonal lipid mesophases embedded with K+ transporting peptides. This enhancement is achieved through doping with hFe3O4NPs and exposure to a magnetic field. We investigate the intricate interplay between the conductive properties of the lipidic hexagonal structure, hFe3O4NPs, gramicidin incorporation, and the influence of Ca2+ on K+ channels. Furthermore, our study unveils a new direction in ion channel studies and biomimetic membrane investigations, presenting a versatile model for biomimetic membranes with unprecedented ion transport capabilities under an appropriately oriented magnetic field. These findings hold promise for advancing membrane technology and various biotechnological and biomedical applications of membrane proteins.


Asunto(s)
Gramicidina , Transporte Iónico , Cristales Líquidos , Nanopartículas de Magnetita , Cristales Líquidos/química , Gramicidina/química , Nanopartículas de Magnetita/química , Péptidos/química , Tamaño de la Partícula , Canales Iónicos/química , Canales Iónicos/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/química
7.
Biomacromolecules ; 25(8): 4977-4990, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38949966

RESUMEN

Cholesteric mesophases based on cellulose ethers, such as ethyl cellulose and hydroxypropyl cellulose, have been studied widely for their remarkable ability to display macroscopic structural color. However, the typical time scales involved in the multiscale self-assembly of cholesteric liquid crystals, from individual nanoscale helical arrangements to discrete microscopic domains, and their dependence on the gel's viscoelastic properties remain underexplored. Here, we establish a quantitative relationship between the kinetics of structural color formation after shear deformation and cholesteric order development at the nano- and microscales. Utilizing rheology in tandem with static and time-resolved reflectivity measurements, we underscore the strong influence of polymer diffusivity and chain elasticity on self-assembly kinetics in cholesteric cellulose ether gels. We show that our phenomenological model can be employed to assess the structure-property relationships of multiple polysaccharide systems, elucidating key design guidelines for the development and processing of structurally colored cholesteric mesophases.


Asunto(s)
Celulosa , Celulosa/química , Celulosa/análogos & derivados , Cinética , Reología , Color , Cristales Líquidos/química , Geles/química , Elasticidad , Viscosidad
8.
J Colloid Interface Sci ; 675: 825-835, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39002233

RESUMEN

Docosahexaenoic acid monoacylglycerol represents a promising lipid constituent in the development of drug nanocarriers owing to its amphiphilicity and the beneficial health effects of this docosahexaenoic acid precursor in various disorders including cancer and inflammatory diseases. Here, we describe the formation and characterization of simple-by-design and stabilizer-free lamellar and non-lamellar crystalline nanoparticles (vesicles and cubosomes, respectively) from binary mixtures of docosahexaenoic acid monoacylglycerol and phosphatidylglycerol, which is a ubiquitous amphiphilic component present in biological systems. At the physiological temperature of 37 °C, these single amphiphilic components tend to exhibit inverse hexagonal and lamellar liquid crystalline phases, respectively, on exposure to excess water. They can also be combined and dispersed in excess water by employing a high-energy emulsification method (by means of ultrasonication) to produce through an electrostatic stabilization mechanism colloidally stable nanodispersions. A colloidal transformation from vesicles to cubosomes was detected with increasing MAG-DHA content. Through use of synchrotron small-angle X-ray scattering, cryo-transmission electron microscopy, and nanoparticle tracking analysis, we report on the structural and morphological features, and size characteristics of these nanodispersions. Depending on the lipid composition, their internal liquid crystalline architectures were spanning from a lamellar (Lα) phase to biphasic features of coexisting inverse bicontinuous (Q2) cubic Pn3m and Im3m phases. Thus, a direct colloidal vesicle-cubosome transformation was detected by augmenting the concentration of docosahexaenoic acid monoacylglycerol. The produced cubosomes were thermally stable within the investigated temperature range of 5-60 °C. Collectively, our findings contribute to understanding of the imperative steps for production of stabilizer-free cubosomes from biocompatible lipids through a simple-by-design approach. We also discuss the potential therapeutic use and future implications for development of next-generation of multifunctional vesicles and cubosomes for co-delivery of docosahexaenoic acid and drugs in treatment of diseases.


Asunto(s)
Ácidos Docosahexaenoicos , Monoglicéridos , Nanopartículas , Tamaño de la Partícula , Fosfatidilgliceroles , Ácidos Docosahexaenoicos/química , Fosfatidilgliceroles/química , Monoglicéridos/química , Nanopartículas/química , Cristales Líquidos/química , Propiedades de Superficie , Portadores de Fármacos/química
9.
Soft Matter ; 20(30): 6068-6079, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037726

RESUMEN

We develop a microscopic model of antibiotic diffusion in virus suspensions in a liquid crystalline state. We then approximate this with an effective homogenised model that is more amenable to analytical investigation, to understand the effect of charge on the antibiotic tolerance. We show that liquid crystalline virus suspensions slow down antibiotics significantly, and that electric charge strongly contributes to this by influencing the effective diameter and adsorptive capacity of the liquid crystalline viruses so that charged antibiotics diffuse much slower than neutral ones; this can be directly and efficiently derived from the homogenised model and is in good agreement with experiments in microbiology. Charge is also found to affect the relationship between antibiotic diffusion and viral packing density in a nontrivial way. The results elucidate the effect of charge on antibiotic tolerance in liquid crystalline biofilms in a manner that is straightforwardly extendable to other soft matter systems.


Asunto(s)
Antibacterianos , Cristales Líquidos , Adsorción , Antibacterianos/química , Antibacterianos/farmacología , Difusión , Cristales Líquidos/química , Suspensiones/química , Biopelículas/efectos de los fármacos , Virus/efectos de los fármacos , Virus/química
10.
Molecules ; 29(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999123

RESUMEN

The drug delivery potential of liquid crystals (LCs) for ascorbyl palmitate (AP) was assessed, with the emphasis on the AP stability and release profile linked to microstructural rearrangement taking place along the dilution line being investigated by a set of complementary techniques. With high AP degradation observed after 56 days, two stabilization approaches, i.e., the addition of vitamin C or increasing AP concentration, were proposed. As a rule, LC samples with the lowest water content resulted in better AP stability (up to 52% of nondegraded AP in LC1 after 28 days) and faster API release (~18% in 8 h) as compared to the most diluted sample (29% of nondegraded AP in LC8 after 28 days, and up to 12% of AP released in 8 h). In addition, LCs exhibited a skin barrier-strengthening effect with up to 1.2-fold lower transepidermal water loss (TEWL) and 1.9-fold higher skin hydration observed in vitro on the porcine skin model. Although the latter cannot be linked to LCs' composition or specific microstructure, the obtained insight into LCs' microstructure contributed greatly to our understanding of AP positioning inside the system and its release profile, also influencing the overall LCs' performance after dermal application.


Asunto(s)
Ácido Ascórbico , Cristales Líquidos , Fosfolípidos , Piel , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Cristales Líquidos/química , Animales , Porcinos , Piel/metabolismo , Piel/efectos de los fármacos , Fosfolípidos/química , Liberación de Fármacos , Estabilidad de Medicamentos , Sistemas de Liberación de Medicamentos
11.
Anal Chem ; 96(28): 11472-11478, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38957093

RESUMEN

It is well-known that the bacterial microenvironment imposes restrictions on the growth and behavior of bacteria. The localized monitoring of microenvironmental factors is appreciated when consulting bacterial adaptation and behavior in the presence of chemical or mechanical stimuli. Herein, we developed a novel liquid crystal (LC) biosensor in a microsphere configuration for real-time 3D monitoring of the bacteria microenvironment, which was implemented by a microfluidic chip. As a proof of concept, a LC gel (LC-Gel) microsphere biosensor was prepared and employed in the localized pH changes of bacteria by observing the configuration change of LC under polarized optical microscopy. Briefly, the microsphere biosensor was constructed in core-shell configuration, wherein the core contained LCE7 (a nematic LC) doped with 4-pentylbiphenyl-4'-carboxylic acid (PBA), and the shell encapsulated the bacteria. The protonation of carboxyl functional groups of the PBA induced a change in charge density on the surface of LCE7 and the orientation of E7 molecules, resulting in the transitions of the LC nucleus from axial to bipolar. The developed LC-Gel microspheres pH sensor exhibited its dominant performance on localized pH real-time sensing with a resolution of 0.1. An intriguing observation from the prepared pH biosensor was that the diverse bacteria impelled distinct acidifying or alkalizing effects. Overall, the facile LC-Gel microsphere biosensor not only provides a versatile tool for label-free, localized pH monitoring but also opens avenues for investigating the effects of chemical and mechanical stimuli on cellular metabolism within bacterial microenvironments.


Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Microesferas , Concentración de Iones de Hidrógeno , Cristales Líquidos/química , Escherichia coli
12.
Water Res ; 261: 122062, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002419

RESUMEN

Liquid crystal monomers (LCMs) are a new class of emerging pollutants with high octanol-water partition coefficients; however, their transformation behavior and associated risk to environments with high organic matter content has rarely been reported. In this study, we investigated the photodegradation kinetics, mechanism, and toxicity variation of 23 LCMs on leaf wax models (e.g., organic solvents methanol and n-hexane). The order of the photolysis rates of these LCMs were biphenylethyne LCMs > phenylbenzoate LCMs > diphenyl/terphenyl LCMs under simulated sunlight, while the phenylcyclohexane LCMs were resistant to photodegradation. The phenylbenzoate and biphenylethyne LCMs mainly undergo direct photolysis, while the diphenyl/terphenyl LCMs mainly undergo self-sensitized photolysis. The main photolysis pathways are the cleavage of ester bonds for phenylbenzoate LCMs, the addition, oxidation and cleavage of alkynyl groups for biphenylethyne LCMs, and the cleavage/oxidation of chains attached to phenyls and the benzene ring opening for diphenyl/terphenyls LCMs. Most photolysis products remained toxic to aquatic organisms to some degree. Additionally, two quantitative structure-activity relationship models for predicting kobs of LCMs in methanol and n-hexane were developed, and employed to predict kobs of 93 LCMs to fill the kobs data gap in systems mimicking leaf surfaces. These results can be helpful for evaluating the fate and risk of LCMs in environments with high content of organic phase.


Asunto(s)
Cristales Líquidos , Fotólisis , Relación Estructura-Actividad Cuantitativa , Cinética , Cristales Líquidos/química , Luz Solar
13.
Macromol Rapid Commun ; 45(16): e2400193, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837543

RESUMEN

Photo-responsive liquid crystal polymers (LCPs) have potential application value in flexible robots, artificial muscles, and microfluidic control. In recent years, significant progress has been made in the development of LCPs. However, the preparation of LCPs with continuous and controllable stepwise deformation capabilities remains a challenge. In this study, visible photo-responsive cyanostilbene monomer, UV photo-responsive azobenzene monomer, and multiple hydrogen bond crosslinker are used to prepare photo-responsive LCPs capable of achieving continuously and controllable stepwise deformation. The comprehensive investigation of the multiple light response ability and photo-induced deformation properties of these copolymers is conducted. The results reveal that in the first stage of photo-induced deformation under 470 nm blue light irradiation, the deformation angle decreases with a reduction in cyanostilbene content in the copolymer component, ranging from 40° in AZ0-CS4 to 0° in AZ4-CS0. In the second stage of photo-induced deformation under 365 nm UV irradiation, the deformation angle increases with the increase of azobenzene content, ranging from 0° of AZ0-CS4 to 89.4° of AZ4-CS0. Importantly, the deformation between these two stages occurs as a continuous process, allowing for a direct transition from the first-stage to the second-stage deformation by switching the light source from 470 to 365 nm.


Asunto(s)
Polímeros , Polímeros/química , Polímeros/síntesis química , Rayos Ultravioleta , Procesos Fotoquímicos , Compuestos Azo/química , Cristales Líquidos/química , Estructura Molecular , Luz , Enlace de Hidrógeno
14.
Environ Pollut ; 356: 124285, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823544

RESUMEN

Liquid crystal monomers (LCMs), which are commonly used in electronic device screens, have attracted attention as a potential class of emerging organic pollutants with persistent, bioaccumulative, and toxic (PBT) properties. This study involved the collection of 54 surface soil samples around one LC industrial park at increasing spatial distances within 1 km, 1-3 km, and 3-5 km from the center of the LC industrial park. Our observations revealed the presence of LCMs in 46 of 54 surface soil samples examined. Of the 39 target LCMs, 36 were identified, comprising 14 non-fluorinated and 22 fluorinated LCMs. Nine LCMs were detected at frequencies exceeding 20%, with 3bcHdFB exhibiting the highest detection frequency of 59% in the soil samples. The total LCM concentrations across the 46 sampling locations varied from 0.0072 to 17.24 ng/g dw, with the highest total concentrations at sampling sites within 1 km of the liquid crystal plant, suggesting that manufacturing processes may be a potential source for LCM release into the environment. Differences were observed in the LCM contamination patterns among the three sampling areas. Additionally, we observed a decrease in the median LCM concentration with increasing distance from the center of the LC industrial park. However, no statistically significant differences (p > 0.05) in LCM concentrations were observed across the three distances assessed in this study. This may be owing to the limited variety of target compounds analyzed and the limited number of soil samples. Our results emphasize that further studies on the emissions and pollution characteristics of LCMs during production are warranted.


Asunto(s)
Monitoreo del Ambiente , Cristales Líquidos , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Cristales Líquidos/química , Monitoreo del Ambiente/métodos , Suelo/química
15.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928182

RESUMEN

Enantioseparation of nineteen liquid crystalline racemic mixtures obtained based on (R,S)-2-octanol was studied in reversed-phase mode on an amylose tris(3-chloro-5-methylphenylcarbamate) (ReproSil Chiral-MIG) and a cellulose tris(3,5-dichlorophenylcarbamate) (ReproSil Chiral-MIC). These polysaccharide-based chiral stationary phase (CSP) columns for High-Performance Liquid Chromatography (HPLC) were highly effective in recognizing isomers of minor structural differences. The mobile phase (MP), which consists of acetonitrile (ACN)/water (H2O) at different volume ratios, was used. The mobile phases were pumped at a flow rate of 0.3, 0.5, or 1 mL·min-1 with a column temperature of 25 °C, using a UV detector at 254 nm. The order of the elution was also determined. The chromatographic parameters, such as resolution (Rs), selectivity (α), and the number of theoretical plates, i.e., column efficiency (N), were determined. The polysaccharide-based CSP columns have unique advantages in separation technology, and this study has shown the potential usefulness of the CSP columns in separating liquid crystalline racemic mixtures belonging to the same homologous series.


Asunto(s)
Cromatografía de Fase Inversa , Cristales Líquidos , Polisacáridos , Cristales Líquidos/química , Estereoisomerismo , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos , Polisacáridos/química , Amilosa/química , Amilosa/análogos & derivados , Celulosa/química , Celulosa/análogos & derivados , Fenilcarbamatos/química
16.
ACS Appl Mater Interfaces ; 16(24): 31843-31850, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38841859

RESUMEN

Liquid crystal (LC) biosensors have received significant attention for their potential applications for point-of-care devices due to their sensitivity, low cost, and easy read-out. They have been employed to detect a wide range of important biological molecules. However, detecting the function of membrane proteins has been extremely challenging due to the difficulty of integrating membrane proteins, lipid membranes, and LCs into one system. In this study, we addressed this challenge by monitoring the proton-pumping function of bacteriorhodopsin (bR) using a pH-sensitive LC thin film biosensor. To achieve this, we deposited purple membranes (PMs) containing a 2D crystal form of bRs onto an LC-aqueous interface. Under light, the PM patches changed the local pH at the LC-aqueous interface, causing a color change in the LC thin film that is observable through a polarizing microscope with crossed polarizers. These findings open up new opportunities to study the biofunctions of membrane proteins and their induced local environmental changes in a solution using LC biosensors.


Asunto(s)
Bacteriorodopsinas , Técnicas Biosensibles , Cristales Líquidos , Técnicas Biosensibles/métodos , Cristales Líquidos/química , Concentración de Iones de Hidrógeno , Bacteriorodopsinas/química , Proteínas de la Membrana/química , Membrana Púrpura/química
17.
Analyst ; 149(14): 3828-3838, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38855814

RESUMEN

Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Lagos , Límite de Detección , Cristales Líquidos , Norfloxacino , Norfloxacino/análisis , Norfloxacino/química , Aptámeros de Nucleótidos/química , Cristales Líquidos/química , Lagos/análisis , Lagos/química , Técnicas Biosensibles/métodos , Suelo/química , Antibacterianos/análisis , Antibacterianos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Cetrimonio/química
18.
J Mater Chem B ; 12(28): 6757-6773, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38916076

RESUMEN

Deformable liquid crystal polymers (LCPs), which exhibit both entropic elasticity of polymer networks and anisotropic properties originating from ordered mesogens, have gained more and more interest for use as biomedical soft actuators. Especially, LCP actuators with controllable mesogen alignment, sophisticated geometry and reprogrammability are a rising star on the horizon of soft actuators, since they enable complex and multiple actuations. This review focuses on two topics: (1) the regulation of mesogen alignment and geometry of LCP actuators for complex actuations; (2) newly designed reprogrammable LCP materials for multiple actuations. First, basic actuation mechanisms are briefly introduced. Then, LCP actuators with complex actuations are demonstrated. Special attention is devoted to the improvement of fabrication methods, which profoundly influence the available complexity of the mesogen alignment and geometry. Subsequently, reprogrammable LCP actuators featuring dynamic networks or shape memory effects are discussed, with an emphasis on their multiple actuations. Finally, perspectives on the current challenges and potential development trends toward more intelligent LCP actuators are discussed, which may shed light on future investigations in this field.


Asunto(s)
Polímeros , Polímeros/química , Cristales Líquidos/química
19.
Biomacromolecules ; 25(7): 3920-3929, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38826125

RESUMEN

DNA oligomers in solution have been found to develop liquid crystal phases via a hierarchical process that involves Watson-Crick base pairing, supramolecular assembly into columns of duplexes, and long-range ordering. The multiscale nature of this phenomenon makes it difficult to quantitatively describe and assess the importance of the various contributions, particularly for very short strands. We performed molecular dynamics simulations based on the coarse-grained oxDNA model, aiming to depict all of the assembly processes involved and the phase behavior of solutions of the DNA GCCG tetramers. We find good quantitative matching to experimental data at both levels of molecular association (thermal melting) and collective ordering (phase diagram). We characterize the isotropic state and the low-density nematic and high-density columnar liquid crystal phases in terms of molecular order, size of aggregates, and structure, together with their effects on diffusivity processes. We observe a cooperative aggregation mechanism in which the formation of dimers is less thermodynamically favored than the formation of longer aggregates.


Asunto(s)
ADN , Cristales Líquidos , Simulación de Dinámica Molecular , ADN/química , Cristales Líquidos/química , Transición de Fase , Termodinámica , Conformación de Ácido Nucleico , Emparejamiento Base
20.
Acta Pharm ; 74(2): 301-313, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815204

RESUMEN

The principal function of skin is to form an effective barrier between the human body and its environment. Impaired barrier function represents a precondition for the development of skin diseases such as atopic dermatitis (AD), which is the most common inflammatory skin disease characterized by skin barrier dysfunction. AD significantly affects patients' quality of life, thus, there is a growing interest in the development of novel delivery systems that would improve therapeutic outcomes. Herein, eight novel lyotropic liquid crystals (LCCs) were investigated for the first time in a double-blind, interventional, before-after, single-group trial with healthy adult subjects and a twice-daily application regimen. LCCs consisted of constituents with skin regenerative properties and exhibited lamellar micro-structure, especially suitable for dermal application. The short- and long-term effects of LCCs on TEWL, SC hydration, erythema index, melanin index, and tolerability were determined and compared with baseline. LCCs with the highest oil content and lecithin/Tween 80 mixture stood out by providing a remarkable 2-fold reduction in TEWL values and showing the most distinctive decrease in skin erythema levels in both the short- and long-term exposure. Therefore, they exhibit great potential for clinical use as novel delivery systems for AD treatment, capable of repairing skin barrier function.


Asunto(s)
Administración Cutánea , Dermatitis Atópica , Aceite de Linaza , Cristales Líquidos , Piel , Humanos , Cristales Líquidos/química , Método Doble Ciego , Adulto , Masculino , Femenino , Piel/efectos de los fármacos , Piel/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Aceite de Linaza/química , Aceite de Linaza/farmacología , Adulto Joven , Eritema/tratamiento farmacológico , Cannabis/química , Persona de Mediana Edad , Sistemas de Liberación de Medicamentos/métodos , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA