RESUMEN
Several studies with kaempferol (KP) and linearolactone (LL) have demonstrated their antiparasitic activity. However, the toxicity of these treatments is unknown. Therefore, this study aimed to evaluate the possible toxicological effects of intraperitoneal (i.p.) administration of KP or LL on the amoebic liver abscess model (ALA) in Mesocricetus auratus. An ALA was induced in male hamsters with 1.5 × 105Entamoeba histolytica (E. histolytica) trophozoites inoculated in the left hepatic lobe. The lesion evolved for 4 days, and then KP (5 mg/kg body weight/day) or LL (10 mg/kg body weight/day) was administered for 4 consecutive days. Then, magnetic resonance imaging (MRI), paraclinical analyses, and necropsy for histopathological evaluation were performed. There was similar ALA inhibition by KP (19.42%), LL (28.16%), and metronidazole, the antiamoebic control (20.87%) (p ≤ 0.05, analysis of variance [ANOVA]). There were hepatic and renal biochemical alterations in all treatment groups, mainly for KP (aspartate aminotransferase: 347.5 ± 37.5 U/L; blood urea nitrogen: 19.4 ± 1.9 g/dL; p ≤ 0.05, ANOVA). Lesions found in the organs were directly linked to the pathology. In conclusion, KP and LL decreased ALA development and exerted fewer toxicological effects compared with metronidazole. Therefore, both compounds exhibit therapeutic potential as an alternative treatment of amoebiasis caused by E. histolytica. However, additional clinical studies in different contexts are required to reaffirm this assertion.
Asunto(s)
Quempferoles , Absceso Hepático Amebiano , Hígado , Mesocricetus , Animales , Absceso Hepático Amebiano/tratamiento farmacológico , Quempferoles/farmacología , Masculino , Hígado/efectos de los fármacos , Hígado/parasitología , Hígado/patología , Hígado/metabolismo , Entamoeba histolytica/efectos de los fármacos , Cricetinae , Modelos Animales de Enfermedad , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: The development of therapies and vaccines for various diseases often necessitates the analysis of cellular immunity. However, unlike other rodents, the limited availability of reagents for Syrian hamsters restricts immunological analysis, particularly in the determination of serum effector molecules such as cytokines. In this study, we aim to produce and characterize the cytokines IFN-γ, TGF-ß, IL-6, IL-10, and TNF-α from Syrian hamsters in recombinant form and to generate polyclonal antibodies against them in rats. METHODS AND RESULTS: Cytokine transcript sequences were cloned into expression vectors in E. coli. Recombinant proteins were produced, purified through affinity chromatography, and characterized by Western blot using an anti-6xHis monoclonal antibody. Rats were immunized with the recombinant proteins to generate polyclonal antibodies (pAbs). These pAbs were characterized by Western blot and titrated by indirect ELISA. The recombinant cytokines rTNF-α, rIL-10, rIFN-γ, rTGF-ß, and rIL-6 were produced and specifically recognized at their expected molecular weights of 22.3 kDa, 19.8 kDa, 18.9 kDa, 11.8 kDa, and 22.9 kDa. pAbs were produced and demonstrated the ability to specifically recognize their target proteins with titers of 409,600 (rIL-10), 204,800 (rTNF-α), 102,400 (rIL-10), 51,200 (rTGF-ß), and 25,600 (rIFN-É£). CONCLUSIONS: The reagents produced represent a starting point for developing immunoassays to detect hamster cytokines, facilitating the analysis of cellular immunity in this biomodel.
Asunto(s)
Citocinas , Inmunidad Celular , Mesocricetus , Proteínas Recombinantes , Animales , Citocinas/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Cricetinae , Ratas , Anticuerpos/inmunología , Escherichia coli/genética , Escherichia coli/metabolismoRESUMEN
BACKGROUND: Chronic Chagas cardiomyopathy (CCC) is caused by an inflammatory process induced by Trypanosoma cruzi, which leads to myocarditis with reactive and reparative fibrosis. CCC progresses with myocardial perfusion abnormalities and histopathological events that affect cardiorespiratory fitness (CRF). OBJECTIVES: We evaluated the effects of aerobic physical training (APT) on myocardial perfusion and on morphological and functional impairments related with inflammation and fibrosis in Syrian hamsters with CCC. As a secondary objective, we analyzed the cross-sectional areas of the skeletal muscle. METHODS: Hamsters with CCC and their respective controls were divided into four groups: CCC sedentary, CCC-APT, sedentary control and APT control. Seven months after infection, the animals underwent echocardiography, myocardial perfusion scintigraphy and cardiopulmonary exercise testing. Moderate-intensity APT was performed for fifty minutes, five times a week, for eight weeks. Subsequently, the animals were reassessed. Histopathological analysis was conducted after the above-mentioned procedures. The level of significance was set at 5% in all analyses (p<0.05). RESULTS: CCC sedentary animals presented worse myocardial perfusion defects (MPD) over time, reduced left ventricle ejection fraction (LVEF) and showed more inflammation and fibrosis when compared to other groups (mixed ANOVA analysis). Conversely, APT was able to mitigate the progression of MPD, ameliorate inflammation and fibrosis and improve CRF efficiency in CCC-APT animals. CONCLUSIONS: Our study demonstrated that APT ameliorated cardiac dysfunction, MPD, and reduced inflammation and fibrosis in CCC hamster models. Additionally, CCC-SED animals presented skeletal muscle atrophy while CCC-APT animals showed preserved skeletal muscle CSA. Understanding APT's effects on CCC's pathophysiological dimensions is crucial for future research and therapeutic interventions.
FUNDAMENTO: A Cardiomiopatia Chagásica Crônica (CCC) é causada por um processo inflamatório induzido pelo Trypanosoma cruzi, que leva à miocardite com fibrose reativa e reparativa. A CCC progride com alterações de perfusão miocárdica e eventos histopatológicos que afetam a Aptidão Cardiorrespiratória (ACR). OBJETIVOS: Avaliamos os efeitos do Treinamento Físico Aeróbico (TFA) na perfusão miocárdica e nos comprometimentos morfológicos e funcionais relacionados à inflamação e fibrose em hamsters sírios com CCC. Como objetivo secundário, analisamos as áreas de secção transversa do músculo esquelético. MÉTODOS: Hamsters com CCC e seus respectivos controles foram divididos em quatro grupos: CCC sedentário, CCC-TFA, controle sedentário e controle TFA. Sete meses após a infecção, os animais foram submetidos à ecocardiografia, à cintilografia de perfusão miocárdica e ao teste de esforço cardiopulmonar. TFA de intensidade moderada foi realizado durante cinquenta minutos, cinco vezes por semana, por oito semanas. Posteriormente, os animais foram reavaliados. A análise histopatológica foi realizada após os procedimentos acima mencionados. O nível de significância foi estabelecido em 5% em todas as análises (p<0,05). RESULTADOS: Animais com CCC sedentários apresentaram piores Defeitos de Perfusão Miocárdica (DPM) ao longo do tempo, Fração de Ejeção do Ventrículo Esquerdo (FEVE) reduzida, e apresentaram mais inflamação e fibrose quando comparados aos demais grupos (análise ANOVA mista). Por outro lado, o TFA foi capaz de mitigar a progressão do DPM, atenuar a inflamação e a fibrose e melhorar a eficiência da ACR em animais CCC-TFA. CONCLUSÃO: Nosso estudo demonstrou que o TFA melhorou a disfunção cardíaca, DPM e reduziu a inflamação e a fibrose em modelos de hamster com CCC. Além disso, os animais CCC-SED apresentaram atrofia do músculo esquelético, enquanto os animais CCC-TFA apresentaram a AST do músculo esquelético preservada. Compreender os efeitos da TFA nas dimensões fisiopatológicas da CCC é crucial para futuras pesquisas e intervenções terapêuticas.
Asunto(s)
Cardiomiopatía Chagásica , Modelos Animales de Enfermedad , Fibrosis , Condicionamiento Físico Animal , Animales , Cardiomiopatía Chagásica/fisiopatología , Cardiomiopatía Chagásica/terapia , Condicionamiento Físico Animal/fisiología , Enfermedad Crónica , Masculino , Miocardio/patología , Ecocardiografía , Cricetinae , Inflamación , Factores de Tiempo , Mesocricetus , Músculo Esquelético/fisiopatología , Músculo Esquelético/patología , Prueba de Esfuerzo , Imagen de Perfusión Miocárdica/métodos , Reproducibilidad de los Resultados , Miocarditis/fisiopatología , Miocarditis/terapiaRESUMEN
BACKGROUND: Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS: The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS: The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS: Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.
Asunto(s)
Antivirales , Fiebre Chikungunya , Virus Chikungunya , Sulfadoxina , Virus Chikungunya/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Animales , Línea Celular , Sulfadoxina/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Cricetinae , Bases de Schiff/farmacología , Plata/farmacología , Plata/química , Replicación Viral/efectos de los fármacos , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Humanos , AldehídosRESUMEN
Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms.Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT.Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells.Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.
Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.
Asunto(s)
Acetilcisteína , Antifúngicos , Biopelículas , Candida , Croton , Itraconazol , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Croton/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Itraconazol/farmacología , Antifúngicos/farmacología , Acetilcisteína/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Sinergismo Farmacológico , Animales , Línea Celular , Fluconazol/farmacología , CricetinaeRESUMEN
American tegumentary leishmaniasis (ATL) is highly endemic in the Amazon basin and occurs in all South American countries, except Chile and Uruguay. Most Brazilian ATL cases are due to Leishmania (Viannia) braziliensis, however other neglected Amazonian species are being increasingly reported. They belong to the subgenus L. (Viannia) and information on suitable models to understand immunopathology are scarce. Here, we explored the use of the golden hamster Mesocricetus auratus and its macrophages as a model for L. (Viannia) species. We also studied the interaction of parasite glycoconjugates (LPGs and GIPLs) in murine macrophages. The following strains were used: L. (V.) braziliensis (MHOM/BR/2001/BA788), L. (V.) guyanensis (MHOM/BR/85/M9945), L. (V.) shawi (MHOM/BR/96/M15789), L. (V.) lindenbergi (MHOM/BR/98/M15733) and L. (V.) naiffi (MDAS/BR/79/M5533). In vivo infections were initiated by injecting parasites into the footpad and were followed up at 20- and 40-days PI. Parasites were mixed with salivary gland extract (SGE) from wild-captured Nyssomyia neivai prior to in vivo infections. Animals were euthanized for histopathological evaluation of the footpads, spleen, and liver. The parasite burden was evaluated in the skin and draining lymph nodes. In vitro infections used resident peritoneal macrophages and THP-1 monocytes infected with all species using a MOI (1:10). For biochemical studies, glycoconjugates (LPGs and GIPLs) were extracted, purified, and biochemically characterized using fluorophore-assisted carbohydrate electrophoresis (FACE). They were functionally evaluated after incubation with macrophages from C57BL/6 mice and knockouts (TLR2-/- and TLR4-/-) for nitric oxide (NO) and cytokine/chemokine production. All species, except L. (V.) guyanensis, failed to generate evident macroscopic lesions 40 days PI. The L. (V.) guyanensis lesions were swollen but did not ulcerate and microscopically were characterized by an intense inflammatory exudate. Despite the fact the other species did not produce visible skin lesions there was no or mild pro-inflammatory infiltration at the inoculation site and parasites survived in the hamster skin/lymph nodes and even visceralized. Although none of the species caused severe disease in the hamster, they differentially infected peritoneal macrophages in vitro. LPGs and GIPLs were able to differentially trigger NO and cytokine production via TLR2/TLR4 and TLR4, respectively. The presence of a sidechain in L. (V.) lainsoni LPG (type II) may be responsible for its higher proinflammatory activity. After Principal Component analyses using all phenotypic features, the clustering of L. (V.) lainsoni was separated from all the other L. (Viannia) species. We conclude that M. auratus was a suitable in vivo model for at least four dermotropic L. (Viannia) species. However, in vitro studies using peritoneal cells are a suitable alternative for understanding interactions of the six L. (Viannia) species used here. LRV1 presence was found in L. (V.) guyanensis and L. (V.) shawi with no apparent correlation with virulence in vitro and in vivo. Finally, parasite glycoconjugates were able to functionally trigger various innate immune responses in murine macrophages via TLRs consistent with their inflammatory profile in vivo.
Asunto(s)
Modelos Animales de Enfermedad , Leishmania , Macrófagos , Mesocricetus , Animales , Macrófagos/parasitología , Macrófagos/inmunología , Ratones , Leishmania/patogenicidad , Cricetinae , Virulencia , Femenino , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Leishmaniasis Cutánea/inmunología , Glicoconjugados , MasculinoRESUMEN
BACKGROUND: Despite the well-recognized effectiveness of Ruscus aculetus extract combined or not with ascorbic acid (AA) and hesperidine methyl chalcone (HMC) on ischemia reperfusion (I/R) injury protection, little is known about the contribution of each constituent for this effect. OBJECTIVE: To investigate the effects of AA and HMC combined or not with Ruscus extract on increased macromolecular permeability and leukocyte-endothelium interaction induced by I/R injury. METHODS: Hamsters were treated daily during two weeks with filtered water (placebo), AA (33, 100 and 300âmg/kg/day) and HMC (50, 150 and 450âmg/kg/day) combined or not with Ruscus extract (50, 150 and 450âmg/kg/day). On the day of experiment, the cheek pouch microcirculation underwent 30âmin of ischemia, and the number of rolling and adherent leukocytes and leaky sites were evaluated before ischemia and during 45âmin of reperfusion. RESULTS: Ruscus extract combined with AA and HMC (Ruscus extract mixture) significantly prevented post-ischemic increase in leukocyte rolling and adhesion and macromolecular permeability compared to placebo and these effects were more prominent than AA and HMC alone on leukocyte adhesion and macromolecular leakage. CONCLUSION: Ruscus extract mixture were more effective than its isolated constituents in protect the hamster cheek pouch microcirculation against I/R injury.
Asunto(s)
Ácido Ascórbico , Leucocitos , Extractos Vegetales , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Cricetinae , Masculino , Chalconas/farmacología , Chalconas/uso terapéutico , Mesocricetus , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Hesperidina/análogos & derivadosRESUMEN
Leptospirosis, a neglected zoonotic disease, is caused by pathogenic spirochetes belonging to the genus Leptospira and has one of the highest morbidity and mortality rates worldwide. Vaccination stands out as one of the most effective preventive measures for susceptible populations. Within the outer membrane of Leptospira spp., we find the LIC12287, LIC11711, and LIC13259 lipoproteins. These are of interest due to their surface location and potential immunogenicity. Thorough examination revealed the conservation of these proteins among pathogenic Leptospira spp.; we mapped the distribution of T- and B-cell epitopes along their sequences and assessed the 3D structures of each protein. This information aided in selecting immunodominant regions for the development of a chimeric protein. Through gene synthesis, we successfully constructed a chimeric protein, which was subsequently expressed, purified, and characterized. Hamsters were immunized with the chimeric lipoprotein, formulated with adjuvants aluminum hydroxide, EMULSIGEN®-D, Sigma Adjuvant System®, and Montanide™ ISA206VG. Another group was vaccinated with an inactivated Escherichia coli bacterin expressing the chimeric protein. Following vaccination, hamsters were challenged with a virulent L. interrogans strain. Our evaluation of the humoral immune response revealed the production of IgG antibodies, detectable 28 days after the second dose, in contrast to pre-immune samples and control groups. This demonstrates the potential of the chimeric protein to elicit a robust humoral immune response; however, no protection against challenge was achieved. While this study provides valuable insights into the subject, further research is warranted to identify protective antigens that could be utilized in the development of a leptospirosis vaccine. KEY POINTS: ⢠Several T- and B-cell epitopes were identified in all the three proteins. ⢠Four different adjuvants were used in vaccine formulations. ⢠Immunization stimulated significant levels of IgG2/3 in vaccinated animals.
Asunto(s)
Anticuerpos Antibacterianos , Vacunas Bacterianas , Leptospirosis , Lipoproteínas , Animales , Leptospirosis/prevención & control , Leptospirosis/inmunología , Lipoproteínas/inmunología , Lipoproteínas/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Cricetinae , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/genética , Adyuvantes Inmunológicos/administración & dosificación , Inmunoglobulina G/sangre , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Leptospira interrogans/inmunología , Leptospira interrogans/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Vacunación , Inmunidad Humoral , Leptospira/inmunología , Leptospira/genética , Inmunogenicidad VacunalRESUMEN
Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein of the endosomal sorting complexes required for transport (ESCRT) machinery. Here, to study the role of different parts of EhADH during virulence events, we produced trophozoites overexpressing the three domains of EhADH, Bro1 (1-400 aa), Linker (246-446 aa) and Adh (444-687 aa) to evaluate their role in virulence. The TrophozBro11-400 slightly increased adherence and phagocytosis, but these trophozoites showed a higher ability to destroy cell monolayers, augment the permeability of cultured epithelial cells and mouse colon, and produce more damage to hamster livers. The TrophozLinker226-446 also increased the virulence properties, but with lower effect than the TrophozBro11-400. In addition, this fragment participates in cholesterol transport and GTPase binding. Interestingly, the TrophozAdh444-687 produced the highest effect on adherence and phagocytosis, but it poorly influenced the monolayers destruction; nevertheless, they augmented the colon and liver damage. To identify the protein partners of each domain, we used recombinant peptides. Pull-down assays and mass spectrometry showed that Bro1 domain interplays with EhADH, Gal/GalNAc lectin, EhCPs, ESCRT machinery components and cytoskeleton proteins. While EhADH, ubiquitin, EhRabB, EhNPC1 and EhHSP70 were associated to the Linker domain, and EhADH, EhHSP70, EhPrx and metabolic enzymes interacted to the Adh domain. The diverse protein association confirms that EhADH is a versatile molecule with multiple functions probably given by its capacity to form distinct molecular complexes.
Asunto(s)
Entamoeba histolytica , Proteínas Protozoarias , Entamoeba histolytica/patogenicidad , Entamoeba histolytica/metabolismo , Animales , Ratones , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Humanos , Virulencia , Fagocitosis , Dominios Proteicos , Entamebiasis/parasitología , Entamebiasis/metabolismo , Cricetinae , Trofozoítos/metabolismoRESUMEN
Hepatic injuries in COVID-19 are not yet fully understood and indirect pathways (without viral replication in the liver) have been associated with the activation of vascular mechanisms of liver injury in humans infected with SARS-CoV-2. Golden Syrian hamsters are an effective model for experimental reproduction of moderate and self-limiting lung disease during SARS-CoV-2 infection. As observed in humans, this experimental model reproduces lesions of bronchointerstitial pneumonia and pulmonary vascular lesions, including endotheliitis (attachment of lymphoid cells to the luminal surface of endothelium). Extrapulmonary vascular lesions are well documented in COVID-19, but such extrapulmonary vascular lesions have not yet been described in the Golden Syrian hamster model of SARS-CoV-2 infection. The study aimed to evaluate microscopic liver lesions in Golden Syrian hamsters experimentally infected with SARS-CoV-2. In total, 38 conventional Golden Syrian hamsters, divided into infected group (n=24) and mock-infected group (n=14), were euthanized at 2-, 3-, 4-, 5-, 7-, 14-, and 15-days post infection with SARS-CoV-2. Liver fragments were evaluated by histopathology and immunohistochemical detection of SARS-CoV-2 Spike S2 antigens. The frequencies of portal vein endotheliitis, lobular activity, hepatocellular degeneration, and lobular vascular changes were higher among SARS-CoV-2-infected animals. Spike S2 antigen was not detected in liver. The main results indicate that SARS-CoV-2 infection exacerbated vascular and inflammatory lesions in the liver of hamsters with pre-existing hepatitis of unknown origin. A potential application of this animal model in studies of the pathogenesis and evolution of liver lesions associated with SARS-CoV-2 infection still needs further evaluation.
Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Hígado , Mesocricetus , SARS-CoV-2 , Animales , COVID-19/patología , Cricetinae , Hígado/patología , Hígado/virología , MasculinoRESUMEN
BACKGROUND: Pressatia choti is a common sand fly found in the Atlantic Forest of Brazil, which is suspected to be involved in the transmission of Leishmania braziliensis. Herein, we aimed to establish a Pr. choti laboratory colony. METHODS: Wild-caught female sand flies were blood fed on hamsters and maintained under controlled conditions (temperature: 26 °C; relative humidity: 70%). RESULTS: Of the 301 collected female sandflies, 288 were identified as Pr. choti. The life cycle duration ranged from 31 to 56 days. CONCLUSIONS: We successfully established a Pr. choti colony, whose biological parameters were similar to those of other neotropical sand flies.
Asunto(s)
Insectos Vectores , Leishmania braziliensis , Psychodidae , Animales , Psychodidae/clasificación , Psychodidae/parasitología , Femenino , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Brasil , CricetinaeRESUMEN
Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Pollos , Yema de Huevo , Inmunoglobulinas , SARS-CoV-2 , Animales , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Pollos/inmunología , Cricetinae , Inmunoglobulinas/inmunología , Yema de Huevo/inmunología , Anticuerpos Antivirales/inmunología , Femenino , Mesocricetus , Vacunas contra la COVID-19/inmunologíaRESUMEN
Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.
Asunto(s)
Alcaloides , Antiprotozoarios , Benzodioxoles , Curcumina , Leishmania braziliensis , Leishmaniasis Cutánea , Piperidinas , Alcamidas Poliinsaturadas , Cricetinae , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Curcumina/farmacología , Leishmaniasis Cutánea/parasitología , Alcaloides/farmacología , Alcaloides/uso terapéutico , Mesocricetus , Antiprotozoarios/farmacologíaRESUMEN
Five peptides were isolated from the venom of the Mexican scorpion Centruroides bonito by chromatographic procedures (molecular weight sieving, ion exchange columns, and HPLC) and were denoted Cbo1 to Cbo5. The first four peptides contain 66 amino acid residues and the last one contains 65 amino acids, stabilized by four disulfide bonds, with a molecular weight spanning from about 7.5 to 7.8 kDa. Four of them are toxic to mice, and their function on human Na+ channels expressed in HEK and CHO cells was verified. One of them (Cbo5) did not show any physiological effects. The ones toxic to mice showed that they are modifiers of the gating mechanism of the channels and belong to the beta type scorpion toxin (ß-ScTx), affecting mainly the Nav1.6 channels. A phylogenetic tree analysis of their sequences confirmed the high degree of amino acid similarities with other known bona fide ß-ScTx. The envenomation caused by this venom in mice is treated by using commercially horse antivenom available in Mexico. The potential neutralization of the toxic components was evaluated by means of surface plasmon resonance using four antibody fragments (10FG2, HV, LR, and 11F) which have been developed by our group. These antitoxins are antibody fragments of single-chain antibody type, expressed in E. coli and capable of recognizing Cbo1 to Cbo4 toxins to various degrees.
Asunto(s)
Animales Ponzoñosos , Perciformes , Ponzoñas , Humanos , Cricetinae , Animales , Caballos , Ratones , Escorpiones , Cricetulus , Escherichia coli , Filogenia , Antivenenos , Aminoácidos , Fragmentos de Inmunoglobulinas , PéptidosRESUMEN
Nonspecific hypergammaglobulinemia (HGG) occurs in symptomatic human visceral leishmaniasis (VL) caused by L. L. infantum. This study assessed this finding in experimental infection in hamsters and natural infection in dogs. The serum concentration of proteins, albumin and globulins was determined through the biuret and bromocresol green reaction, where the HGG was better expressed through the albumin/globulin (A/G) ratio. HGG was associated with a higher concentration of specific anti-glycan antibodies (BSA-G)/promastigote soluble extract (PSE) and the presence of circulating immune complexes (IC) by dissociative enzyme-linked immunoassay (ELISA). The study found monovalent IC in 37.9% (PSE) and 50% (BSA-G) of sera from infected hamsters, with increased frequency as the disease progressed. HGG was found in >60% of the samples in dogs with VL, associated with higher levels of specific immunoglobulin (Ig)A and IgM, but not IgG, determined using the PSE and BSA-G ELISA. HGG was associated with the presence of monovalent IC in 58.9% (PSE) and 63.4% (BSA-G) positive dog samples. HGG may result not only from the nonspecific activation of B cells, with greater production of specific and nonspecific antibodies, but also due to lower IgG excretion due to the presence of soluble monovalent IC. HGG correlates to the progression of VL and may be a marker for manifested disease.
Asunto(s)
Enfermedades de los Perros , Leishmania infantum , Leishmaniasis Visceral , Cricetinae , Humanos , Animales , Perros , Hipergammaglobulinemia , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antiprotozoarios , Complejo Antígeno-Anticuerpo , AlbúminasRESUMEN
Leptospirosis is a zoonotic disease with significant public health and economic impact worldwide. Rapid and accurate diagnosis is essential for effective prevention and treatment. This study optimized a loop-mediated isothermal amplification (LAMP) assay using BFo isothermal DNA polymerase with different colorimetric indicators. LAMP was able to detect DNA from pathogenic and intermediate leptospires, while non-pathogenic leptospires and other non-leptospiral microorganisms were negative. LAMP assay combined with calcein showed a tenfold higher limit of detection (1 ng of leptospiral DNA per reaction) than LAMP combined with hydroxynaphthol blue or end-point PCR lipL32 (10 ng of DNA per reaction). Animal samples were collected from infected and non-infected Golden Syrian hamsters (Mesocricetus auratus) to evaluate and compare the performance of LAMP and PCR. These techniques showed a substantial agreement according to Cohen's kappa statistic, being both useful techniques for detecting leptospiral DNA in clinical samples. Overall, this study demonstrates that the LAMP assay is a sensitive, specific, rapid, and simple tool for the detection of leptospiral DNA. It has the potential to facilitate the diagnosis of leptospirosis, particularly in low-income regions with limited diagnosis resources.
Asunto(s)
Leptospira , Leptospirosis , Animales , Cricetinae , ADN , Leptospira/genética , Leptospirosis/diagnóstico , Leptospirosis/veterinaria , Mesocricetus , Reacción en Cadena de la Polimerasa/veterinaria , Sensibilidad y EspecificidadRESUMEN
Human ß3-adrenoceptor (ß3AR) agonists were considered potential agents for the treatment of metabolic disorders. However, compounds tested as ß3AR ligands have shown marked differences in pharmacological profile in rodent and human species, although these compounds remain attractive as they were successfully repurposed for the therapy of urinary incontinence. In this work, some biarylamine compounds were designed and tested in silico as potential ß3AR agonists on 3-D models of mouse or human ß3ARs. Based on the theoretical results, we identified, synthesized and tested a biarylamine compound (polibegron). In CHO-K1 cells expressing the human ß3AR, polibegron and the ß3AR agonist BRL 37344 were partial agonists for stimulating cAMP accumulation (50 and 57% of the response to isoproterenol, respectively). The potency of polibegron was 1.71- and 4.5-fold higher than that of isoproterenol and BRL37344, respectively. These results indicate that polibegron acts as a potent, but partial, agonist at human ß3ARs. In C57BL/6N mice with obesity induced by a high-fat diet, similar effects of the equimolar intraperitoneal administration of polibegron and BRL37344 were observed on weight, visceral fat and plasma levels of glucose, cholesterol and triglycerides. Similarities and differences between species related to ligand-receptor interactions can be useful for drug designing.
Asunto(s)
Agonistas Adrenérgicos beta , Receptores Adrenérgicos beta 3 , Cricetinae , Humanos , Ratones , Animales , Isoproterenol , Receptores Adrenérgicos beta 3/metabolismo , Ratones Endogámicos C57BL , Células CHO , Cricetulus , Agonistas Adrenérgicos beta/farmacologíaRESUMEN
The main challenges associated with leishmaniasis chemotherapy are drug toxicity, the possible emergence of resistant parasites, and a limited choice of therapeutic agents. Therefore, new drugs and assays to screen and detect novel active compounds against leishmaniasis are urgently needed. We thus validated Leishmania braziliensis (Lb) and Leishmania infantum (Li) that constitutively express the tandem tomato red fluorescent protein (tdTomato) as a model for large-scale screens of anti-Leishmania compounds. Confocal microscopy of Lb and Li::tdTomato revealed red fluorescence distributed throughout the entire parasite, including the flagellum, and flow cytometry confirmed that the parasites emitted intense fluorescence. We evaluated the infectivity of cloned promastigotes and amastigotes constitutively expressing tdTomato, their growth profiles in THP-1 macrophages, and susceptibility to trivalent antimony, amphotericin, and miltefosine in vitro. The phenotypes of mutant and wild-type parasites were similar, indicating that the constitutive expression of tdTomato did not interfere with the evaluated parameters. We applied our validated model to a repositioning strategy and assessed the susceptibility of the parasites to eight commercially available drugs. We also screened 32 natural plant and fungal extracts and 10 pure substances to reveal new active compounds. The infectivity and Glucantime treatment efficacy of BALB/c mice and golden hamsters infected with Lb and Li::tdTomato mutant lines, respectively, were very similar compared to animals infected with wild-type parasites. Standardizing our methodology would offer more rapid, less expensive, and easier assays to screen of compounds against L. braziliensis and L. infantum in vitro and in vivo. Our method could also enhance the discovery of active compounds for treating leishmaniasis.
Asunto(s)
Antiprotozoarios , Leishmania braziliensis , Leishmania infantum , Leishmaniasis , Cricetinae , Animales , Ratones , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Fluorescencia , Leishmaniasis/tratamiento farmacológico , Leishmania infantum/genética , Leishmania braziliensis/genética , Mesocricetus , Ratones Endogámicos BALB CRESUMEN
To study the estrogen regulated transcription of the uteroglobin (UG) gene, the founding member of the secretoglobin family widely expressed in many different mammalian species, we re-created functional estrogen response elements (EREs) in the UG gene promoter from a species where UG expression is not regulated by estrogens: the hamster Mesocricetus auratus (Ma), to ascertain if the lack of functional EREs is the real cause of its estrogen insensitivity. Functional EREs in the hamster promoter, including the consensus ERE (cERE), failed to respond to an appropriate estrogen stimulus compared with its estrogen regulated ortholog from the brown hare Lepus capensis (Lc). As the nucleotide sequence is the only difference between genetic constructs from these two species, we suspected that the UG promoter from the hamster probably contains cis-acting genetic elements that negatively impairs the estrogen-regulated transcription mediated by the functional ERE. Accordingly, we prepared chimeric DNA constructs which eventually allowed to identify a region located 29 base pairs (bp) downstream of the ERE as responsible for the lack of estrogen-responsiveness of the Ma-UG gene in the breast cancer cell line MCF-7. This region contains the sequence ACACCCC which has been identified as the core sequence of the Sp/ Krüppel-like factor (KLF) family of transcription factors. This finding is relevant, not only due to the observation on a novel mechanism that control estrogen-induced transcription, but also because it may encourage further investigation for better defining specific genes with an ERE that do not respond to estrogen signaling in MCF-7 cells, a cell line widely employed as an in vitro model in breast cancer research.
Asunto(s)
Neoplasias de la Mama , Liebres , Cricetinae , Animales , Humanos , Femenino , Células MCF-7 , Uteroglobina/genética , Secuencia de Bases , Estrógenos/farmacología , Estrógenos/metabolismo , Neoplasias de la Mama/genética , Liebres/metabolismo , Transcripción Genética , Estradiol/farmacologíaRESUMEN
IFNß (recombinant interferon Beta) has been widely used for the treatment of Multiple sclerosis for the last four decades. Despite the human origin of the IFNß sequence, IFNß is immunogenic, and unwanted immune responses in IFNß-treated patients may compromise its efficacy and safety in the clinic. In this study, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of IFNß-1a. Two de-immunized versions of IFNß-1a were produced in CHO cells and designated as IFNß-1a(VAR1) and IFNß-1a(VAR2). First, the secondary and tertiary protein structures were analyzed by circular dichroism spectroscopy. Then, the variants were also tested for functionality. While IFNß-1a(VAR2) showed similar in vitro antiviral activity to the original protein, IFNß-1a(VAR1) exhibited 40% more biological potency. Finally, in vivo assays using HLA-DR transgenic mice revealed that the de-immunized variants showed a markedly reduced immunogenicity when compared to the originator.