Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Viruses ; 16(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205188

RESUMEN

The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied. SARS-CoVs, in which 3a-PBM and E-PMB have been deleted (3a-PBM-/E-PBM-), reduced their titer around one logarithmic unit but still were viable. In addition, the absence of the E-PBM and the replacement of 3a-PBM with that of E did not allow the rescue of SARS-CoV. E protein PBM was necessary for virulence, activating p38-MAPK through the interaction with Syntenin-1 PDZ domain. However, the presence or absence of the homologous motif in the 3a protein, which does not bind to Syntenin-1, did not affect virus pathogenicity. Mutagenesis analysis and in silico modeling were performed to study the extension of the PBM of the SARS-CoV E protein. Alanine and glycine scanning was performed revealing a pair of amino acids necessary for optimum virus replication. The binding of E protein with the PDZ2 domain of the Syntenin-1 homodimer induced conformational changes in both PDZ domains 1 and 2 of the dimer.


Asunto(s)
Proteínas de la Envoltura de Coronavirus , Dominios PDZ , Unión Proteica , SARS-CoV-2 , Humanos , Virulencia , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Envoltura de Coronavirus/genética , Animales , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , COVID-19/virología , Chlorocebus aethiops , Células Vero , Secuencias de Aminoácidos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Replicación Viral
2.
J Virol ; 98(8): e0034224, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39028202

RESUMEN

The recurrent spillovers of coronaviruses (CoVs) have posed severe threats to public health and the global economy. Bat severe acute respiratory syndrome (SARS)-like CoVs RsSHC014 and WIV1, currently circulating in bat populations, are poised for human emergence. The trimeric spike (S) glycoprotein, responsible for receptor recognition and membrane fusion, plays a critical role in cross-species transmission and infection. Here, we determined the cryo-electron microscopy (EM) structures of the RsSHC014 S protein in the closed state at 2.9 Å, the WIV1 S protein in the closed state at 2.8 Å, and the intermediate state at 4.0 Å. In the intermediate state, one receptor-binding domain (RBD) is in the "down" position, while the other two RBDs exhibit poor density. We also resolved the complex structure of the WIV1 S protein bound to human ACE2 (hACE2) at 4.5 Å, which provides structural basis for the future emergence of WIV1 in humans. Through biochemical experiments, we found that despite strong binding affinities between the RBDs and both human and civet ACE2, the pseudoviruses of RsSHC014, but not WIV1, failed to infect 293T cells overexpressing either human or civet ACE2. Mutagenesis analysis revealed that the Y623H substitution, located in the SD2 region, significantly improved the cell entry efficiency of RsSHC014 pseudoviruses, which is likely accomplished by promoting the open conformation of spike glycoproteins. Our findings emphasize the necessity of both efficient RBD lifting and tight RBD-hACE2 binding for viral infection and underscore the significance of the 623 site of the spike glycoprotein for the infectivity of bat SARS-like CoVs. IMPORTANCE: The bat SARS-like CoVs RsSHC014 and WIV1 can use hACE2 for cell entry without further adaptation, indicating their potential risk of emergence in human populations. The S glycoprotein, responsible for receptor recognition and membrane fusion, plays a crucial role in cross-species transmission and infection. In this study, we determined the cryo-EM structures of the S glycoproteins of RsSHC014 and WIV1. Detailed comparisons revealed dynamic structural variations within spike proteins. We also elucidated the complex structure of WIV1 S-hACE2, providing structural evidence for the potential emergence of WIV1 in humans. Although RsSHC014 and WIV1 had similar hACE2-binding affinities, they exhibited distinct pseudovirus cell entry behavior. Through mutagenesis and cryo-EM analysis, we revealed that besides the structural variations, the 623 site in the SD2 region is another important structural determinant of spike infectivity.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Quirópteros , Microscopía por Crioelectrón , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , Quirópteros/virología , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Internalización del Virus , Modelos Moleculares , Conformación Proteica , Células HEK293
3.
Biochemistry ; 63(10): 1235-1240, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718213

RESUMEN

Nonstructural protein 1 (nsp1) of the severe acute respiratory syndrome coronavirus (SCOV1 and SCOV2) acts as a host shutoff protein by blocking the translation of host mRNAs and triggering their decay. Surprisingly, viral RNA, which resembles host mRNAs containing a 5'-cap and a 3'-poly(A) tail, escapes significant translation inhibition and RNA decay, aiding viral propagation. Current literature proposes that, in SCOV2, nsp1 binds the viral RNA leader sequence, and the interaction may serve to distinguish viral RNA from host mRNA. However, a direct binding between SCOV1 nsp1 and the corresponding RNA leader sequence has not been established yet. Here, we show that SCOV1 nsp1 binds to the SCOV1 RNA leader sequence but forms multiple complexes at a high concentration of nsp1. These complexes are marginally different from complexes formed with SCOV2 nsp1. Finally, mutations of the RNA stem-loop did not completely abolish RNA binding by nsp1, suggesting that an RNA secondary structure is more important for binding than the sequence itself. Understanding the nature of binding of nsp1 to viral RNA will allow us to understand how this viral protein selectively suppresses host gene expression.


Asunto(s)
ARN Viral , Proteínas no Estructurales Virales , ARN Viral/metabolismo , ARN Viral/genética , ARN Viral/química , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Unión Proteica , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Regiones no Traducidas 5' , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Polimerasa Dependiente del ARN
4.
PLoS Pathog ; 20(5): e1012158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805567

RESUMEN

SARS-CoV-2 is the third known coronavirus (CoV) that has crossed the animal-human barrier in the last two decades. However, little structural information exists related to the close genetic species within the SARS-related coronaviruses. Here, we present three novel SARS-related CoV spike protein structures solved by single particle cryo-electron microscopy analysis derived from bat (bat SL-CoV WIV1) and civet (cCoV-SZ3, cCoV-007) hosts. We report complex glycan trees that decorate the glycoproteins and density for water molecules which facilitated modeling of the water molecule coordination networks within structurally important regions. We note structural conservation of the fatty acid binding pocket and presence of a linoleic acid molecule which are associated with stabilization of the receptor binding domains in the "down" conformation. Additionally, the N-terminal biliverdin binding pocket is occupied by a density in all the structures. Finally, we analyzed structural differences in a loop of the receptor binding motif between coronaviruses known to infect humans and the animal coronaviruses described in this study, which regulate binding to the human angiotensin converting enzyme 2 receptor. This study offers a structural framework to evaluate the close relatives of SARS-CoV-2, the ability to inform pandemic prevention, and aid in the development of pan-neutralizing treatments.


Asunto(s)
Quirópteros , Microscopía por Crioelectrón , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/química , Animales , Humanos , Quirópteros/virología , COVID-19/virología , Sitios de Unión , Betacoronavirus , Secuencias de Aminoácidos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Modelos Moleculares , Unión Proteica
5.
J Biol Chem ; 299(12): 105460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977224

RESUMEN

The motifs involved in tropism and immunological interactions of SARS-CoV spike (S) protein were investigated utilizing the Qubevirus platform. We showed that separately, 14 overlapping peptide fragments representing the S protein (F1-14 of 100 residues each) could be inserted into the C terminus of A1 on recombinant Qubevirus without affecting its viability. Additionally, recombinant phage expression resulted in the surface exposure of different engineered fragments in an accessible manner. The F6 from S425-525 was found to contain the binding determinant of the recombinant human angiotensin-converting enzyme 2, with the shortest active binding motif situated between residues S437-492. Upstream, another fragment, F7, containing an overlapping portion of F6 would not bind to recombinant human angiotensin-converting enzyme 2, confirming that a contiguous stretch of residues could adopt the appropriate structural orientation of F6 as an insertion within the Qubevirus. The F6 (S441-460) and other inserts, including F7/F8 (S601-620) and F10 (S781-800), were demonstrated to contain important immunological determinants through recognition and binding of S protein specific (anti-S) antibodies. An engineered chimeric insert bearing the fusion of all three anti-S reactive epitopes improved substantially the recognition and binding to their cognate antibodies. These results provide insights into humoral immune relevant epitopes and tropism characteristics of the S protein with implications for the development of subunit vaccines or other biologics against SARS-CoV.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Biblioteca de Péptidos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
J Virol ; 97(7): e0061023, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367229

RESUMEN

Members of the Sarbecovirus subgenus of Coronaviridae have twice caused deadly threats to humans. There is increasing concern about the rapid mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has evolved into multiple generations of epidemic variants in 3 years. Broad neutralizing antibodies are of great importance for pandemic preparedness against SARS-CoV-2 variants and divergent zoonotic sarbecoviruses. Here, we analyzed the structural conservation of the receptor-binding domain (RBD) from representative sarbecoviruses and chose S2H97, a previously reported RBD antibody with ideal breadth and resistance to escape, as a template for computational design to enhance the neutralization activity and spectrum. A total of 35 designs were purified for evaluation. The neutralizing activity of a large proportion of these designs against multiple variants was increased from several to hundreds of times. Molecular dynamics simulation suggested that extra interface contacts and enhanced intermolecular interactions between the RBD and the designed antibodies are established. After light and heavy chain reconstitution, AI-1028, with five complementarity determining regions optimized, showed the best neutralizing activity across all tested sarbecoviruses, including SARS-CoV, multiple SARS-CoV-2 variants, and bat-derived viruses. AI-1028 recognized the same cryptic RBD epitope as the parental prototype antibody. In addition to computational design, chemically synthesized nanobody libraries are also a precious resource for rapid antibody development. By applying distinct RBDs as baits for reciprocal screening, we identified two novel nanobodies with broad activities. These findings provide potential pan-sarbecovirus neutralizing drugs and highlight new pathways to rapidly optimize therapeutic candidates when novel SARS-CoV-2 escape variants or new zoonotic coronaviruses emerge. IMPORTANCE The subgenus Sarbecovirus includes human SARS-CoV, SARS-CoV-2, and hundreds of genetically related bat viruses. The continuous evolution of SARS-CoV-2 has led to the striking evasion of neutralizing antibody (NAb) drugs and convalescent plasma. Antibodies with broad activity across sarbecoviruses would be helpful to combat current SARS-CoV-2 mutations and longer term animal virus spillovers. The study of pan-sarbecovirus NAbs described here is significant for the following reasons. First, we established a structure-based computational pipeline to design and optimize NAbs to obtain more potent and broader neutralizing activity across multiple sarbecoviruses. Second, we screened and identified nanobodies from a highly diversified synthetic library with a broad neutralizing spectrum using an elaborate screening strategy. These methodologies provide guidance for the rapid development of antibody therapeutics against emerging pathogens with highly variable characteristics.


Asunto(s)
Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos de Dominio Único , Animales , Humanos , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Anticuerpos ampliamente neutralizantes/biosíntesis , Anticuerpos ampliamente neutralizantes/química , Anticuerpos ampliamente neutralizantes/metabolismo , Quirópteros , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Unión Proteica
7.
J Mol Model ; 28(10): 305, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36074206

RESUMEN

The pandemic of COVID-19 severe acute respiratory syndrome, which was fatal for millions of people worldwide, triggered the race to understand in detail the molecular mechanisms of this disease. In this work, the differences of interactions between the SARS-CoV/SARS-CoV-2 Receptor binding domain (RBD) and the human Angiotensin Converting Enzyme 2 (ACE2) receptor were studied using in silico tools. Our results show that SARS-CoV-2 RBD is more stable and forms more interactions with ACE2 than SARS-CoV. At its interface, three stable binding patterns are observed and named red-K31, green-K353 and blue-M82 according to the central ACE2 binding residue. In SARS-CoV instead, only the first two binding patches are persistently formed during the MD simulation. Our MM/GBSA calculations indicate the binding free energy difference of about 2.5 kcal/mol between SARS-CoV-2 and SARS-CoV which is compatible with the experiments. The binding free energy decomposition points out that SARS-CoV-2 RBD-ACE2 interactions of the red-K31 ([Formula: see text]) and blue-M82 ([Formula: see text]) patterns contribute more to the binding affinity than in SARS-CoV ([Formula: see text] for red-K31), while the contribution of the green-K353 pattern is very similar in the two strains ([Formula: see text] and [Formula: see text] for SARS-CoV-2 and SARS-CoV, respectively). Five groups of mutations draw our attention at the RBD-ACE2 binding interface, among them, the mutation -PPA469-471/GVEG482-485 has the most important and favorable impact on SARS-CoV-2 binding to the ACE2 receptor. These results, highlighting the molecular differences in the binding between the two viruses, contribute to the common knowledge about the new corona virus and to the development of appropriate antiviral treatments, addressing the necessity of ongoing pandemics.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Enzima Convertidora de Angiotensina 2 , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
J Inorg Biochem ; 236: 111953, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35969975

RESUMEN

A novel series of metal(II) complexes (1-5) [MII(L)2]{Where M = Cu (1), Co (2), Mn (3), Ni (4) and Zn (5)} constructed from 2-(4-morpholinobenzylideneamino)phenol Schiff base ligand (HL) in a 1:2 M ratio and the spectral and analytical results put forward square planar geometry. Spectro-electrochemical, hydrodynamic, gel electrophoresis, and DNA binding/cleavage results for all the compounds demonstrate that complex (1) had excellent DNA binding/cleavage properties compared to other compounds. The observation also suggests that test compounds could intercalate with DNA, and the biothermodynamic property more strongly supports the stabilizing of the double helix DNA with the complexes. BSA binding constant results show that complex (1) exposes the best binding property via a static mode, which is further confirmed by FRET calculations. The DFT calculations and docking results for all compounds towards DNA, BSA and SARS-CoV-19 main protease (3CLPro), reveal the binding energies were in the range of -7.8 to -9.4, -6.6 to -10.2 and - 6.1 - -8.2 kcal/mol for all test compounds respectively. In this case, complexes showed favorable binding energies compared to free ligand, which stimulates further studies aimed at validating the predicted activity as well as contributing to tackling the current and future viral pandemics. The in-vitro antioxidant, antimicrobial, and anticancer results for all compounds revealed that copper complex (1) has better activity compared to others. This might result in an effective anticancer drug for future research, which is especially promising since the observed experimental results for all cases were in close agreement with the theoretical calculations.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Complejos de Coordinación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Antiinfecciosos/química , Antineoplásicos/química , Antioxidantes/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , ADN/química , División del ADN , Ligandos , Metales/química , Simulación del Acoplamiento Molecular , Morfolinas/farmacología , Péptido Hidrolasas/metabolismo , Fenoles , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Bases de Schiff/química
9.
Front Immunol ; 13: 912717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784331

RESUMEN

We present evidence suggesting that the severe acute respiratory syndrome (SARS) coronavirus non-structural protein 13 (Nsp13) modulates the Z-RNA dependent regulated cell death pathways . We show that Z-prone sequences [called flipons] exist in coronavirus and provide a signature (Z-sig) that enables identification of the animal viruses from which the human pathogens arose. We also identify a potential RIP Homology Interaction Motif (RHIM) in the helicase Nsp13 that resembles those present in proteins that initiate Z-RNA-dependent cell death through interactions with the Z-RNA sensor protein ZBP1. These two observations allow us to suggest a model in which Nsp13 down regulates Z-RNA activated innate immunity by two distinct mechanisms. The first involves a novel ATP-independent Z-flipon helicase (flipase) activity in Nsp13 that differs from that of canonical A-RNA helicases. This flipase prevents formation of Z-RNAs that would otherwise activate cell death pathways. The second mechanism likely inhibits the interactions between ZBP1 and the Receptor Interacting Proteins Kinases RIPK1 and RIPK3 by targeting their RHIM domains. Together the described Nsp13 RHIM and flipase activities have the potential to alter the host response to coronaviruses and impact the design of drugs targeting the Nsp13 protein. The Z-sig and RHIM domains may provide a way of identifying previously uncharacterized viruses that are potentially pathogenic for humans.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Síndrome Respiratorio Agudo Grave , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Coronavirus/metabolismo , ADN Helicasas/metabolismo , ARN , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo
10.
Proc Biol Sci ; 289(1979): 20220193, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35892217

RESUMEN

Pandemics originating from non-human animals highlight the need to understand how natural hosts have evolved in response to emerging human pathogens and which groups may be susceptible to infection and/or potential reservoirs to mitigate public health and conservation concerns. Multiple zoonotic coronaviruses, such as severe acute respiratory syndrome-associated coronavirus (SARS-CoV), SARS-CoV-2 and Middle Eastern respiratory syndrome-associated coronavirus (MERS-CoV), are hypothesized to have evolved in bats. We investigate angiotensin-converting enzyme 2 (ACE2), the host protein bound by SARS-CoV and SARS-CoV-2, and dipeptidyl-peptidase 4 (DPP4 or CD26), the host protein bound by MERS-CoV, in the largest bat datasets to date. Both the ACE2 and DPP4 genes are under strong selection pressure in bats, more so than in other mammals, and in residues that contact viruses. Additionally, mammalian groups vary in their similarity to humans in residues that contact SARS-CoV, SARS-CoV-2 and MERS-CoV, and increased similarity to humans in binding residues is broadly predictive of susceptibility to SARS-CoV-2. This work augments our understanding of the relationship between coronaviruses and mammals, particularly bats, provides taxonomically diverse data for studies of how host proteins are bound by coronaviruses and can inform surveillance, conservation and public health efforts.


Asunto(s)
Quirópteros , Coronavirus del Síndrome Respiratorio de Oriente Medio , Receptores de Coronavirus , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Quirópteros/genética , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/metabolismo
11.
FEBS Open Bio ; 12(9): 1602-1622, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689514

RESUMEN

Highly pathogenic human coronaviruses (CoV) including SARS-CoV, MERS-CoV and SARS-CoV-2 have emerged over the past two decades, resulting in infectious disease outbreaks that have greatly affected public health. The CoV surface spike (S) glycoprotein mediates receptor binding and membrane fusion for cell entry, playing critical roles in CoV infection and evolution. The S glycoprotein is also the major target molecule for prophylactic and therapeutic interventions, including neutralizing antibodies and vaccines. In this review, we summarize key studies that have revealed the structural basis of S-mediated cell entry of SARS-CoV, MERS-CoV and SARS-CoV-2. Additionally, we discuss the evolution of the S glycoprotein to realize cross-species transmission from the viewpoint of structural biology. Lastly, we describe the recent progress in developing antibodies, nanobodies and peptide inhibitors that target the SARS-CoV-2 S glycoprotein for therapeutic purposes.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Glicoproteína de la Espiga del Coronavirus , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus
12.
Viruses ; 14(4)2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35458397

RESUMEN

Coronaviruses (CoVs) have caused several global outbreaks with relatively high mortality rates, including Middle East Respiratory Syndrome coronavirus (MERS)-CoV, which emerged in 2012, and Severe Acute Respiratory Syndrome (SARS)-CoV-1, which appeared in 2002. The recent emergence of SARS-CoV-2 highlights the need for immediate and greater understanding of the immune evasion mechanisms used by CoVs. Interferon (IFN)-α is the body's natural antiviral agent, but its Janus kinase/signal transducer and activators of transcription (JAK/STAT) signalling pathway is often antagonized by viruses, thereby preventing the upregulation of essential IFN stimulated genes (ISGs). Therapeutic IFN-α has disappointingly weak clinical responses in MERS-CoV and SARS-CoV-1 infected patients, indicating that these CoVs inhibit the IFN-α JAK/STAT pathway. Here we show that in lung alveolar A549 epithelial cells expression of MERS-CoV-nsp2 and SARS-CoV-1-nsp14, but not MERS-CoV-nsp5, increased basal levels of total and phosphorylated STAT1 & STAT2 protein, but reduced IFN-α-mediated phosphorylation of STAT1-3 and induction of MxA. While MERS-CoV-nsp2 and SARS-CoV-1-nsp14 similarly increased basal levels of STAT1 and STAT2 in bronchial BEAS-2B epithelial cells, unlike in A549 cells, they did not enhance basal pSTAT1 nor pSTAT2. However, both viral proteins reduced IFN-α-mediated induction of pSTAT1-3 and ISGs (MxA, ISG15 and PKR) in BEAS-2B cells. Furthermore, even though IFN-α-mediated induction of pSTAT1-3 was not affected by MERS-CoV-nsp5 expression in BEAS-2B cells, downstream ISG induction was reduced, revealing that MERS-CoV-nsp5 may use an alternative mechanism to reduce antiviral ISG induction in this cell line. Indeed, we subsequently discovered that all three viral proteins inhibited STAT1 nuclear translocation in BEAS-2B cells, unveiling another layer of inhibition by which these viral proteins suppress responses to Type 1 IFNs. While these observations highlight cell line-specific differences in the immune evasion effects of MERS-CoV and SARS-CoV-1 proteins, they also demonstrate the broad spectrum of immune evasion strategies these deadly coronaviruses use to stunt antiviral responses to Type IFN.


Asunto(s)
Interferón-alfa , Quinasas Janus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Factores de Transcripción STAT , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Antivirales/farmacología , COVID-19 , Células Epiteliales/metabolismo , Humanos , Interferón-alfa/metabolismo , Quinasas Janus/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2 , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo
13.
Cells ; 11(8)2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455955

RESUMEN

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (RBDCoV2) has a higher binding affinity to the human receptor angiotensin-converting enzyme 2 (ACE2) than the SARS-CoV RBD (RBDCoV). Here, we performed molecular dynamics (MD) simulations, binding free energy (BFE) calculations, and interface residue contact network (IRCN) analysis to explore the mechanistic origin of different ACE2-binding affinities of the two RBDs. The results demonstrate that, when compared to the RBDCoV2-ACE2 complex, RBDCoV-ACE2 features enhanced dynamicsand inter-protein positional movements and increased conformational entropy and conformational diversity. Although the inter-protein electrostatic attractive interactions are the primary determinant for the high ACE2-binding affinities of both RBDs, the significantly enhanced electrostatic attractive interactions between ACE2 and RBDCoV2 determine the higher ACE2-binding affinity of RBDCoV2 than of RBDCoV. Comprehensive comparative analyses of the residue BFE components and IRCNs between the two complexes reveal that it is the residue changes at the RBD interface that lead to the overall stronger inter-protein electrostatic attractive force in RBDCoV2-ACE2, which not only tightens the interface packing and suppresses the dynamics of RBDCoV2-ACE2, but also enhances the ACE2-binding affinity of RBDCoV2. Since the RBD residue changes involving gain/loss of the positively/negatively charged residues can greatly enhance the binding affinity, special attention should be paid to the SARS-CoV-2 variants carrying such mutations, particularly those near or at the binding interfaces with the potential to form hydrogen bonds and/or salt bridges with ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
14.
J Virol ; 96(8): e0016922, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35343762

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Asunto(s)
Vacunas contra la COVID-19 , Infecciones por Coronavirus , Protección Cruzada , Glicoproteína de la Espiga del Coronavirus , Vacunas de Productos Inactivados , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Quirópteros , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Protección Cruzada/inmunología , Humanos , Ratones , Ratones Transgénicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Productos Inactivados/inmunología , Zoonosis Virales/prevención & control
15.
J Biol Chem ; 298(4): 101814, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278433

RESUMEN

Within the last 2 decades, severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) have caused two major outbreaks; yet, for reasons not fully understood, the coronavirus disease 2019 pandemic caused by SARS-CoV-2 has been significantly more widespread than the 2003 SARS epidemic caused by SARS-CoV-1, despite striking similarities between these two viruses. The SARS-CoV-1 and SARS-CoV-2 spike proteins, both of which bind to host cell angiotensin-converting enzyme 2, have been implied to be a potential source of their differential transmissibility. However, the mechanistic details of prefusion spike protein binding to angiotensin-converting enzyme 2 remain elusive at the molecular level. Here, we performed an extensive set of equilibrium and nonequilibrium microsecond-level all-atom molecular dynamics simulations of SARS-CoV-1 and SARS-CoV-2 prefusion spike proteins to determine their differential dynamic behavior. Our results indicate that the active form of the SARS-CoV-2 spike protein is more stable than that of SARS-CoV-1 and the energy barrier associated with the activation is higher in SARS-CoV-2. These results suggest that not only the receptor-binding domain but also other domains such as the N-terminal domain could play a crucial role in the differential binding behavior of SARS-CoV-1 and SARS-CoV-2 spike proteins.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo
16.
Biochem Biophys Res Commun ; 606: 23-28, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35338855

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging infectious disease currently spreading across the world. The spike (S) protein plays a key role in the receptor recognition and cell membrane fusion, making it an important target for developing vaccines, therapeutic antibodies and diagnosis. In this study, we constructed a baculovirus surface display system that efficiently presents both SARS-CoV and SARS-CoV-2 S proteins (including ectodomain, S1 subunit and receptor-binding-domain, RBD) on the surface of recombinant baculoviruses, utilizing transmembrane anchors from gp64 (signal peptide) and vesicular stomatitis virus (VSV). These recombinant baculoviruses were capable of transducing engineered HEK 293T cells overexpressing ACE2 receptors with significantly higher transduction efficiencies, indicating that S proteins displayed on baculovirus surface have antigenicity and can recognize and bind ACE2 receptors. Additionally, the transduction of SARS-CoV-2 S proteins can be inhibited by an antibody against the SARS-CoV-2 RBD. These results demonstrate that this baculovirus surface display system is a promising tool for developing antibodies, vaccines and recombinant protein production.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Enzima Convertidora de Angiotensina 2/genética , Baculoviridae/genética , Baculoviridae/metabolismo , Humanos , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
17.
FASEB J ; 36(3): e22234, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199397

RESUMEN

The transmembrane protease angiotensin converting enzyme 2 (ACE2) is a protective regulator within the renin angiotensin system and additionally represents the cellular receptor for SARS-CoV. The release of soluble ACE2 (sACE2) from the cell surface is hence believed to be a crucial part of its (patho)physiological functions, as both, ACE2 protease activity and SARS-CoV binding ability, are transferred from the cell membrane to body fluids. Yet, the molecular sources of sACE2 are still not completely investigated. In this study, we show different sources and prerequisites for the release of sACE2 from the cell membrane. By using inhibitors as well as CRISPR/Cas9-derived cells, we demonstrated that, in addition to the metalloprotease ADAM17, also ADAM10 is an important novel shedding protease of ACE2. Moreover, we observed that ACE2 can also be released in extracellular vesicles. The degree of either ADAM10- or ADAM17-mediated ACE2 shedding is dependent on stimulatory conditions and on the expression level of the pro-inflammatory ADAM17 regulator iRhom2. Finally, by using structural analysis and in vitro verification, we determined for the first time that the susceptibility to ADAM10- and ADAM17-mediated shedding is mediated by the collectrin-like part of ACE2. Overall, our findings give novel insights into sACE2 release by several independent molecular mechanisms.


Asunto(s)
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteína ADAM10/genética , Proteína ADAM17/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Enzima Convertidora de Angiotensina 2/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Vesículas Extracelulares/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2
18.
Nature ; 603(7903): 913-918, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114688

RESUMEN

Two different sarbecoviruses have caused major human outbreaks in the past two decades1,2. Both of these sarbecoviruses, SARS-CoV-1 and SARS-CoV-2, engage ACE2 through the spike receptor-binding domain2-6. However, binding to ACE2 orthologues of humans, bats and other species has been observed only sporadically among the broader diversity of bat sarbecoviruses7-11. Here we use high-throughput assays12 to trace the evolutionary history of ACE2 binding across a diverse range of sarbecoviruses and ACE2 orthologues. We find that ACE2 binding is an ancestral trait of sarbecovirus receptor-binding domains that has subsequently been lost in some clades. Furthermore, we reveal that bat sarbecoviruses from outside Asia can bind to ACE2. Moreover, ACE2 binding is highly evolvable-for many sarbecovirus receptor-binding domains, there are single amino-acid mutations that enable binding to new ACE2 orthologues. However, the effects of individual mutations can differ considerably between viruses, as shown by the N501Y mutation, which enhances the human ACE2-binding affinity of several SARS-CoV-2 variants of concern12 but substantially decreases it for SARS-CoV-1. Our results point to the deep ancestral origin and evolutionary plasticity of ACE2 binding, broadening the range of sarbecoviruses that should be considered to have spillover potential.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Evolución Molecular , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Sitios de Unión , COVID-19/virología , Quirópteros/virología , Humanos , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
19.
Pediatr Dev Pathol ; 25(4): 404-408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35220822

RESUMEN

Purpose and context. Angiotensin-converting enzyme 2 is the entry receptor for SARS-CoV and SARS-CoV-2. Variations in ACE2 expression might explain age-related symptomatology of COVID-19, that is, more gastro-intestinal symptoms and less pulmonary complaints. This study qualitatively investigated ACE2 protein expression in various organs from the fetal to the young adolescent stage. Method. Autopsy samples from lung, heart, liver, stomach, small intestine, pancreas, kidney, adrenals, and brain (when available) were obtained from twenty subjects aged 24 weeks gestational age through 28 years. Formalin-fixed paraffin-embedded 4-um-thick tissue sections were stained against ACE2. Key results. We showed that the extent of ACE2 expression is age-related. With age, expression increases in lungs and decreases in intestines. In the other examined organs, ACE2 protein expression did not change with age. In brain tissue, ACE2 was expressed in astrocytes and endothelial cells. Conclusions. Age-related ACE2 expression differences could be one substrate of the selective clinical vulnerability of the respiratory and gastro-intestinal system to SARS-CoV-2 infection during infancy.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Adolescente , Adulto , Enzima Convertidora de Angiotensina 2 , Células Endoteliales , Humanos , Peptidil-Dipeptidasa A/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2 , Adulto Joven
20.
Int J Neurosci ; 132(9): 917-924, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33175635

RESUMEN

AIM OF THE STUDY: In December 2019, a highly pathogenic coronavirus called SARS-CoV-2 (formerly identified as 2019-nCoV) appeared in Wuhan, China, and has since been spreading rapidly around the world. we reviewed the neurological manifestations of this infection and the potential of ACE2 in the nervous system. MATERIALS AND METHODS: Six databases (Medline, Scopus, Embase, Web of Science, WHO, and google scholar) were searched and screened by the authors for having appropriate information about covid-19. Finally, 72 studies were identified, summarized and reviewed. RESULT: The most specific manifestation of SARS-CoV-2 patients is pulmonary distress, and several patients admitted to intensive care units were not able to breathe spontaneously. In addition, the SARS-CoV-2 outbreak has a significant effect on nervous systems and may even lead to serious neurological damage. The neuroinvasive pathobiology is still not fully elucidated and thus the effect of CoV infections on the nervous system needs to be explored. The spike protein of the virus and the angiotensin-converting enzyme 2 (ACE2) lead to the presence of both SARS-CoV and SARS-CoV-2 in the cells and, subsequently, decreased ACE2 expression. CONCLUSION: The therapeutic possibilities of ACE2 antibody, ACE2-derived peptides, and small molecule blockers of ACE2 include a receptor-binding domain blocking approach. Hence, future studies of ACE2 may be very helpful in discovering a therapy for SARS-CoV-2.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Enzima Convertidora de Angiotensina 2 , COVID-19/complicaciones , Humanos , Peptidil-Dipeptidasa A , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA