Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Biomater Adv ; 165: 214024, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39232353

RESUMEN

Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.


Asunto(s)
Grafito , Leucocitos Mononucleares , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Grafito/química , Grafito/farmacología , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Andamios del Tejido/química , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Monocitos/efectos de los fármacos , Monocitos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología
2.
ACS Appl Mater Interfaces ; 16(34): 44605-44622, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39159061

RESUMEN

Skeletal muscle tissue can be severely damaged by disease or trauma beyond its ability to self-repair, necessitating the further development of biofabrication and tissue-engineering tools for reconstructive processes. Hence, in this study, a composite bioink of oxidized alginate (ADA) and gelatin (GEL) including cell-laden ribbon-shaped fillers is used for enhancing cell alignment and the formation of an anisotropic structure. Different plasma treatments combined with protein coatings were evaluated for the improvement of cell adhesion to poly(lactic-co-glycolic acid) (PLGA) ribbon surfaces. Oxygen plasma activation of 30 W for 5 min showed high immobilization of fibronectin as a protein coating on the PLGA ribbon surface, which resulted in enhanced cell adhesion and differentiation of muscle cells. Furthermore, the effect of various concentrations of CaCl2 solution, used for ionic cross-linking of ADA, on ADA-GEL physical and mechanical properties as well as encapsulated C2C12 cell viability and proliferation behavior was investigated. The pore area was measured via two approaches, cryofixation and lyophilization, which, in accordance with degradation tests and mechanical analysis, showed that 60 mM CaCl2 concentration is the optimum range for cross-linking of the formulation of ADA 2.5%w/v-GEL 3.75%w/v. These cross-linked hydrogels showed a compression modulus of 11.5 kPa (similar to the native skeletal muscle tissue), a high viability of C2C12 muscle cells (>80%), and a high proliferation rate during 7 days of culture. Rheological characterization of the ADA-GEL composite hydrogel containing short fillers (100 µm long) showed its suitability as a bioink with shear-thinning and flow behavior compared to ADA-GEL.


Asunto(s)
Alginatos , Gelatina , Hidrogeles , Músculo Esquelético , Ingeniería de Tejidos , Gelatina/química , Alginatos/química , Animales , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/citología , Línea Celular , Andamios del Tejido/química , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Diferenciación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
3.
ACS Appl Mater Interfaces ; 16(32): 41855-41868, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093305

RESUMEN

Inflammation caused by a bacterial infection and the subsequent dysregulation of the host immune-inflammatory response are detrimental to periodontal regeneration. Herein, we present an infection-sensitive scaffold prepared by layer-by-layer assembly of Feraheme-like superparamagnetic iron oxide nanoparticles (SPIONs) on the surface of a three-dimensional-printed polylactic-co-glycolic acid (PLGA) scaffold. The SPION/PLGA scaffold is magnetic, hydrophilic, and bacterial-adhesion resistant. As indicated by gene expression profiling and confirmed by quantitative real-time reverse transcription polymerase chain reaction and flow cytometry analysis, the SPION/PLGA scaffold facilitates macrophage polarization toward the regenerative M2 phenotype by upregulating IL-10, which is the molecular target of repair promotion, and inhibits macrophage polarization toward the proinflammatory M1 phenotype by downregulating NLRP3, which is the molecular target of anti-inflammation. As a result, macrophages modulated by the SPS promote osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) in vitro. In a rat periodontal defect model, the SPION/PLGA scaffold increased IL-10 secretion and decreased NLRP3 and IL-1ß secretion with Porphyromonas gingivalis infection, achieving superior periodontal regeneration than the PLGA scaffold alone. Therefore, this antibacterial SPION/PLGA scaffold has anti-inflammatory and bacterial antiadhesion properties to fight infection and promote periodontal regeneration by immunomodulation. These findings provide an important strategy for developing engineered scaffolds to treat periodontal defects.


Asunto(s)
Antibacterianos , Macrófagos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porphyromonas gingivalis , Andamios del Tejido , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Ratas , Porphyromonas gingivalis/efectos de los fármacos , Andamios del Tejido/química , Ratas Sprague-Dawley , Nanopartículas Magnéticas de Óxido de Hierro/química , Masculino , Regeneración/efectos de los fármacos , Fenotipo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratones
4.
Int J Biol Macromol ; 275(Pt 1): 133361, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960245

RESUMEN

Diabetic wound healing poses a substantial challenge owing to bacterial infections, insufficient angiogenesis, and excessive exudates. Currently, most of the clinical dressings used for diabetic wounds are still conventional dressings such as gauze. In this study, a three-layer Janus dressing was developed via continuous electrostatic spinning. The top-layer was composed of polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate. The hydrophobic top-layer prevented the adhesion of foreign bacteria. The mid-layer was composed of polyethylene glycol, polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate facilitated exudate absorption and bioactive ion release. The modified sub-layer containing polylactic acid-glycolic acid, hydroxyapatite doped with silver ions and silicate and sodium alginate microspheres enabled both the transport of wound exudate from the wound bed to dressing and the backflow of bioactive silver ions and silicate to the wound bed, thereby reducing infection and stimulating angiogenesis. Through in vivo and in vivo experiments, the Janus dressing showed to have antimicrobial, angiogenic, and exudate-control properties that accelerate healing in diabetic wounds. As a novel dressing, the multifunctional, self-pumping Janus wound dressing with bi-directional biofluidic transport offers a new approach to diabetic wound healing.


Asunto(s)
Angiogénesis , Antibacterianos , Vendajes , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Cicatrización de Heridas , Animales , Masculino , Ratones , Angiogénesis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Diabetes Mellitus Experimental , Neovascularización Fisiológica/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Cicatrización de Heridas/efectos de los fármacos
5.
Acta Biomater ; 185: 429-440, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38997077

RESUMEN

In situ mesenchymal stem cells (MSCs) regenerative therapy holds promising potential for treating osteoarthritis. However, MSCs engraftment and intra-articular inflammation limit the therapeutic efficacy of this approach. This study introduces porous microspheres (PMs) composed of aldehyde-modified poly(lactic-co-glycolic acid), that encapsulate platelet derived growth factor-AB and kartogenin. Metformin (Met) is also incorporated onto the microsphere through a Schiff base reaction to create PMs@Met. In vitro, in vivo and ex experiments revealed that PMs@Met can be injected into the joint cavity, effectively recruiting endogenous MSCs in situ. This approach creates a favorable environment for MSCs proliferation. It also controls the intra-articular inflammatory environment by modulating the polarization of synovial macrophages, ultimately promoting cartilage repair. In summary, our study presents an innovative tissue engineering strategy for the treatment of osteoarthritis-induced articular cartilage injuries. STATEMENT OF SIGNIFICANCE: Cell therapy using autologous mesenchymal stem cells (MSCs) has potential to slow the progression of osteoarthritis (OA). Nonetheless, there are some disadvantages to adopting in situ MSCs therapy, including difficulties with MSC engraftment into cartilage-deficient regions, the effect of intra-articular inflammation on MSC therapeutic efficacy, and attaining selective chondrogenic MSC differentiation. We created injectable PLGA microspheres (PMs) that were loaded with PDGF-AB and KGN. Metformin was bonded to the surface of microspheres using a Schiff base reaction. The microspheres can recruit intra-articular MSCs and encourage their development into chondrocytes. The microspheres actively modulate the inflammatory joint environment by altering synovial macrophage polarization, thereby supporting MSCs in effective cartilage treatment. To summarize, microspheres hold great potential in the treatment of OA.


Asunto(s)
Cartílago Articular , Macrófagos , Células Madre Mesenquimatosas , Microesferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Regeneración , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Porosidad , Regeneración/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ácidos Ftálicos/farmacología , Ácidos Ftálicos/química , Trasplante de Células Madre Mesenquimatosas/métodos , Conejos , Anilidas/farmacología , Anilidas/química , Osteoartritis/terapia , Osteoartritis/patología , Masculino
6.
ACS Biomater Sci Eng ; 10(7): 4400-4410, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38917429

RESUMEN

Tympanic membrane perforation (TMP) is prevalent in clinical settings. Patients with TMPs often suffer from infections caused by Staphylococcus aureus and Pseudomonas aeruginosa, leading to middle ear and external ear canal infections, which hinder eardrum healing. The objective of this study is to fabricate an enzyme-responsive antibacterial electrospun scaffold using poly(lactic-co-glycolic acid) and hyaluronic acid for the treatment of infected TMPs. The properties of the scaffold were characterized, including morphology, wettability, mechanical properties, degradation properties, antimicrobial properties, and biocompatibility. The results indicated that the fabricated scaffold had a core-shell structure and exhibited excellent mechanical properties, hydrophobicity, degradability, and cytocompatibility. Furthermore, in vitro bacterial tests and ex vivo investigations on eardrum infections suggested that this scaffold possesses hyaluronidase-responsive antibacterial properties. It may rapidly release antibiotics when exposed to the enzyme released by S. aureus and P. aeruginosa. These findings suggest that the scaffold has great potential for repairing TMPs with infections.


Asunto(s)
Antibacterianos , Ácido Hialurónico , Hialuronoglucosaminidasa , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Pseudomonas aeruginosa , Staphylococcus aureus , Andamios del Tejido , Membrana Timpánica , Antibacterianos/farmacología , Antibacterianos/química , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/química , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido/química , Pseudomonas aeruginosa/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Animales , Humanos , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacología , Ácido Láctico/química , Ácido Láctico/farmacología , Perforación de la Membrana Timpánica/tratamiento farmacológico , Perforación de la Membrana Timpánica/terapia , Pruebas de Sensibilidad Microbiana
7.
ACS Appl Mater Interfaces ; 16(22): 28147-28161, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38783481

RESUMEN

Nonhealing infectious wounds, characterized by bacterial colonization, wound microenvironment destruction, and shape complexity, present an intractable problem in clinical practice. Inspired by LEGOs, building-block toys that can be assembled into desired shapes, we proposed the use of electrospray nano-micro composite sodium alginate (SA) microspheres with antibacterial and angiogenic properties to fill irregularly shaped wounds instantly. Specifically, porous poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) encapsulating basic fibroblast growth factor (bFGF) were produced by a water-in-oil-in-water double-emulsion method. Then, bFGF@MSs were blended with the SA solution containing ZIF-8 nanoparticles. The resultant solution was electrosprayed to obtain nano-micro composite microspheres (bFGF@MS/ZIF-8@SAMSs). The composite MSs' size could be regulated by PLGA MS mass proportion and electrospray voltage. Moreover, bFGF, a potent angiogenic agent, and ZIF-8, bactericidal nanoparticles, were found to release from bFGF@MS/ZIF-8@SAMSs in a controlled and sustainable manner, which promoted cell proliferation, migration, and tube formation and killed bacteria. Through experimentation on rat models, bFGF@MS/ZIF-8@SAMSs were revealed to adapt to wound shapes and accelerate infected wound healing because of the synergistic effects of antibacterial and angiogenic abilities. In summation, this study developed a feasible approach to prepare bioactive nano-micro MSs as building blocks that can fill irregularly shaped infected wounds and improve healing.


Asunto(s)
Alginatos , Antibacterianos , Factor 2 de Crecimiento de Fibroblastos , Microesferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Cicatrización de Heridas , Alginatos/química , Antibacterianos/química , Antibacterianos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Ratas Sprague-Dawley , Staphylococcus aureus/efectos de los fármacos , Masculino , Escherichia coli/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Pruebas de Sensibilidad Microbiana , Proliferación Celular/efectos de los fármacos , Ácido Glucurónico/química , Ácido Glucurónico/farmacología
8.
Macromol Biosci ; 24(8): e2400003, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597147

RESUMEN

Articular cartilage defects pose a significant challenge due to the limited self-healing ability of cartilage. However, traditional techniques face limitations including autologous chondrocyte expansion issues. This study aims to investigate the effects of the polylactic acid-glycolic acid (PLGA) and collagen-surface modified polylactic acid-glycolic acid (CPLGA) microspheres loaded with tetramethylpyrazine (TMP) on two cell types and the regeneration potential of articular cartilage. CPLGA microspheres are prepared by Steglich reaction and characterized. They evaluated the effect of TMP-loaded microspheres on HUVECs (Human Umbilical Vein Endothelial Cells) and examined the compatibility of blank microspheres with BMSCs (Bone marrow mesenchymal stromal cells) and their potential to promote cartilage differentiation. Subcutaneous implant immune tests and cartilage defect treatment are conducted to assess biocompatibility and cartilage repair potential. The results highlight the efficacy of CPLGA microspheres in promoting tissue regeneration, attributed to improved hydrophilicity and collagen-induced mitigation of degradation. Under hypoxic conditions, both CPLGA and PLGA TMP-loaded microspheres exhibit inhibitory effects on HUVEC proliferation, migration, and angiogenesis. Notably, CPLGA microspheres show enhanced compatibility with BMSCs, facilitating chondrogenic differentiation. Moreover, the CPLGA microsphere-composite hydrogel exhibits potential for cartilage repair by modulating angiogenesis and promoting BMSC differentiation.


Asunto(s)
Cartílago Articular , Colágeno , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Microesferas , Pirazinas , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Pirazinas/química , Pirazinas/farmacología , Animales , Colágeno/química , Colágeno/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Condrogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
9.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395283

RESUMEN

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Microesferas , Quitosano/farmacología , Ácido Poliglicólico/farmacología , Ácido Láctico/farmacología , Glicoles , Preparaciones de Acción Retardada/farmacología , Células Cultivadas , Diferenciación Celular , Condrogénesis
10.
J Biochem Mol Toxicol ; 37(10): e23425, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37401655

RESUMEN

Mercury is a toxic, environmentally heavy metal that can cause severe damage to all organs, including the nervous system. The functions of puerarin include antioxidant, anti-inflammatory, nerve cell repair, regulation of autophagy, and so forth. But because of the limited oral absorption of puerarin, it affects the protective effect on brain tissue. The nano-encapsulation of Pue can improve its limitation. Therefore, this study investigated the protective effect of Pue drug-loaded PLGA nanoparticles (Pue-PLGA-nps) on brain injury induced by mercuric chloride (HgCl2 ) in mice. The mice were divided into normal saline (NS) group, HgCl2 (4 mg/kg) group, Pue-PLGA-nps (50 mg/kg) group, HgCl2 + Pue (4 mg/kg + 30 mg/kg) group, and HgCl2 + Pue-PLGA-nps (4 mg/kg + 50 mg/kg) group. After 28 days of treatment, the mice were observed for behavioral changes, antioxidant capacity, autophagy and inflammatory response, and mercury levels in the brain, blood, and urine were measured. The results showed that HgCl2 toxicity caused learning and memory dysfunction in mice, increased mercury content in brain and blood, and increased serum levels of interleukin (IL-6), IL-1ß, and tumor necrosis factor-α in the mice. HgCl2 exposure decreased the activity of T-AOC, superoxide dismutase, and glutathione peroxidase, and increased the expression of malondialdehyde in the brain of mice. Moreover, the expression levels of TRIM32, toll-like receptor 4 (TLR4), and LC3 proteins were upregulated. Both Pue and Pue-PLGA-nps interventions mitigated the changes caused by HgCl2 exposure, and Pue-PLGA-nps further enhanced this effect. Our results suggest that Pue-PLGA-nps can ameliorate HgCl2 -induced brain injury and reduce Hg accumulation, which is associated with inhibition of oxidative stress, inflammatory response, and TLR4/TRIM32/LC3 signaling pathway.


Asunto(s)
Lesiones Encefálicas , Mercurio , Nanopartículas , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cloruro de Mercurio/toxicidad , Receptor Toll-Like 4/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Mercurio/metabolismo , Mercurio/farmacología , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/prevención & control
11.
ACS Biomater Sci Eng ; 9(6): 3239-3252, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37162308

RESUMEN

Guided bone regeneration (GBR) membranes are commonly used for periodontal tissue regeneration. Due to the complications of existing GBR membranes, the design of bioactive membranes is still relevant. GBR membranes with an asymmetric structure can accommodate the functional requirements of different interfacial tissues. Here, poly(lactic acid-glycolic acid) (PLGA) was selected as the matrix for preparing a bi-layered membrane with both dense and porous structure. The dense layer for blocking soft tissues was incorporated with zinc (Zn) particles, while the porous layer for promoting bone regeneration was co-incorporated with magnesium (Mg) and Zn particles. Mg/Zn-embedded PLGA membranes exhibited 166% higher mechanical strength in comparison with pure PLGA membranes and showed suitable degradation properties with a sequential ion release behavior of Mg2+ first and continuously Zn2+. More importantly, the release of Zn2+ from bi-layered PLGA endowed GBR membranes with excellent antibacterial activity (antibacterial rate > 69.3%) as well as good cytocompatibility with MC3T3-E1 (mouse calvaria pre-osteoblastic cells) and HGF-1 (human gingival fibroblast cells). Thus, the asymmetric bi-layered PLGA membranes embedded with Mg and Zn particles provide a simple and effective strategy to not only reinforce the PLGA membrane but also endow membranes with osteogenic and antibacterial activity due to the continuous ion release profile, which serves as a promising candidate for use in GBR therapy.


Asunto(s)
Ácido Láctico , Magnesio , Humanos , Ratones , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Magnesio/farmacología , Ácido Láctico/farmacología , Ácido Láctico/química , Zinc/farmacología , Membranas Artificiales , Regeneración Ósea , Antibacterianos/farmacología
12.
Biomater Adv ; 151: 213457, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37172432

RESUMEN

Biodegradable microspheres offer great potential as functional building blocks for bottom-up bone tissue engineering. However, it remains challenging to understand and regulate cell behaviors in fabrication of injectable bone microtissues using microspheres. The study aims to develop an adenosine functionalized poly (lactide-co-glycolide) (PLGA) microsphere to enhance cell loading efficiency and inductive osteogenesis potential, and subsequently to investigate adenosine signaling-mediated osteogenic differentiation in cells grown on three-dimensional (3D) microspheres and flat control. Adenosine was loaded on PLGA porous microspheres via polydopamine coating, and the cell adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were improved on these microspheres. It was found that adenosine A2B receptor (A2BR) was further activated by adenosine treatment, which consequently enhanced osteogenic differentiation of BMSCs. This effect was more obvious on 3D microspheres compared to 2D flats. However, the promotion of osteogenesis on the 3D microspheres was not eliminated by blocking the A2BR with antagonist. Finally, adenosine functionalized microspheres could fabricate injectable microtissues in vitro, and improve cell delivery and osteogenic differentiation after injection in vivo. Therefore, it is considered that adenosine loaded PLGA porous microspheres will be of good value in minimally invasive injection surgery and bone tissue repair.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Receptor de Adenosina A2B , Microesferas , Porosidad , Diferenciación Celular
13.
Acta Pharmacol Sin ; 44(10): 1962-1976, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37169852

RESUMEN

Atherosclerosis is a major cause of death and disability in cardiovascular disease. Atherosclerosis associated with lipid accumulation and chronic inflammation leads to plaques formation in arterial walls and luminal stenosis in carotid arteries. Current approaches such as surgery or treatment with statins encounter big challenges in curing atherosclerosis plaque. The infiltration of proinflammatory M1 macrophages plays an essential role in the occurrence and development of atherosclerosis plaque. A recent study shows that TRIM24, an E3 ubiquitin ligase of a Trim family protein, acts as a valve to inhibit the polarization of anti-inflammatory M2 macrophages, and elimination of TRIM24 opens an avenue to achieve the M2 polarization. Proteolysis-targeting chimera (PROTAC) technology has emerged as a novel tool for the selective degradation of targeting proteins. But the low bioavailability and cell specificity of PROTAC reagents hinder their applications in treating atherosclerosis plaque. In this study we constructed a type of bioinspired PROTAC by coating the PROTAC degrader (dTRIM24)-loaded PLGA nanoparticles with M2 macrophage membrane (MELT) for atherosclerosis treatment. MELT was characterized by morphology, size, and stability. MELT displayed enhanced specificity to M1 macrophages as well as acidic-responsive release of dTRIM24. After intravenous administration, MELT showed significantly improved accumulation in atherosclerotic plaque of high fat and high cholesterol diet-fed atherosclerotic (ApoE-/-) mice through binding to M1 macrophages and inducing effective and precise TRIM24 degradation, thus resulting in the polarization of M2 macrophages, which led to great reduction of plaque formation. These results suggest that MELT can be considered a potential therapeutic agent for targeting atherosclerotic plaque and alleviating atherosclerosis progression, providing an effective strategy for targeted atherosclerosis therapy.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Quimera Dirigida a la Proteólisis , Animales , Ratones , Antiinflamatorios/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Inflamación/tratamiento farmacológico , Macrófagos , Ratones Endogámicos C57BL , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Quimera Dirigida a la Proteólisis/farmacología , Quimera Dirigida a la Proteólisis/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Nanopartículas/uso terapéutico
14.
Int J Mol Sci ; 24(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37240086

RESUMEN

(1) The vicious cycle of innate immune response and reactive oxygen species (ROS) generation is an important pathological process of osteoarthritis (OA). Melatonin may be a new hope for the treatment of OA because of its antioxidant capacity. However, the mechanism of melatonin in the treatment of OA is still not completely clear, and the physiological characteristics of articular cartilage make melatonin unable to play a long-term role in OA. (2) The effects of melatonin on ROS and the innate immune response system in OA chondrocytes and the therapeutic effect in vivo were evaluated. Then, a melatonin-loaded nano-delivery system (MT@PLGA-COLBP) was prepared and characterized. Finally, the behavior of MT@PLGA-COLPB in cartilage and the therapeutic effect in OA mice were evaluated. (3) Melatonin can inhibit the activation of the innate immune system by inhibiting the TLR2/4-MyD88-NFκB signal pathway and scavenging ROS, thus improving cartilage matrix metabolism and delaying the progression of OA in vivo. MT@PLGA-COLBP can reach the interior of cartilage and complete the accumulation in OA knee joints. At the same time, it can reduce the number of intra-articular injections and improve the utilization rate of melatonin in vivo. (4) This work provides a new idea for the treatment of osteoarthritis, updates the mechanism of melatonin in the treatment of osteoarthritis, and highlights the application prospect of PLGA@MT-COLBP nanoparticles in preventing OA.


Asunto(s)
Cartílago Articular , Melatonina , Nanopartículas , Osteoartritis , Ratones , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Preparaciones de Acción Retardada/farmacología , Osteoartritis/metabolismo , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología
15.
Biomater Adv ; 150: 213430, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37104963

RESUMEN

Lung cancer is often diagnosed at an advanced stage where tumors are usually inoperable and first-line therapies are inefficient and have off-targeted adverse effects, resulting in poor patient survival. Here, we report the development of an inhalable poly lactic-co-glycolic acid polymer-based nanoparticle (PLGA-NP) formulation with a biomimetic Infasurf® lung surfactant (LS) coating, for localized and sustained lung cancer drug delivery. The nanoparticles (188 ± 7 nm) were stable in phosphate buffered saline, serum and Gamble's solution (simulated lung fluid), and demonstrated cytocompatibility up to 1000 µg/mL concentration and dose-dependent uptake by lung cancer cells. The LS coating significantly decreased nanoparticle (NP) uptake by NR8383 alveolar macrophages in vitro compared to uncoated NPs. The coating, however, did not impair NP uptake by A549 lung adenocarcinoma cells. The anti-cancer drug gemcitabine hydrochloride encapsulated in the PLGA core was released in a sustained manner while the paclitaxel loaded in the LS shell demonstrated a rapid or burst release profile over 21 days. The drug-loaded NPs significantly decreased cancer cell survival and colony formation in vitro compared to free drugs and single drug-loaded NPs. In vivo studies confirmed greater retention of LS-coated NPs in the lungs of C57BL/6 WT mice compared to uncoated NPs, at 24 h and 72 h following intranasal administration. The overall results confirm that LS coating is a unique strategy for cloaking polymeric NPs to potentially prevent their rapid lung clearance and facilitate prolonged pulmonary drug delivery.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Surfactantes Pulmonares , Ratones , Animales , Polímeros/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Ratones Endogámicos C57BL , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Surfactantes Pulmonares/farmacología , Surfactantes Pulmonares/uso terapéutico , Tensoactivos
16.
Nanomedicine (Lond) ; 18(2): 125-143, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36916394

RESUMEN

Because of the blood-brain barrier, only a limited fraction of drugs can penetrate the brain. As a result, there is a need to take larger doses of the drug, which may result in numerous undesirable side effects. Over the past few decades, a plethora of research has been conducted to address this issue. In recent years, the field of nanomedicine research has reported promising findings. Currently, numerous types of polylactic-co-glycolic acid-based drug-delivery systems are being studied, and great progress has been made in the modification of their surfaces with a variety of ligands. In this review, the authors highlight the preparation of polylactic-co-glycolic acid-based nanoparticles and single- and dual-targeted peptide modifications for site-specific drug delivery into the brain.


The blood­brain barrier prevents many drugs used to treat brain diseases from having clinical effects. To solve this issue, some promising findings have been reported in the field of nanomedicine research, which will be introduced in this article as possible effective methods for the treatment of brain diseases. This review will focus on the nature of the polylactic-co-glycolic acid polymers involved in the preparation of desired targeted nanocarriers, the synthesis methods for achieving the drug loaded system and the choice and preparation of the targeting agents.


Asunto(s)
Barrera Hematoencefálica , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Glicoles/farmacología , Ácido Poliglicólico , Ácido Láctico , Sistemas de Liberación de Medicamentos , Péptidos/farmacología , Preparaciones Farmacéuticas , Nanopartículas/uso terapéutico , Portadores de Fármacos/farmacología
17.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835111

RESUMEN

Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres. Microcomputed tomography and trabecular bone analysis following treatment with NF-κB decoy ODN-loaded PLGA nanospheres (PLGA-NfDs) demonstrated inhibition of vertical alveolar bone loss with increased bone volume, smoother trabecular bone surface, thicker trabecular bone, larger trabecular number and separation, and fewer bone porosities. Histomorphometric and reverse transcription-quantitative polymerase chain reaction analysis revealed reduced tartrate-resistant acid phosphatase-expressing osteoclasts, interleukin-1ß, tumor necrosis factor-α, receptor activator of NF-κB ligand, turnover rate, and increased transforming growth factor-ß1 immunopositive reactions and relative gene expression. These data demonstrate that local NF-κB decoy ODN transfection via PLGA-NfD can be used to effectively suppress inflammation in a tooth-extraction socket during the healing process, with the potential to accelerate new bone formation.


Asunto(s)
Pérdida de Hueso Alveolar , FN-kappa B , Nanosferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Ratas , Pérdida de Hueso Alveolar/tratamiento farmacológico , Proceso Alveolar , Glicoles , Inflamación/metabolismo , Nanosferas/uso terapéutico , FN-kappa B/química , FN-kappa B/farmacología , Oligodesoxirribonucleótidos/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas Wistar , Microtomografía por Rayos X
18.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769188

RESUMEN

Synthetic antimicrobial and antibiofilm peptide (SAAP-148) commits significant antimicrobial activities against antimicrobial resistant (AMR) planktonic bacteria and biofilms. However, SAAP-148 is limited by its low selectivity index, i.e., ratio between cytotoxicity and antimicrobial activity, as well as its bioavailability at infection sites. We hypothesized that formulation of SAAP-148 in PLGA nanoparticles (SAAP-148 NPs) improves the selectivity index due to the sustained local release of the peptide. The aim of this study was to investigate the physical and functional characteristics of SAAP-148 NPs and to compare the selectivity index of the formulated peptide with that of the peptide in solution. SAAP-148 NPs displayed favorable physiochemical properties [size = 94.1 ± 23 nm, polydispersity index (PDI) = 0.08 ± 0.1, surface charge = 1.65 ± 0.1 mV, and encapsulation efficiency (EE) = 86.7 ± 0.3%] and sustained release of peptide for up to 21 days in PBS at 37 °C. The antibacterial and cytotoxicity studies showed that the selectivity index for SAAP-148 NPs was drastically increased, by 10-fold, regarding AMR Staphylococcus aureus and 20-fold regarding AMR Acinetobacter baumannii after 4 h. Interestingly, the antibiofilm activity of SAAP-148 NPs against AMR S. aureus and A. baumannii gradually increased overtime, suggesting a dose-effect relationship based on the peptide's in vitro release profile. Using 3D human skin equivalents (HSEs), dual drug SAAP-148 NPs and the novel antibiotic halicin NPs provided a stronger antibacterial response against planktonic and cell-associated bacteria than SAAP-148 NPs but not halicin NPs after 24 h. Confocal laser scanning microscopy revealed the presence of SAAP-148 NPs on the top layers of the skin models in close proximity to AMR S. aureus at 24 h. Overall, SAAP-148 NPs present a promising yet challenging approach for further development as treatment against bacterial infections.


Asunto(s)
Antiinfecciosos , Nanopartículas , Humanos , Staphylococcus aureus , Péptidos Antimicrobianos , Antibacterianos/farmacología , Antibacterianos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Antiinfecciosos/farmacología , Péptidos/farmacología , Bacterias , Nanopartículas/química , Biopelículas
19.
Mol Pharm ; 20(3): 1613-1623, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36795759

RESUMEN

Chinese yam polysaccharides (CYPs) have received wide attention for their immunomodulatory activity. Our previous studies had discovered that the Chinese yam polysaccharide PLGA-stabilized Pickering emulsion (CYP-PPAS) can serve as an efficient adjuvant to trigger powerful humoral and cellular immunity. Recently, positively charged nano-adjuvants are easily taken up by antigen-presenting cells, potentially resulting in lysosomal escape, the promotion of antigen cross-presentation, and the induction of CD8 T-cell response. However, reports on the practical application of cationic Pickering emulsions as adjuvants are very limited. Considering the economic damage and public-health risks caused by the H9N2 influenza virus, it is urgent to develop an effective adjuvant for boosting humoral and cellular immunity against influenza virus infection. Here, we applied polyethyleneimine-modified Chinese yam polysaccharide PLGA nanoparticles as particle stabilizers and squalene as the oil core to fabricate a positively charged nanoparticle-stabilized Pickering emulsion adjuvant system (PEI-CYP-PPAS). The cationic Pickering emulsion of PEI-CYP-PPAS was utilized as an adjuvant for the H9N2 Avian influenza vaccine, and the adjuvant activity was compared with the Pickering emulsion of CYP-PPAS and the commercial adjuvant (aluminum adjuvant). The PEI-CYP-PPAS, with a size of about 1164.66 nm and a ζ potential of 33.23 mV, could increase the H9N2 antigen loading efficiency by 83.99%. After vaccination with Pickering emulsions based on H9N2 vaccines, PEI-CYP-PPAS generated higher HI titers and stronger IgG antibodies than CYP-PPAS and Alum and increased the immune organ index of the spleen and bursa of Fabricius without immune organ injury. Moreover, treatment with PEI-CYP-PPAS/H9N2 induced CD4+ and CD8+ T-cell activation, a high lymphocyte proliferation index, and increased cytokine expression of IL-4, IL-6, and IFN-γ. Thus, compared with the CYP-PPAS and aluminum adjuvant, the cationic nanoparticle-stabilized vaccine delivery system of PEI-CYP-PPAS was an effective adjuvant for H9N2 vaccination to elicit powerful humoral and cellular immune responses.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Nanopartículas , Animales , Pollos , Aluminio/farmacología , Emulsiones/farmacología , Antígenos , Inmunidad Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Adyuvantes Inmunológicos , Polisacáridos/farmacología
20.
ACS Biomater Sci Eng ; 9(3): 1672-1681, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36796355

RESUMEN

Osteoarthritis (OA) is an inflammatory disease accompanied by synovial joint inflammation, and IL-36 plays an important role in this process. Local application of IL-36 receptor antagonist (IL-36Ra) can effectively control the inflammatory response, thereby protecting cartilage and slowing down the development of OA. However, its application is limited by the fact that it is rapidly metabolized locally. We designed and prepared a temperature-sensitive poly(lactic-co-glycolic acid)-poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PLGA-PEG-PLGA) hydrogel (IL-36Ra@Gel) system carrying IL-36Ra and evaluated its basic physicochemical characteristics. The drug release curve of IL-36Ra@Gel indicated that this system could slowly release the drug over a longer period. Furthermore, degradation experiments showed that it could be largely degraded from the body within 1 month. The biocompatibility-related results showed that it had no significant effect on cell proliferation compared to the control group. In addition, the expression of MMP-13 and ADAMTS-5 was lower in IL-36Ra@Gel-treated chondrocytes than in the control group, and the opposite results appeared in aggrecan and collagen X. After 8 weeks of treatment with IL-36Ra@Gel by joint cavity injection, HE and Safranin O/Fast green staining showed that the degree of cartilage tissue destruction in the IL-36Ra@Gel-treated group was less than those in other groups. Meanwhile, the joints of mice in the IL-36Ra@Gel group had the most intact cartilage surface, the smallest thickness of cartilage erosion, and the lowest OARSI and Mankins score among all groups. Consequently, the combination of IL-36Ra and PLGA-PLEG-PLGA temperature-sensitive hydrogels can greatly improve the therapeutic effect and prolong the drug duration time, thus effectively delaying the progression of degenerative changes in OA, providing a new feasible nonsurgical treatment for OA.


Asunto(s)
Hidrogeles , Osteoartritis , Ratones , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Hidrogeles/metabolismo , Temperatura , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA