RESUMEN
Pyrroloquinoline quinone (PQQ) has been shown to protect primary cultured hippocampal neurons from glutamate-induced cell apoptosis by scavenging reactive oxygen species (ROS) and activating phosphatidylinositol-3-kinase (PI3K)/Akt signaling. We investigated the downstream pathways of PI3K/Akt involved in PQQ protection of glutamate-injured hippocampal neurons. Western blot analysis indicated that PQQ treatment following glutamate stimulation triggers phosphorylation of glycogen synthase kinase 3ß, accompanied by maintenance of Akt activation. Immunostaining and quantitative RT-PCR revealed that PQQ treatment promotes nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), and up-regulates mRNA expression of Nrf2 and the antioxidant enzyme genes, heme oxygenase-1 and glutamate cysteine ligase catalytic in glutamate-injured hippocampal neurons; this is a process dependent on the PI3K/Akt pathway, as evidenced by blocking experiments with PI3K inhibitors. In addition, increased ROS production and decreased glutathione levels in glutamate-injured hippocampal neurons were found to be reduced by PQQ treatment. Collectively, our findings suggest that PQQ exerts neuroprotective activity, possibly through PI3K/Akt-dependent activation of Nrf2 and up-regulation of antioxidant genes. However, the ability of PQQ to scavenge ROS was not totally regulated by PI3K/Akt signaling; possibly it is governed by other mechanisms.