Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Molecules ; 29(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39275099

RESUMEN

Peptides are receiving significant attention in pharmaceutical sciences due to their applications as anti-inflammatory drugs; however, many aspects of their interactions and mechanisms at the molecular level are not well-known. This work explores the molecular structure of two peptides-(i) cysteine (Cys)-asparagine (Asn)-serine (Ser) (CNS) as a molecule in the gas phase and solvated in water in zwitterion form, and (ii) the crystal structure of the dipeptide serine-asparagine (SN), a reliable peptide indication whose experimental cell parameters are well known. A search was performed by means of atomistic calculations based on density functional theory (DFT). These calculations matched the experimental crystal structure of SN, validating the CNS results and useful for assignments of our experimental spectroscopic IR bands. Our calculations also explore the intercalation of CNS into the interlayer space of montmorillonite (MNT). Our quantum mechanical calculations show that the conformations of these peptides change significantly during intercalation into the confined interlayer space of MNT. This intercalation is energetically favorable, indicating that this process can be a useful preparation for therapeutic anti-inflammatory applications and showing high stability and controlled release processes.


Asunto(s)
Antiinflamatorios , Bentonita , Cisteína , Teoría Funcional de la Densidad , Serina , Bentonita/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Cisteína/química , Serina/química , Asparagina/química , Modelos Moleculares , Péptidos/química , Sustancias Intercalantes/química
2.
Langmuir ; 40(39): 20707-20714, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39292813

RESUMEN

Oxidative stress on cysteine (Cys)-containing proteins has been associated with physiological disorders, as suggested for the human cofilin-1 (CFL-1) protein, in which the oxidized residues are likely implicated in the aggregation process of α-synuclein, leading to severe neuronal injuries. Considering the relevance of the oxidation state of cysteine, quantification of thiols may offer a guide for the development of effective therapies. This work presents, for the very first time, thiol quantification within CFL-1 in solution and on the surface following classic and adapted versions of Ellman's assay. The 1:1 stoichiometric Ellman's reaction occurs between 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB), and the free thiol of the cysteine residue, producing two 2-nitro-5-thiobenzoate (TNB2-) ions, one of which is released into the medium. While in solution, the thiol concentration was determined by the absorbance of the released TNB2-, on the surface, the mass of the attached TNB2- ion to the protein allowed the quantification by means of the multiparametric surface plasmon resonance (MP-SPR) technique. The SPR angle change after the interaction of DTNB with immobilized CFL-1 gave a surface coverage of 26.5 pmol cm-2 for the TNB2- ions (ΓTNB2-). The ratio of this value to the surface coverage of CFL-1, ΓCFL-1 = 6.5 ± 0.6 pmol cm-2 (also determined by MP-SPR), gave 4.1 as expected for this protein, i.e., CFL-1 contains four Cys residues in its native form (reduced state). A control experiment with adsorbed oxidized protein showed no SPR angle change, thus proving the reliability of adapting Ellman's assay to the surface using the MP-SPR technique. The results presented in this work provide evidence of the heterogenization of Ellman's assay, offering a novel perspective for studying thiol-containing species within proteins. This may be particularly useful to ensure further studies on drug-like molecules that can be carried out with validated oxidized or reduced CFL-1 or other analogous systems.


Asunto(s)
Cofilina 1 , Compuestos de Sulfhidrilo , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Humanos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Cofilina 1/química , Cofilina 1/metabolismo , Ácido Ditionitrobenzoico/química , Propiedades de Superficie , Cisteína/química , Cisteína/análisis
3.
J Comput Aided Mol Des ; 38(1): 27, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093524

RESUMEN

Antioxidants agents play an essential role in the food industry for improving the oxidative stability of food products. In the last years, the search for new natural antioxidants has increased due to the potential high toxicity of chemical additives. Therefore, the synthesis and evaluation of the antioxidant activity in peptides is a field of current research. In this study, we performed a Quantitative Structure Activity Relationship analysis (QSAR) of cysteine-containing 19 dipeptides and 19 tripeptides. The main objective is to bring information on the relationship between the structure of peptides and their antioxidant activity. For this purpose, 1D and 2D molecular descriptors were calculated using the PaDEL software, which provides information about the structure, shape, size, charge, polarity, solubility and other aspects of the compounds. Different QSAR model for di- and tripeptides were developed. The statistic parameters for di-peptides model (R2train = 0.947 and R2test = 0.804) and for tripeptide models (R2train = 0.923 and R2test = 0.847) indicate that the generated models have high predictive capacity. Then, the influence of the cysteine position was analyzed predicting the antioxidant activity for new di- and tripeptides, and comparing them with glutathione. In dipeptides, excepting SC, TC and VC, the activity increases when cysteine is at the N-terminal position. For tripeptides, we observed a notable increase in activity when cysteine is placed in the N-terminal position.


Asunto(s)
Antioxidantes , Cisteína , Dipéptidos , Oligopéptidos , Relación Estructura-Actividad Cuantitativa , Cisteína/química , Antioxidantes/química , Antioxidantes/farmacología , Dipéptidos/química , Dipéptidos/farmacología , Oligopéptidos/química , Oligopéptidos/farmacología , Modelos Moleculares , Programas Informáticos
4.
Anal Methods ; 16(22): 3539-3550, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38780022

RESUMEN

Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.


Asunto(s)
Técnicas Biosensibles , Virus del Dengue , Dengue , Telurio , Virus del Dengue/aislamiento & purificación , Virus del Dengue/inmunología , Técnicas Biosensibles/métodos , Telurio/química , Humanos , Dengue/diagnóstico , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Puntos Cuánticos/química , Resonancia por Plasmón de Superficie/métodos , Cisteína/química , Compuestos de Cadmio/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/análisis , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Límite de Detección , Microscopía de Fuerza Atómica
5.
J Mater Chem B ; 12(12): 3047-3062, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38421173

RESUMEN

Many efforts have been devoted to bone tissue to regenerate damaged tissues, and the development of new biocompatible materials that match the biological, mechanical, and chemical features required for this application is crucial. Herein, a collagen-decorated scaffold was prepared via electrospinning using a synthesized unsaturated copolyester (poly(globalide-co-pentadecalactone)), followed by two coupling reactions: thiol-ene functionalization with cysteine and further conjugation via EDC/NHS chemistry with collagen, aiming to design a bone tissue regeneration device with improved hydrophilicity and cell viability. Comonomer ratios were varied, affecting the copolymer's thermal and chemical properties and highlighting the tunable features of this copolyester. Functionalization with cysteine created new carboxyl and amine groups needed for bioconjugation with collagen, which is responsible for providing biological and structural integrity to the extra-cellular matrix. Bioconjugation with collagen turned the scaffold highly hydrophilic, decreasing its contact angle from 107 ± 2° to 0°, decreasing the copolymer crystallinity by 71%, and improving cell viability by 85% compared with the raw scaffold, thus promoting cell growth and proliferation. The highly efficient and biosafe strategy to conjugate polymers and proteins created a promising device for bone repair in tissue engineering.


Asunto(s)
Cisteína , Andamios del Tejido , Andamios del Tejido/química , Colágeno/química , Huesos , Regeneración Ósea , Polímeros
6.
J Pharm Biomed Anal ; 242: 116025, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422670

RESUMEN

This work reports the construction of an HIV-specific genosensor through the modification of carbon screen-printed electrodes (CSPE) with graphene quantum dots decorated with L-cysteine and gold nanoparticles (cys-GQDs/AuNps). Cys-GQDs were characterized by FT-IR and UV-vis spectra and electronic properties of the modified electrodes were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The modification of the electrode surface with cys-GQDs and AuNps increased the electrochemical performance of the electrode, improving the electron transfer of the anionic redox probe [Fe(CN)6]3-/4- on the electrochemical platform. When compared to the bare surface, the modified electrode showed a 1.7 times increase in effective electrode area and a 29 times decrease in charge transfer resistance. The genosensor response was performed by differential pulse voltammetry, monitoring the current response of the anionic redox probe, confirmed with real genomic RNA samples, making it possible to detect 1 fg/mL. In addition, the genosensor maintained its response for 60 days at room temperature. This new genosensor platform for early detection of HIV, based on the modification of the electrode surface with cys-GQDs and AuNps, discriminates between HIV-negative and positive samples, showing a low detection limit, as well as good specificity and stability, which are relevant properties for commercial application of biosensors.


Asunto(s)
Técnicas Biosensibles , Grafito , Infecciones por VIH , Nanopartículas del Metal , Puntos Cuánticos , Humanos , Grafito/química , Puntos Cuánticos/química , Oro/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Cisteína , Técnicas Biosensibles/métodos , Electrodos , ARN , Límite de Detección
7.
Anim Reprod Sci ; 260: 107384, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043165

RESUMEN

Hypothermic storage has been proposed as a method to reduce bacterial loads and promoting prudent use of antibiotics. Reducing temperature, however, can lead to cold shock damage and oxidative stress in boar semen. This study verified the effect of L-cysteine on the quality of semen stored at 5 °C for 120 h. Twenty-one normospermic ejaculates were diluted in Beltsville Thawing Solution into five treatments: Positive control (Pos_Cont, storage at 17 °C without L-cysteine) and groups with 0, 0.5, 1, and 2 mmol/L of L-cysteine supplementation stored at 5 °C. Variables were analyzed as repeated measures, considering treatment, storage time, and interaction as main factors. The effects of different L-cysteine concentrations were also evaluated using polynomial orthogonal contrasts. Sperm motility and pH were higher in the Pos_Cont compared to the groups stored at 5 °C (P < 0.05). In polynomial orthogonal contrast models, total motility was affected by the interaction between L-cysteine and storage time (P = 0.04), with a linear increase in motility when increasing the amount of L-cysteine at 72 and 120 h. Progressive motility increased quadratically as the L-cysteine reached 1 mmol/L (P < 0.01). In the thermoresistance test at 120 h, sperm motility increased quadratically up to an L-cysteine dose of 1 mmol/L (P < 0.05). Sulfhydryl content linearly increased with L-cysteine supplementation (P = 0.01), with no effect on intracellular ROS and sperm lipid peroxidation (P ≥ 0.06) in 5ºC-stored doses. In conclusion, L-cysteine supplementation has a positive effect on sperm motility up to 120 h of storage at 5 °C.


Asunto(s)
Preservación de Semen , Motilidad Espermática , Porcinos , Masculino , Animales , Semen , Cisteína/farmacología , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides , Estrés Oxidativo
8.
Eur J Pharmacol ; 963: 176266, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096969

RESUMEN

Hydrogen sulfide (H2S) is a gasotransmitter implied in metabolic diseases, insulin resistance, obesity, and type 2 Diabetes Mellitus. This study aimed to determine the effect of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor), L-Cysteine (L-Cys; substrate of H2S producing enzymes) and DL-Propargylglycine (DL-PAG; cystathionine-gamma-lyase inhibitor) on the vascular dysfunction induced by insulin resistance in rat thoracic aorta. For this purpose, 72 animals were divided into two main sets that received: 1) tap water (control group; n = 12); and 2) fructose 15% w/v in drinking water [insulin resistance group (IR); n = 60] for 20 weeks. After 16 weeks, the group 2 was divided into five subgroups (n = 12 each), which received daily i. p. injections during 4 weeks of: 1) non-treatment (control); 2) vehicle (phosphate buffer saline; PBS, 1 ml/kg); 3) NaHS (5.6 mg/kg); 4) L-Cys (300 mg/kg); and (5) DL-PAG (10 mg/kg). Hemodynamic variables, metabolic variables, vascular function, ROS levels and the expression of p-eNOS and eNOS were determined. IR induced: 1) hyperinsulinemia; 2) increased HOMA-index; 3) decreased Matsuda index; 4) hypertension, vascular dysfunction, increased ROS levels; 5) increased iNOS, and 6) decreased CSE, p-eNOS and eNOS expression. Furthermore, IR did not affect contractile responses to norepinephrine. Interestingly, NaHS and L-Cys treatment, reversed IR-induced impairments and DL-PAG treatment decreased and increased the HOMA and Matsuda index, respectively. Taken together, these results suggest that NaHS and L-Cys decrease the metabolic and vascular alterations induced by insulin resistance by reducing oxidative stress and activating eNOS. Thus, hydrogen sulfide may have a therapeutic application.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sulfuro de Hidrógeno , Hipertensión , Resistencia a la Insulina , Animales , Ratas , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Cisteína/farmacología , Cisteína/uso terapéutico , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Resistencia a la Insulina/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno
9.
J Biol Chem ; 300(2): 105609, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159851

RESUMEN

A superfamily of proteins called cysteine transmembrane is widely distributed across eukaryotes. These small proteins are characterized by the presence of a conserved motif at the C-terminal region, rich in cysteines, that has been annotated as a transmembrane domain. Orthologs of these proteins have been involved in resistance to pathogens and metal detoxification. The yeast members of the family are YBR016W, YDL012C, YDR034W-B, and YDR210W. Here, we begin the characterization of these proteins at the molecular level and show that Ybr016w, Ydr034w-b, and Ydr210w are palmitoylated proteins. Protein S-acylation or palmitoylation, is a posttranslational modification that consists of the addition of long-chain fatty acids to cysteine residues. We provide evidence that Ybr016w, Ydr210w, and Ydr034w-b are localized to the plasma membrane and exhibit varying degrees of polarity toward the daughter cell, which is dependent on endocytosis and recycling. We suggest the names CPP1, CPP2, and CPP3 (C terminally palmitoylated protein) for YBR016W, YDR210W, and YDR034W-B, respectively. We show that palmitoylation is responsible for the binding of these proteins to the membrane indicating that the cysteine transmembrane on these proteins is not a transmembrane domain. We propose renaming the C-terminal cysteine-rich domain as cysteine-rich palmitoylated domain. Loss of the palmitoyltransferase Erf2 leads to partial degradation of Ybr016w (Cpp1), whereas in the absence of the palmitoyltransferase Akr1, members of this family are completely degraded. For Cpp1, we show that this degradation occurs via the proteasome in an Rsp5-dependent manner, but is not exclusively due to a lack of Cpp1 palmitoylation.


Asunto(s)
Cisteína , Lipoilación , Proteínas de Saccharomyces cerevisiae , Cisteína/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Unión Proteica , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteolisis , Análisis Mutacional de ADN , Dominios Proteicos
10.
J Agric Food Chem ; 71(46): 17485-17493, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943570

RESUMEN

Myoglobin is the main factor responsible for muscle pigmentation in tuna; muscle color depends upon changes in the oxidative state of myoglobin. The tuna industry has reported muscle greening after thermal treatment involving metmyoglobin (MetMb), trimethylamine oxide (TMAO), and free cysteine (Cys). It has been proposed that this pigmentation change is due to a disulfide bond between a unique cysteine residue (Cys10) found in tuna MetMb and free Cys. However, no evidence has been given to confirm that this reaction occurs. In this review, new findings about the mechanism of this greening reaction are discussed, showing evidence of how free radicals produced from Cys oxidation under thermal treatment participate in the greening of tuna and horse muscle during thermal treatment. In addition, the reaction conditions are compared to other green myoglobins, such as sulfmyoglobin, verdomyoglobin, and cholemyoglobin.


Asunto(s)
Cisteína , Mioglobina , Animales , Caballos , Mioglobina/química , Cisteína/química , Metamioglobina/química , Oxidación-Reducción , Músculos/metabolismo
11.
Biochem Biophys Res Commun ; 687: 149185, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37951047

RESUMEN

Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III. Type I metacaspases have a characteristic pro-domain at the N-terminal of the enzyme, preceding a region rich in glutamine and asparagine. In the yeast Saccharomyces cerevisiae, a type I metacaspase is found. This organism encodes a single metacaspase that participates in the process of programmed cell death by apoptosis. The study focuses on cloning, expressing, and mutating Saccharomyces cerevisiae metacaspase (ScMCA-Ia). Mutations in Cys155 and Cys276 were introduced to investigate autoprocessing mechanisms. Results revealed that Cys155 plays a crucial role in autoprocessing, initiating a conformational change that activates ScMCA-Ia. Comparative analysis with TbMCA-IIa highlighted the significance of the N-terminal region in substrate access to the active site. The study proposes a two-step processing mechanism for type I metacaspases, where an initial processing step generates the active form, followed by a distinct intermolecular processing step. This provides new insights into ScMCA-Ia's activation and function. The findings hold potential implications for understanding cellular processes regulated by metacaspases. Overall, this research significantly advances knowledge in metacaspase biology.


Asunto(s)
Caspasas , Saccharomyces cerevisiae , Caspasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cisteína/genética , Apoptosis , Dominio Catalítico
12.
Plant Physiol Biochem ; 204: 108127, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890229

RESUMEN

Enzymes of the sulfur assimilation pathway of plants have been identified as potential targets for herbicide development, given their crucial role in synthesizing amino acids, coenzymes, and various sulfated compounds. In this pathway, O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) catalyzes the synthesis of L-cysteine through the incorporation of sulfate into O-acetylserine (OAS). This study used an in silico approach to select seven inhibitors for OAS-TL. The in silico experiments revealed that S-benzyl-L-cysteine (SBC) had a better docking score (-7.0 kcal mol-1) than the substrate OAS (-6.6 kcal mol-1), indicating its suitable interaction with the active site of the enzyme. In vitro experiments showed that SBC is a non-competitive inhibitor of OAS-TL from Arabidopsis thaliana expressed heterologously in Escherichia coli, with a Kic of 4.29 mM and a Kiu of 5.12 mM. When added to the nutrient solution, SBC inhibited the growth of maize and morning glory weed plants due to the reduction of L-cysteine synthesis. Remarkably, morning glory was more sensitive than maize. As proof of its mechanism of action, L-cysteine supplementation to the nutrient solution mitigated the inhibitory effect of SBC on the growth of morning glory. Taken together, our data suggest that reduced L-cysteine synthesis is the primary cause of growth inhibition in maize and morning glory plants exposed to SBC. Furthermore, our findings indicate that inhibiting OAS-TL could potentially be a novel approach for herbicidal action.


Asunto(s)
Arabidopsis , Herbicidas , Liasas , Arabidopsis/metabolismo , Cisteína , Cisteína Sintasa/metabolismo , Herbicidas/farmacología , Plantas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
13.
Biosystems ; 234: 105066, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898397

RESUMEN

Trypanosoma cruzi is the causal agent of American Trypanosomiasis or Chagas Disease in humans. The current drugs for its treatment benznidazole and nifurtimox have inconveniences of toxicity and efficacy; therefore, the search for new therapies continues. Validation through genetic strategies of new drug targets against the parasite metabolism have identified numerous essential genes. Target validation can be further narrowed by applying Metabolic Control Analysis (MCA) to determine the flux control coefficients of the pathway enzymes. That coefficient is a quantitative value that represents the degree in which an enzyme/transporter determines the flux of a metabolic pathway; those with the highest coefficients can be promising drug targets. Previous studies have demonstrated that cysteine (Cys) is a key precursor for the synthesis of trypanothione, the main antioxidant metabolite in the parasite. In this research, MCA was applied in an ex vivo system to the enzymes of the reverse transsulfuration pathway (RTP) for Cys synthesis composed by cystathionine beta synthase (CBS) and cystathionine gamma lyase (CGL). The results indicated that CGL has 90% of the control of the pathway flux. Inhibition of CGL with propargylglycine (PAG) decreased the levels of Cys and trypanothione and depleted those of glutathione in epimastigotes (proliferative stage in the insect vector); these metabolite changes were prevented by supplementing with Cys, suggesting a compensatory role of the Cys transport (CysT). Indeed, Cys supplementation (but not PAG treatment) increased the activity of the CysT in epimastigotes whereas in trypomastigotes (infective stage in mammals) CysT was increased when they were incubated with PAG. Our results suggested that CGL could be a potential drug target given its high control on the RTP flux and its effects on the parasite antioxidant defense. However, the redundant Cys supply pathways in the parasite may require inhibition of the CysT as well. Our findings also suggest differential responses of the Cys supply pathways in different parasite stages.


Asunto(s)
Quistes , Trypanosoma cruzi , Humanos , Animales , Antioxidantes/metabolismo , Cisteína/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Mamíferos
14.
Comput Biol Chem ; 107: 107956, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748316

RESUMEN

The main protease (Mpro) of the novel coronavirus SARS-CoV-2 is a key target for developing antiviral drugs. Ebselen (EbSe) is a selenium-containing compound that has been shown to inhibit Mpro in vitro by forming a covalent bond with the cysteine (Cys) residue in the active site of the enzyme. However, EbSe can also bind to other proteins, like albumin, and low molecular weight compounds that have free thiol groups, such as Cys and glutathione (GSH), which may affect its availability and activity. In this study, we analyzed the Mpro interaction with EbSe, its analogues, and its metabolites with Cys, GSH, and albumin by molecular docking. We also simulated the electronic structure of the generated molecules by density functional theory (DFT) and explored the stability of EbSe and one of its best derivatives, EbSe-2,5-MeClPh, in the catalytic pocket of Mpro through covalent docking and molecular dynamics. Our results show that EbSe and its analogues bound to GSH/albumin have larger distance between the selenium atom of the ligands and the sulfur atom of Cys145 of Mpro than the other compounds. This suggests that EbSe and its GSH/albumin-analogues may have less affinity for the active site of Mpro. EbSe-2,5-MeClPh was found one of the best molecules, and in molecular dynamics simulations, it showed to undergo more conformational changes in the active site of Mpro, in relation to EbSe, which remained stable in the catalytic pocket. Moreover, this study also reveals that all compounds have the potential to interact closely with the active site of Mpro, providing us with a concept of which derivatives may be promising for in vitro analysis in the future. We propose that these compounds are potential covalent inhibitors of Mpro and that organoselenium compounds are molecules that should be studied for their antiviral properties.


Asunto(s)
COVID-19 , Compuestos de Organoselenio , Selenio , Humanos , Dominio Catalítico , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Albúminas , Azoles/farmacología , Cisteína , Glutatión , Simulación de Dinámica Molecular , Compuestos de Organoselenio/farmacología , Péptido Hidrolasas , Inhibidores de Proteasas , Antivirales/farmacología
15.
Free Radic Biol Med ; 207: 200-211, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473875

RESUMEN

The theory that aging is driven by the damage produced by reactive oxygen species (ROS) derived from oxidative metabolism dominated geroscience studies during the second half of the 20th century. However, increasing evidence that ROS also plays a key role in the physiological regulation of numerous processes through the reversible oxidation of cysteine residues in proteins, has challenged this notion. Currently, the scope of redox signaling has reached proteomic dimensions through mass spectrometry techniques. Here, we perform a comprehensive bioinformatics analysis of cysteine oxidation changes during mouse brain aging, using the quantitative data provided in the Oximouse dataset. Interestingly, our unbiased analysis identified hundreds of putative cysteine redox switches covering several pathways previously associated with aging. These include the ubiquitin-proteasome pathway and one-carbon metabolism (folate cycle, methionine cycle, transsulfuration and polyamine pathways). Surprisingly, cysteine oxidation changes are enriched in synaptic proteins in a highly asymmetric distribution: while postsynaptic proteins tend to increase cysteine oxidation with age, the opposite occurs for presynaptic proteins. Additionally, cysteine oxidation changes during aging are associated with proteins involved in the regulation of the mitochondrial transition pore opening and synaptic calcium homeostasis. Our analysis reinforces the concept that brain aging is associated with selective changes in the oxidation state of key proteins, rather than an overall trend toward increased oxidation. Also, we provide a prioritized list of specific cysteine residues with putative impact in aging processes for future experimental validation.


Asunto(s)
Disfunción Cognitiva , Estrés Oxidativo , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Cisteína/metabolismo , Proteómica/métodos , Envejecimiento/metabolismo , Proteínas/metabolismo , Oxidación-Reducción , Encéfalo/metabolismo
16.
Rev Neurosci ; 34(8): 915-932, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37409540

RESUMEN

The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine ß-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.


Asunto(s)
Cisteína , Enfermedad de Parkinson , Humanos , Cisteína/metabolismo , Azufre/metabolismo , Cistationina betasintasa/metabolismo , Glutatión/metabolismo
17.
Biochimie ; 213: 190-204, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423556

RESUMEN

Trypanosoma cruzi is the causal agent of Chagas Disease and is a unicellular parasite that infects a wide variety of mammalian hosts. The parasite exhibits auxotrophy by L-Met; consequently, it must be acquired from the extracellular environment of the host, either mammalian or invertebrate. Methionine (Met) oxidation produces a racemic mixture (R and S forms) of methionine sulfoxide (MetSO). Reduction of L-MetSO (free or protein-bound) to L-Met is catalyzed by methionine sulfoxide reductases (MSRs). Bioinformatics analyses identified the coding sequence for a free-R-MSR (fRMSR) enzyme in the genome of T. cruzi Dm28c. Structurally, this enzyme is a modular protein with a putative N-terminal GAF domain linked to a C-terminal TIP41 motif. We performed detailed biochemical and kinetic characterization of the GAF domain of fRMSR in combination with mutant versions of specific cysteine residues, namely, Cys12, Cys98, Cys108, and Cys132. The isolated recombinant GAF domain and full-length fRMSR exhibited specific catalytic activity for the reduction of free L-Met(R)SO (non-protein bound), using tryparedoxins as reducing partners. We demonstrated that this process involves two Cys residues, Cys98 and Cys132. Cys132 is the essential catalytic residue on which a sulfenic acid intermediate is formed. Cys98 is the resolutive Cys, which forms a disulfide bond with Cys132 as a catalytic step. Overall, our results provide new insights into redox metabolism in T. cruzi, contributing to previous knowledge of L-Met metabolism in this parasite.


Asunto(s)
Metionina Sulfóxido Reductasas , Trypanosoma cruzi , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Trypanosoma cruzi/genética , Oxidación-Reducción , Cisteína/química , Metionina/metabolismo
18.
Fungal Biol ; 127(7-8): 1198-1208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37495309

RESUMEN

In addition to their role in the breakdown of H2O2, some peroxiredoxins (Prxs) have chaperone and H2O2 sensing functions. Acting as an H2O2 sensor, Prx Gpx3 transfers the oxidant signal to the transcription factor Yap1, involved in the antioxidant response in Saccharomyces cerevisiae. We have shown that Aspergillus nidulans Yap1 ortholog NapA is necessary for the antioxidant response, the utilization of arabinose, fructose and ethanol, and for proper development. To address the Prx roles in these processes, we generated and characterized mutants lacking peroxiredoxins PrxA, PrxB, PrxC, or TpxC. Our results show that the elimination of peroxiredoxins PrxC or TpxC does not produce any distinguishable phenotype. In contrast, the elimination of atypical 2-cysteine peroxiredoxins PrxA and PrxB produce different mutant phenotypes. ΔprxA, ΔnapA and ΔprxA ΔnapA mutants are equally sensitive to H2O2 and menadione, while PrxB is dispensable for this. However, the sensitivity of ΔprxA and ΔprxA ΔnapA mutants is increased by the lack of PrxB. Moreover, PrxB is required for arabinose and ethanol utilization and fruiting body cell wall pigmentation. PrxA expression is partially independent of NapA, and the replacement of peroxidatic cysteine 61 by serine (C61S) is enough to cause oxidative stress sensitivity and prevent NapA nuclear accumulation in response to H2O2, indicating its critical role in H2O2 sensing. Our results show that despite their high similarity, PrxA and PrxB play differential roles in Aspergillus nidulans antioxidant response, carbon utilization and development.


Asunto(s)
Antioxidantes , Aspergillus nidulans , Antioxidantes/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Peróxido de Hidrógeno/metabolismo , Cisteína/metabolismo , Arabinosa , Estrés Oxidativo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Etanol , Carbono , Oxidación-Reducción
19.
Arch Endocrinol Metab ; 67(6): e000646, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37364148

RESUMEN

Objective: Recent studies investigated the role of amino acids (AAs) in weight management. We aimed to determine the association between AAs and three-year change of anthropometric indices and incident obesity. Materials and methods: Height, weight, hip, and waist circumference (WC) were collected at baseline and follow up. Three-year changes in anthropometric indices and obesity incident according to body mass index (BMI) (overweight & obesity) and WC cutoffs (obesity-WC) were ascertained. Dietary intakes of AAs were collected at baseline, using a food frequency questionnaire. Data analyses were conducted on 4976 adult participants and two subsamples, including 1,570 and 2,918 subjects, for assessing the AAs relationship with 3-year changes on anthropometric indices and obesity incident. Results: Lysine and aspartic acid were positively associated with higher weight change, whereas acidic AAs, cysteine, and glutamic acid showed a negative correlation with weight change. Furthermore, a weak positive correlation was shown for alkaline AAs, lysine, and valine with WC; however, acidic AAs, tryptophan, cysteine, and glutamic acid were negatively associated with WC. Aromatic and acidic AAs also demonstrated a weak negative relation with changes in BAI. Phenylalanine and Aromatic AAs showed a negative association with overweight &obesity incidence adjusting for potential confounders. Each quartile increases the dietary lysine, arginine, alanine, methionine, aspartic acid, and alkaline AAs related to a greater risk of obesity-WC, while tryptophan, glutamic acid, proline, and acidic AAs associated with lower obesity-WC risk. Conclusion: Our results suggested that certain dietary AAs may potentially change anthropometric indices and risk of obesity incident.


Asunto(s)
Ácido Aspártico , Sobrepeso , Adulto , Humanos , Sobrepeso/epidemiología , Triptófano , Cisteína , Lisina , Irán/epidemiología , Obesidad/epidemiología , Obesidad/complicaciones , Índice de Masa Corporal , Circunferencia de la Cintura , Aminoácidos , Lípidos , Glutamatos , Factores de Riesgo
20.
Front Cell Infect Microbiol ; 13: 1192800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377641

RESUMEN

Leishmaniasis is a neglected tropical parasitic disease with few approved medications. Cutaneous leishmaniasis (CL) is the most frequent form, responsible for 0.7 - 1.0 million new cases annually worldwide. Leukotrienes are lipid mediators of inflammation produced in response to cell damage or infection. They are subdivided into leukotriene B4 (LTB4) and cysteinyl leukotrienes LTC4 and LTD4 (Cys-LTs), depending on the enzyme responsible for their production. Recently, we showed that LTB4 could be a target for purinergic signaling controlling Leishmania amazonensis infection; however, the importance of Cys-LTs in the resolution of infection remained unknown. Mice infected with L. amazonensis are a model of CL infection and drug screening. We found that Cys-LTs control L. amazonensis infection in susceptible (BALB/c) and resistant (C57BL/6) mouse strains. In vitro, Cys-LTs significantly diminished the L. amazonensis infection index in peritoneal macrophages of BALB/c and C57BL/6 mice. In vivo, intralesional treatment with Cys-LTs reduced the lesion size and parasite loads in the infected footpads of C57BL/6 mice. The anti-leishmanial role of Cys-LTs depended on the purinergic P2X7 receptor, as infected cells lacking the receptor did not produce Cys-LTs in response to ATP. These findings suggest the therapeutic potential of LTB4 and Cys-LTs for CL treatment.


Asunto(s)
Leishmaniasis Cutánea , Leishmaniasis , Ratones , Animales , Ratones Endogámicos C57BL , Leucotrienos/fisiología , Leishmaniasis Cutánea/tratamiento farmacológico , Cisteína , Leucotrieno B4 , Leishmaniasis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA