Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.547
Filtrar
1.
Lancet Gastroenterol Hepatol ; 9(10): 944-956, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243773

RESUMEN

The natural history of metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease (NAFLD), is complex and long. A minority of patients develop inflammation and risk progressive fibrosis that can result in cirrhosis. Progression to cirrhosis occurs in 3-5% of patients and often takes more than 20 years. This narrative review presents an update on the natural history of MASLD, discussing studies and risk estimates for progression to severe outcomes, such as decompensated cirrhosis or hepatocellular carcinoma. We highlight the dynamic progression of liver damage, how to identify patients whose disease progresses over time, and how risk factors might be mitigated to reduce the risk for disease progression.


Asunto(s)
Progresión de la Enfermedad , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Factores de Riesgo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/complicaciones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología
2.
Hematology ; 29(1): 2392028, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39222052

RESUMEN

OBJECTIVE: To assess the fibrinogen function in patients with hepatitis B-related cirrhosis and explore the relationship between dysfibrinogenemia and bleeding and thrombotic events. METHODS: Medical records and laboratory data of the patients with hepatitis B-related cirrhosis were collected. Patients were categorized into three groups based on the Child-Pugh score. Fibrinogen activity and antigen, fibrinogen-bound sialic acid (FSA), fibrinogen polymerization and fibrinolysis kinetic analysis, thrombin-antithrombin complex (TAT) and plasmin-α2-antiplasmin complex (PAP) were detected. RESULTS: Eighty patients with seventeen, thirty-eight and twenty-five in Child-Pugh A, B and C, respectively, were included. Seventeen patients experienced bleeding events and eight patients had thrombotic events. Fibrinogen activity and antigen levels were reduced with the severity of cirrhosis. Twenty-two patients exhibited dysfibrinogenemia. The FSA levels in patients with non-dysfibrinogenemia and those with dysfibrinogenemia were increased to 1.25 and 1.37 times of healthy controls, negatively correlated with fibrinogen activity (ρ = -0.393, p = 0.006). Compared to healthy controls, the amount of clot formation was reduced (p < 0.001), the polymerization was delayed (p < 0.001) and the rate of fibrinolysis was reduced (p < 0.001). The TAT levels were significantly increased in the Child-Pugh C patients compared to the Child-Pugh B patients (p = 0.032) while the PAP levels were comparable among 3 groups (p = 0.361). CONCLUSION: Sialylation of fibrinogen is one of the main causes of modifications of fibrinogen in patients with hepatitis B-related cirrhosis. The polymerization and fibrinolysis functions of fibrinogen are impaired. The degree of impaired fibrinolysis function is more severe than that of polymerization function, and may be partly related to the occurrence of thrombotic events.


Asunto(s)
Fibrinógeno , Fibrinólisis , Hepatitis B , Cirrosis Hepática , Humanos , Masculino , Femenino , Fibrinógeno/metabolismo , Fibrinógeno/análisis , Persona de Mediana Edad , Cirrosis Hepática/sangre , Cirrosis Hepática/metabolismo , Cirrosis Hepática/complicaciones , Hepatitis B/complicaciones , Hepatitis B/sangre , Hepatitis B/metabolismo , Adulto , Anciano
3.
Mol Biol Rep ; 51(1): 950, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222158

RESUMEN

BACKGROUND: Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS: In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS: Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS: Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Células Estrelladas Hepáticas , Lisofosfolípidos , Transducción de Señal , Esfingosina , Factores de Transcripción , Proteínas Señalizadoras YAP , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Humanos , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Línea Celular , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Vía de Señalización Hippo
4.
Theranostics ; 14(13): 5200-5218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267780

RESUMEN

Rationale: Patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) have a high short-term mortality rate. Semaphorin-6B (SEMA6B) plays a crucial role in the pathogenesis of HBV-ACLF, but its molecular basis remains unclear. This study aimed to elucidate the mechanisms of SEMA6B in HBV-ACLF progression. Methods: A total of 321 subjects with HBV-ACLF, liver cirrhosis (LC), chronic hepatitis B (CHB), and normal controls (NC) from a prospective multicenter cohort were studied. 84 subjects (HBV-ACLF, n = 50; LC, n = 10; CHB, n = 10; NC, n = 14) among them underwent mRNA sequencing using peripheral blood mononuclear cells (PBMCs) to clarify the mechanisms of SEMA6B in HBV-ACLF. These mechanisms were validated through in vitro studies with hepatocytes and macrophages, as well as in vivo using SEMA6B knockout mice and mice treated with synthetic SEMA6B siRNA. Results: Transcriptome analysis of PBMCs showed that SEMA6B was among the most differentially expressed genes when comparing patients with HBV-ACLF to those with LC, CHB, or NC. ROC analysis demonstrated the reliable diagnostic value of SEMA6B for HBV-ACLF in both the sequencing cohort and an external validation cohort (AUROC = 0.9788 and 0.9026, respectively). SEMA6B levels were significantly higher in the HBV-ACLF patients, especially in non-survivors, with high expression mainly observed in macrophages and hepatocytes in liver tissue. Genes significantly associated with highly expressed SEMA6B were enriched in inflammation and apoptosis pathways in HBV-ACLF non-survivors. Overexpression of SEMA6B in macrophages activated systemic inflammatory responses, while its overexpression in hepatocytes inhibited proliferation through G0/G1 cell cycle arrest and induced apoptosis. Knocking out SEMA6B rescued mice with liver failure by improving liver functions, reducing inflammatory responses, and decreasing hepatocyte apoptosis. Transcriptome analysis of liver tissue showed that SEMA6B knockout significantly ameliorated the liver failure signature, significantly downregulating inflammation-related pathways. Importantly, therapeutic delivery of synthetic SEMA6B siRNA also improved liver function, and reduced both inflammation and hepatocyte apoptosis in mice with liver failure. Conclusion: SEMA6B, a potential diagnostic biomarker for HBV-ACLF, exacerbates liver failure through macrophage-mediated systemic inflammation and hepatocyte apoptosis. These findings highlight SEMA6B as a promising early treatment target for HBV-ACLF patients.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Apoptosis , Virus de la Hepatitis B , Hepatitis B Crónica , Hepatocitos , Macrófagos , Ratones Noqueados , Semaforinas , Semaforinas/metabolismo , Semaforinas/genética , Animales , Humanos , Insuficiencia Hepática Crónica Agudizada/virología , Insuficiencia Hepática Crónica Agudizada/metabolismo , Ratones , Masculino , Macrófagos/metabolismo , Hepatocitos/metabolismo , Hepatocitos/virología , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/patología , Persona de Mediana Edad , Femenino , Adulto , Estudios Prospectivos , Inflamación , Leucocitos Mononucleares/metabolismo , Cirrosis Hepática/virología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Ratones Endogámicos C57BL
5.
J Pineal Res ; 76(6): e13007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39269018

RESUMEN

Intestinal barrier dysfunction with high serum endotoxin is common in patients with liver fibrosis, but the mechanisms underlying liver fibrosis remain unclear. Melatonin is a well-recognized antioxidant and an anti-inflammatory agent that benefits multiple organs. However, the beneficial effects of melatonin on gut leakiness-associated liver fibrosis have not been systemically studied. Here, we investigated the protective mechanisms of melatonin against thioacetamide (TAA)-induced gut barrier dysfunction and hepatic fibrosis by focusing on posttranslational protein modifications through the gut-liver axis. Our results showed that gut leakiness markers, including decreased gut tight/adherens junction proteins (TJ/AJs) with increased intestinal deformation, apoptosis, and serum endotoxin, were observed early at 1 week after TAA exposure. Liver injury, apoptosis, and fibrosis were prominent at 2 and 4 weeks. Mechanistically, we found that gut TJ/AJs were hyper-acetylated, followed by ubiquitin-dependent proteolysis, leading to their degradation and gut leakiness. Gut dysbiosis, hepatic protein hyper-acetylation, and SIRT1 downregulation were also observed. Consistently, intestinal Sirt1 deficiency greatly enhanced protein hyper-acetylation, gut leakiness, endotoxemia, and liver fibrosis. Pretreatment with melatonin prevented or improved all these changes in both the gut and liver. Furthermore, melatonin blunted protein acetylation and injury in TAA-exposed T84 human intestinal and AML12 mouse liver cells. Overall, this study demonstrated novel mechanisms by which melatonin prevents gut leakiness and liver fibrosis through the gut-liver axis by attenuating the acetylation of intestinal and hepatic proteins. Thus, melatonin consumption can become a potentially safe supplement for liver fibrosis patients by preventing protein hyper-acetylation and gut leakiness.


Asunto(s)
Cirrosis Hepática , Melatonina , Sirtuina 1 , Tioacetamida , Tioacetamida/toxicidad , Sirtuina 1/metabolismo , Melatonina/farmacología , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Acetilación/efectos de los fármacos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología
6.
Mol Med Rep ; 30(5)2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219289

RESUMEN

Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. Carthamus tinctorius L. (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4­induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL­infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both in vitro and in vivo. Histopathological results showed that CTL significantly improved CCl4­induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E­cadherin expression, and decreased α­smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL­infused serum was found to decrease α­SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y­P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.


Asunto(s)
Carthamus tinctorius , Células Estrelladas Hepáticas , Cirrosis Hepática , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Carthamus tinctorius/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Tetracloruro de Carbono , Ratas Sprague-Dawley , Extractos Vegetales/farmacología , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1508-1517, 2024 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-39276046

RESUMEN

OBJECTIVE: To analyze the core functional component groups (CFCG) in Yinchenhao Decoction (YCHD) and their possible pathways for treating hepatic fibrosis based on network pharmacology. METHODS: PPI data were extracted from DisGeNET, Genecards, CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1. The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction. A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets. In cultured human hepatic stellate cells (LX-2 cells), the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay; the effects of these compounds on collagen α1 (Col1a1) mRNA expression and the pathways in 20 ng/mL TGF-ß1-stimulated cells were analyzed using RT-qPCR and Western blotting. RESULTS: A total of 1005 pathogenic genes, 226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained. Benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid were selected for CCK-8 verification, and they all showed minimal cytotoxicity below the concentration of 200 µmol/L. Clorius, polydatin, lauric acid and ferulic acid all effectively inhibited TGF-ß1-induced LX-2 cell activation. At the concentration of 200 µmol/L, all these 4 components inhibited PI3K, p-PI3K, AKT, p-AKT, ERK, p-ERK, P38 MAPK and p-P38 MAPK expressions in TGF-ß1-induced LX-2 cells. CONCLUSION: The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid, which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.


Asunto(s)
Medicamentos Herbarios Chinos , Células Estrelladas Hepáticas , Cirrosis Hepática , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Medicina Tradicional China/métodos , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Ácidos Cumáricos/farmacología , Línea Celular , Transducción de Señal/efectos de los fármacos , Farmacología en Red , Cadena alfa 1 del Colágeno Tipo I
8.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273295

RESUMEN

Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-ß/Smad, AMPK/mTOR, Wnt/ß-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.


Asunto(s)
Cirrosis Hepática , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Animales , Sistema de Administración de Fármacos con Nanopartículas , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Transducción de Señal/efectos de los fármacos , Flavonoides/uso terapéutico , Flavonoides/administración & dosificación , Flavonoides/farmacocinética , Polifenoles/uso terapéutico , Polifenoles/administración & dosificación , Polifenoles/química
9.
Front Immunol ; 15: 1433393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257588

RESUMEN

Introduction: Precise staging and classification of liver fibrosis are crucial for the hierarchy management of patients. The roles of lactylation are newly found in the progression of liver fibrosis. This study is committed to investigating the signature genes with histone lactylation and their connection with immune infiltration among liver fibrosis with different phenotypes. Methods: Firstly, a total of 629 upregulated and 261 downregulated genes were screened out of 3 datasets of patients with liver fibrosis from the GEO database and functional analysis confirmed that these differentially expressed genes (DEGs) participated profoundly in fibrosis-related processes. After intersecting with previously reported lactylation-related genes, 12 DEGs related to histone lactylation were found and narrowed down to 6 core genes using R algorithms, namely S100A6, HMGN4, IFI16, LDHB, S100A4, and VIM. The core DEGs were incorporated into the Least absolute shrinkage and selection operator (LASSO) model to test their power to distinguish the fibrotic stage. Results: Advanced fibrosis presented a pattern of immune infiltration different from mild fibrosis, and the core DEGs were significantly correlated with immunocytes. Gene set and enrichment analysis (GSEA) results revealed that core DEGs were closely linked to immune response and chemokine signaling. Samples were classified into 3 clusters using the LASSO model, followed by gene set variation analysis (GSVA), which indicated that liver fibrosis can be divided into status featuring lipid metabolism reprogramming, immunity immersing, and intermediate of both. The regulatory networks of the core genes shared several transcription factors, and certain core DEGs also presented dysregulation in other liver fibrosis and idiopathic pulmonary fibrosis (IPF) cohorts, indicating that lactylation may exert comparable functions in various fibrotic pathology. Lastly, core DEGs also exhibited upregulation in HCC. Discussion: Lactylation extensively participates in the pathological progression and immune infiltration of fibrosis. Lactylation and related immune infiltration could be a worthy focus for the investigation of HCC developed from liver fibrosis.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Cirrosis Hepática , Neoplasias Hepáticas , Fenotipo , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Histonas/metabolismo
10.
Cell Mol Life Sci ; 81(1): 387, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249529

RESUMEN

BACKGROUND: Dysregulated lipid oxidation occurs in several pathological processes characterized by cell proliferation and migration. Nonetheless, the molecular mechanism of lipid oxidation is not well appreciated in liver fibrosis, which is accompanied by enhanced fibroblast proliferation and migration. METHODS: We investigated the causes and consequences of lipid oxidation in liver fibrosis using cultured cells, animal models, and clinical samples. RESULTS: Increased ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1) expression caused increased lipid oxidation, resulting in the proliferation and migration of hepatic stellate cells (HSCs) that lead to liver fibrosis, whereas fibroblast-specific ENPP1 knockout reversing these results. Elevated ENPP1 and N6-methyladenosine (m6A) levels were associated with high expression of Wilms tumor 1 associated protein (WTAP). Mechanistically, WTAP-mediated m6A methylation of the 3'UTR of ENPP1 mRNA and induces its translation dependent of YTH domain family proteins 1 (YTHDF1). Additionally, ENPP1 could interact with hypoxia inducible lipid droplet associated (HILPDA) directly; overexpression of ENPP1 further recruits HILPDA-mediated lipid oxidation, thereby promotes HSCs proliferation and migration, while inhibition of ENPP1 expression produced the opposite effect. Clinically, increased expression of WTAP, YTHDF1, ENPP1, and HILPDA, and increased m6A mRNA content, enhanced lipid oxidation, and increased collagen deposition in human liver fibrosis tissues. CONCLUSIONS: We describe a novel mechanism in which WTAP catalyzes m6A methylation of ENPP1 in a YTHDF1-dependent manner to enhance lipid oxidation, promoting HSCs proliferation and migration and liver fibrosis.


Asunto(s)
Adenosina , Proliferación Celular , Metabolismo de los Lípidos , Cirrosis Hepática , Oxidación-Reducción , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , ARN Mensajero , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proliferación Celular/genética , Metabolismo de los Lípidos/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Movimiento Celular/genética , Ratones Endogámicos C57BL , Masculino , Epigénesis Genética , Fibroblastos/metabolismo , Fibroblastos/patología , Metilación , Factores de Empalme de ARN , Proteínas de Ciclo Celular
11.
Gut Microbes ; 16(1): 2399260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239875

RESUMEN

The gut microbiota drives progression to liver fibrosis, the main determinant of mortality in metabolic dysfunction-associated steatohepatitis (MASH). In this study, we aimed to identify bacterial species associated with protection against liver fibrosis in a high-risk population, and test their potential to protect against liver fibrosis in vivo. Based on stool shotgun metagenomic sequencing of 340 subjects from a population cohort disproportionally affected by MASH, we identified bacterial species from the Bacteroidales and Clostridiales orders associated with reduced risk of liver fibrosis. A bacterial consortium was subsequently tested in a mouse model of MASH, which demonstrated protective effects against liver fibrosis. Six of the eight inoculated bacteria were detected in mouse stool and liver. Intrahepatic presence of bacteria was further confirmed by bacterial culture of mouse liver tissue. Changes in liver histological parameters, gut functional profiles, and amino acid profiles were additionally assessed. Comparison between fibrosis-associated human metagenome and bacteria-induced metagenome changes in mice identified microbial functions likely to mediate the protective effect against liver fibrosis. Amino acid profiling confirmed an increase in cysteine synthase activity, associated with reduced fibrosis. Other microbiota-induced changes in amino acids associated with reduced fibrosis included increased gut asparaginase activity and decreased hepatic tryptophan-to-kynurenine conversion. This human-to-mouse study identified bacterial species and their effects on amino acid metabolism as innovative strategies to protect against liver fibrosis in MASH.


Asunto(s)
Aminoácidos , Bacterias , Microbioma Gastrointestinal , Cirrosis Hepática , Hígado , Animales , Humanos , Cirrosis Hepática/microbiología , Cirrosis Hepática/metabolismo , Ratones , Aminoácidos/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Hígado/metabolismo , Hígado/patología , Hígado/microbiología , Femenino , Heces/microbiología , Ratones Endogámicos C57BL , Persona de Mediana Edad , Hígado Graso/metabolismo , Hígado Graso/microbiología , Modelos Animales de Enfermedad , Metagenoma , Adulto
12.
Anal Chem ; 96(36): 14639-14649, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39208350

RESUMEN

Aminopeptidase N (APN/CD13) is a widely expressed transmembrane ectoenzyme that is crucial for maintaining normal physiological activities. It exhibits abnormal activity closely associated with hepatic fibrosis and nonalcoholic fatty liver disease (NAFLD). Therefore, there is a high demand for noninvasive detection of aminopeptidase N (APN) in the diagnosis and research of related diseases. Here, we developed a small molecule fluorescent probe, Hcy-APN, which is a fluorescent probe with high sensitivity and selectivity for the detection of APN. Furthermore, we synthesized the fluorescent nanoprobe Hcy-APN@MSN by self-assembling Hcy-APN and mesoporous silica nanoparticles in solution using a combination of molecular probe design and nanofunctionalization strategies. The detection limit of this probe was 1.5 ng/mL. Hcy-APN@MSN exhibits more stable spectral characteristics compared to Hcy-APN and is suitable for detecting APN activity in live cells and mice. Hcy-APN@MSN was utilized for in vivo and intracellular imaging of NAFLD and hepatic fibrosis at different stages, as well as for a systematic assessment of APN levels in the liver. The results confirm an elevation in the expression levels of APN in NAFLD and hepatic fibrosis models. Furthermore, we investigated the inhibitory effect of the APN inhibitor bestatin in nonalcoholic fatty liver and hepatic fibrosis disease models, confirming its regulatory effect on APN levels in cells and in vivo in both disease models. Therefore, this study may offer diagnostic possibilities for detecting NAFLD and hepatic fibrosis.


Asunto(s)
Antígenos CD13 , Colorantes Fluorescentes , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Antígenos CD13/metabolismo , Antígenos CD13/antagonistas & inhibidores , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Humanos , Nanopartículas/química , Ratones Endogámicos C57BL , Imagen Óptica , Masculino , Dióxido de Silicio/química
13.
Life Sci ; 354: 122966, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39147320

RESUMEN

Aberrant activation of the NLRP3 inflammasome is recognized to induce a chronic inflammatory response in the liver, ultimately leading to hepatic fibrosis. HSP90 is suggested to regulate NLRP3 activation and its downstream signaling. This study is the first to explore the potential therapeutic role of pimitespib in mitigating liver fibrosis in rats. The results of the study revealed that pimitespib effectively suppressed hepatic inflammation and fibrogenesis by modulating HSP90's control over the NFκB/NLRP3/caspase-1 axis. In vitro experiments demonstrated that pimitespib reduced LDH levels and increased hepatocyte survival, whereas in vivo, it prolonged the survival of rats with hepatic fibrosis. Additionally, pimitespib exhibited improvements in the function and microscopic characteristics of rat livers. Pimitespib effectively inhibited NFκB, which serves as the priming signal for NLRP3 activation. Pimitespib's inhibitory effect on NLRP3, identified as an HSP90 client protein, plays a central role in the observed anti-fibrotic effect. The simultaneous inhibition of both priming and activation signals of NLRP3 by pimitespib led to a reduction in caspase-1 activity and subsequent suppression of the N-terminal fragment of gasdermin D, ultimately constraining hepatocyte pyroptotic cell death. These diverse effects were associated with a decrease in the transcription of inflammatory mediators IL-1ß, IL-18, and TNF-α, as well as the fibrogenic mediators TGF-ß, TIMP-1, PDGF-BB, and Col1a1. Moreover, pimitespib induced the expression of HSP70, which could further contribute to the repression of fibrosis development. In summary, our findings provide an evolutionary perspective on managing liver fibrosis, positioning pimitespib as a promising candidate for anti-inflammatory and antifibrotic therapy.


Asunto(s)
Caspasa 1 , Proteínas HSP90 de Choque Térmico , Cirrosis Hepática , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/metabolismo , FN-kappa B/metabolismo , Masculino , Caspasa 1/metabolismo , Transducción de Señal , Ratas Sprague-Dawley , Inflamasomas/metabolismo , Sulfonamidas/farmacología , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/efectos de los fármacos
14.
Sci Rep ; 14(1): 20035, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198546

RESUMEN

Liver fibrosis is a chronic liver disease with progressive wound healing reaction caused by liver injury. Currently, there is no FDA approved drugs for liver fibrosis. Human adipose mesenchymal stem cells (hADSCs) have shown remarkable therapeutic effects in liver diseases. However, few studies have evaluated the therapeutic role of hADSCs in liver fibrosis, and the detailed mechanism of action is unknown. Here, we investigated the in vitro and in vivo anti-fibrosis efficacy of hADSCs and identified important metabolic changes and detailed mechanisms through transcriptomic and metabolomic analyses. We found that hADSCs could inhibit the proliferation of activated hepatic stellate cells (HSCs), promote their apoptosis, and effectively inhibit the expression of pro-fibrotic protein. It can significantly reduce collagen deposition and liver injury, improve liver function and alleviate liver inflammation in cirrhotic mouse models. In addition, transcriptome analysis revealed that the key mechanism of hADSCs against liver fibrosis is the regulation of AGE-RAGE signaling pathway. Metabolic analysis showed that hADSCs influenced changes of metabolites in lipid metabolism. Therefore, our study shows that hADSCs could reduce the activation of hepatic stellate cells and inhibit the progression of liver fibrosis, which has important potential in the treatment of liver fibrosis as well as other refractory chronic liver diseases.


Asunto(s)
Tejido Adiposo , Células Estrelladas Hepáticas , Cirrosis Hepática , Células Madre Mesenquimatosas , Metabolómica , Transcriptoma , Cirrosis Hepática/metabolismo , Cirrosis Hepática/terapia , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Animales , Ratones , Metabolómica/métodos , Células Estrelladas Hepáticas/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Perfilación de la Expresión Génica , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Modelos Animales de Enfermedad , Apoptosis , Proliferación Celular
15.
J Ethnopharmacol ; 335: 118646, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39097210

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ligustrum lucidum W.T. Aiton is a traditional Chinese medicine that has long been used with high hepatoprotective therapeutic and condition value. Specnuezhenide (SP), the standard prominent secoiridoid compound of Fructus Ligustri Lucidi may ameliorate hepatic inflammation in chronic liver diseases. AIM OF THE STUDY: Regulating inflammation through SIRT6-P2X7R axis has caused the emergence of novel molecular mechanism strategies for reversing hepatic fibrosis. This study focused on the mechanism of SP in modulating the liver inflammatory microenvironment in hepatic fibrosis. MATERIALS AND METHODS: C57BL/6 mice with hepatic fibrosis were stimulated with thioacetamide (TAA) prior to administration of SP. Hepatic stellate cells (HSCs) or normal mouse primary hepatocytes were exposed to transforming growth factor-ß (TGF-ß) treatment. Meanwhile, normal mouse bone marrow-derived macrophages (BMDMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP), aiming to obtain the conditioned medium. HSCs and hepatocytes were transfected with SIRT6 knockdown vector (siRNA-SIRT6) to estimate the impact of SP on the SIRT6-P2X7R/NLRP3 signaling pathway. RESULTS: SP suppressed the HSCs extracellular matrix (ECM) deposition as well as pro-inflammatory cytokine levels induced by the medium of BMDMs or TGF-ß. In addition, SP also significantly up-regulated SIRT6, inhibited P2X7R-NLRP3 inflammasome in HSCs and hepatocytes, and functioned as MDL-800 (a SIRT6 agonist). SP reduced the hepatocytes pyroptosis and further prevented the occurrence of inflammatory response in the liver. SP could inhibit the activation of BMDMs and impede IL-1ß and IL-18 from entering extracellular regions. Moreover, deficiency of SIRT6 in HSCs or hepatocytes reduced SP's regulation of P2X7R suppression. For TAA-treated mice, SP mitigated histopathological changes, ECM accumulation, EMT process, and NETs formation in hepatic fibrosis. CONCLUSIONS: Therefore, SP decreased inflammatory response via SIRT6-P2X7R/NLRP3 pathway and suppressed fibrillogenesis. These findings supported SP as the novel candidate to treat hepatic fibrosis.


Asunto(s)
Cirrosis Hepática , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Sirtuinas , Animales , Sirtuinas/metabolismo , Sirtuinas/genética , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Tioacetamida/toxicidad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología
16.
Eur J Pharmacol ; 981: 176917, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154824

RESUMEN

Liver fibrosis is a pathological process that endangers human health, for which effective treatments remain elusive to date. Paeoniflorin (PAE), a pineane-type monoter penoid compound from the traditional Chinese medicine PaeoniaeRubra Radix, and metformin (MET), an oral biguanide hypoglycemic agent, both demonstrate anti-inflammatory and hepatoprotective effects. In current work, we first discovered that the combined treatment of PAE and MET synergistically inhibited the progression of liver fibrosis in two different animal models: therapeutic and preventive. This therapeutic effect is evidenced by a reduction in the expression levels of liver fibrosis markers and an improvement in histopathological characteristics. Mechanistic exploration further revealed that this combination therapy downregulated the expression of TGF-ß1 and p-Smad2, while upregulating Smad7 expression in both models. Importantly, we also found that this combinatorial approach significantly reduced hepatotoxicity and nephrotoxicity in both models. Our findings suggest an effective combination therapy for liver fibrosis and provide the possibility of therapeutic improvement for patients with liver fibrosis.


Asunto(s)
Sinergismo Farmacológico , Glucósidos , Cirrosis Hepática , Metformina , Monoterpenos , Animales , Monoterpenos/farmacología , Monoterpenos/uso terapéutico , Monoterpenos/administración & dosificación , Glucósidos/farmacología , Glucósidos/uso terapéutico , Glucósidos/administración & dosificación , Metformina/farmacología , Metformina/uso terapéutico , Metformina/administración & dosificación , Ratones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Masculino , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Quimioterapia Combinada , Factor de Crecimiento Transformador beta1/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Proteína Smad2/metabolismo , Modelos Animales de Enfermedad
17.
J Agric Food Chem ; 72(35): 19378-19394, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166383

RESUMEN

This study aimed to investigate the effects of corn gluten-derived soluble epoxide hydrolase (sEH) inhibitory peptides on nonalcoholic fatty liver fibrosis induced by a high-fat diet and carbon tetrachloride in mice. Mice treated with corn peptides at doses of 500 or 1000 mg/kg/d for 4 weeks exhibited reduced sEH activity in serum and liver, enhanced lipid metabolism, and decreased lipid accumulation and oxidative stress. Corn peptides effectively downregulated the mRNA levels of Pro-IL-1ß, Pro-IL-18, NOD-like receptor protein 3 (NLRP3), ASC, Pro-caspase-1, Caspase-1, and GSDMD in the liver. This hepatoprotective effect of corn peptides by inhibiting NLRP3 inflammasome activation was further validated in H2O2-induced HepG2 cells. Moreover, corn peptides restored the composition of the gut microbiota and promoted short-chain fatty acid production. This study provides evidence that corn-derived sEH inhibitory peptides have hepatoprotective activity against nonalcoholic fatty liver fibrosis by suppressing NLRP3 inflammasome activation and modulating gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico , Péptidos , Zea mays , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/genética , Masculino , Humanos , Zea mays/química , Péptidos/farmacología , Péptidos/administración & dosificación , Hígado/metabolismo , Hígado/efectos de los fármacos , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Células Hep G2 , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo
18.
J Ethnopharmacol ; 335: 118712, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173724

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Yajieshaba (YJSB), approved by the Yunnan Provincial Food and Drug Administration in 2008, are known for their anti-inflammatory, antiviral, and pro-apoptotic properties, effectively treating Hepatic fibrosis (HF). However, its mechanism of action remains unclear. AIM OF THE STUDY: The objective of this investigation is to explore how YJSB influences the TGF-ß1/Smad signaling pathway as a strategy for reducing HF. METHODS: The establishment of a HF model in mice involved ligation of the common bile duct, followed by administration of YJSB. Body and liver weights were measured, and the liver index calculated. Serum levels of ALT, AST, ALP, TBA, and TBIL were assessed using colorimetric methods. Additionally, liver homogenates were analyzed for PIIINP, Col-IV, LN, HA, and Hyp, as well as TGF-ß1 activity, using ELISA. Histological analyses of liver sections, stained with H&E, Ag, and Masson's trichrome, were performed to examine inflammation and the accumulation of collagen and reticular fibers. These studies aimed to elucidate the pharmacodynamic effects of YJSB on HF in mice with bile duct obstruction. The target pathways of YJSB were preliminarily identified through immunofluorescence detection of TGF-ß1, P-Smad2L, P-Smad2C, P-Smad3L, P-Smad3C, and Smad4 proteins. In vitro experiments included the induction of hepatic stellate cell (HSC-T6) activation by H2O2. A cell injury model was established for HSC-T6, and the CCK-8 assay was used to determine the optimal YJSB concentration and treatment duration. After pirfenidone (PFD) administration, which inhibits the TGF-ß1/Smad pathway, the effects of YJSB on HSC-T6 cell proliferation were observed. ELISA assays quantified Col-III, α-SMA, and Col-I in cell lysates to assess YJSB's impact on collagen synthesis in HSC-T6 cells. Western blot analysis was performed to assess the protein levels within the TGF-ß1/Smad signaling cascade. RESULTS: In the HF mouse model, administration of YJSB notably augmented the body weight and reduced the liver index. Concurrently, there was an elevation in serum concentrations of ALP, AST, ALT, TBA, and TBIL. Similarly, in the liver homogenates of HF mice, increases were observed in the levels of HA, PIIINP, Col-IV, LN, Hyp, and TGF-ß1. Histological assessments using H&E, Ag, and Masson stains indicated a substantial diminution in liver tissue damage. Through immunofluorescence analysis, it was discerned that YJSB modulated the expression of TGF-ß1, P-Smad2L, P-Smad2C, and P-Smad3L downwards, while elevating P-Smad3C and Smad4 protein expressions. Additional investigations revealed a significant reduction in α-SMA, Col-I, and Col-III levels in cell culture fluids, suggesting a decrease in collagen synthesis and a protective role against cellular damage. Western blot analyses demonstrated that the TGF-ß1/Smad pathway inhibitor, PFD, acted in synergy with YJSB, enhancing its regulatory effects on this pathway, decreasing levels of TGF-ß1, P-Smad2L, P-Smad2C, P-Smad3L, and promoting the expression of P-Smad3C. CONCLUSIONS: YJSB demonstrates a pharmacodynamic effect against HF, enhancing liver functionality and effectively mitigating the damage associated with bile duct obstruction. The proposed action mechanism of YJSB involves modulation of the TGF-ß1/Smad signaling pathway. Research indicates that YJSB might play a role in suppressing the movement, programmed cell death, and activation of HSC-T6, potentially decelerating the advancement of hepatic fibrosis.


Asunto(s)
Colestasis , Células Estrelladas Hepáticas , Peróxido de Hidrógeno , Cirrosis Hepática , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Animales , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Factor de Crecimiento Transformador beta1/metabolismo , Ratones , Masculino , Peróxido de Hidrógeno/metabolismo , Colestasis/metabolismo , Colestasis/patología , Colestasis/tratamiento farmacológico , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Línea Celular , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Proteínas Smad/metabolismo , Ratones Endogámicos C57BL , Proteína Smad2/metabolismo
19.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201613

RESUMEN

This study investigates novel short-lived long noncoding RNAs (lncRNAs) in mice with altered expression in metabolic dysfunction-associated steatotic liver (MASH) and liver fibrosis. LncRNAs share similarities with mRNAs in their transcription by RNA polymerase II, possession of a 5' cap structure, and presence of a polyA tail. We identified two lncRNAs, Kcnq1ot1 and Rmst, significantly decreased in both conditions. These lncRNAs showed dramatic expression changes in MASH livers induced by Western diets and CCl4, and in fibrotic livers induced by CCl4 alone. The decrease was more pronounced in liver fibrosis, suggesting their potential as biomarkers for disease progression. Our findings are consistent across different fibrosis models, indicating a crucial role for these lncRNAs in MASH and liver fibrosis in mice. With MASH becoming a global health issue and its progression to fibrosis associated with hepatocarcinogenesis and poor prognosis, understanding the underlying mechanisms is critical. This research contributes to elucidating lncRNA functions in murine liver diseases and provides a foundation for developing novel therapeutic strategies targeting lncRNAs in MASH and liver fibrosis, offering new avenues for potential therapeutic interventions.


Asunto(s)
Biomarcadores , Cirrosis Hepática , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Hepatopatías/genética , Hepatopatías/metabolismo , Hepatopatías/patología , Ratones Endogámicos C57BL , Enfermedad Crónica , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología
20.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39201682

RESUMEN

Liver fibrosis, characterized by excessive extracellular matrix deposition, is driven by activated hepatic stellate cells (HSCs). Due to the limited availability of anti-fibrotic drugs, the research on therapeutic agents continues. Here we have investigated Moringa oleifera Lam. (MO), known for its various bioactive properties, for anti-fibrotic effects. This study has focused on 1-phenyl-2-pentanol (1-PHE), a compound derived from MO leaves, and its effects on LX-2 human hepatic stellate cell activation. TGF-ß1-stimulated LX-2 cells were treated with MO extract or 1-PHE, and the changes in liver fibrosis markers were assessed at both gene and protein levels. Proteomic analysis and molecular docking were employed to identify potential protein targets and signaling pathways affected by 1-PHE. Treatment with 1-PHE downregulated fibrosis markers, including collagen type I alpha 1 chain (COL1A1), collagen type IV alpha 1 chain (COL4A1), mothers against decapentaplegic homologs 2 and 3 (SMAD2/3), and matrix metalloproteinase-2 (MMP2), and reduced the secretion of matrix metalloproteinase-9 (MMP-9). Proteomic analysis data showed that 1-PHE modulates the Wnt/ß-catenin pathway, providing a possible mechanism for its effects. Our results suggest that 1-PHE inhibits the TGF-ß1 and Wnt/ß-catenin signaling pathways and HSC activation, indicating its potential as an anti-liver-fibrosis agent.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Moringa oleifera , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Moringa oleifera/química , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Línea Celular , Proteómica/métodos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antifibróticos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA