RESUMEN
Characterization of the excited states of the mycosporine-like amino acid palythine (lambda(max) = 320 nm) in aqueous solutions was achieved experimentally. The low value for the photodegradation quantum yield, (1.2 +/- 0.2) x 10(-5), confirms that palythine is highly photostable in air saturated-aqueous solutions. Laser flash photolysis of acetone in the presence of palythine allowed for the observation of a transient spectrum which is consistent with the triplet-triplet absorption of palythine. Kinetic treatment of the transient signals yields a lifetime of the triplet state of ca. 9 micros and a triplet energy around 330 kJ mol(-1). The photoacoustic calorimetry results are consistent with non-radiative decay as the major fate of excited palythine. A comparison of the photodegradation quantum yields and photophysical properties of palythine with those previously determined for the other mycosporine-like amino acids, shinorine and porphyra-334, suggests that geometrical isomerization around the C=N bond may contribute to the rapid deactivation of this group of molecules.
Asunto(s)
Aminoácidos/química , Aminoácidos/efectos de la radiación , Ciclohexanoles/química , Ciclohexanoles/efectos de la radiación , Glicina/análogos & derivados , Fotólisis , Calorimetría , Ciclohexanoles/aislamiento & purificación , Ciclohexanonas/química , Ciclohexanonas/efectos de la radiación , Glicina/química , Glicina/aislamiento & purificación , Glicina/efectos de la radiación , Isomerismo , Cinética , Teoría Cuántica , Rhodophyta/química , Soluciones , Spirulina/química , Spirulina/efectos de la radiación , Agua/químicaRESUMEN
In vitro studies on the structurally related mycosporine-like amino acids (MAAs) porphyra-334 and shinorine in aqueous solutions were carried out aiming at their full photochemical and photophysical characterization and expanding the evidence on the assigned UV-photoprotective role of the molecules in vivo. The experiments on shinorine confirmed a high photostability and a poor fluorescence quantum yield, in concordance with previous results on porphyra-334. The estimation of triplet production quantum yields for both MAAs was achieved by laser-flash photolysis measurements. In particular, photosensitization experiments on porphyra-334 support the participation of the triplet state in the photodecomposition mechanism yielding a more precise value of [capital Phi](T). As well, photoacoustic calorimetry experiments allowed the first direct quantification of the nonradiative relaxation pathways of the excited MAAs in solution, corroborating that the vast majority (ca. 97%) of the absorbed energy is promptly delivered to the surroundings as heat, consistently with the low photodecomposition and emission yields observed.