Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.369
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273700

RESUMEN

Swietenia macrophylla fruit is a valuable and historically significant medicinal plant with anti-hypertension and anti-diabetes. We identified a toxic component, Febrifugin, from the edible part of the nut following zebrafish toxicity-guided isolation. Febrifugin is a mexicanolide-type limonoid compound. The toxic factor induced acute toxicity in zebrafish, including yolk sac edema and pericardial edema, reduced body length, decreased melanin deposition, and presented acute skeletal developmental issues. Further exploration of the acute toxicity mechanism through metabolomics revealed that Febrifugin caused significant changes in 13 metabolites in zebrafish larvae, which are involved in the pentose phosphate, tricarboxylic acid (TCA) cycle, and amino acid biosynthesis. The bioassay of oxidative stress capacity and qRT-PCR measurement showed that the compound significantly affected the h6pd gene in the pentose phosphate pathway and the mRNA expression of cs, idh3a, fh, and shda genes in the TCA cycle, leading to reactive oxygen species (ROS) accumulation and a notable decrease in glutathione (GSH) activity in zebrafish. These findings provide a basis for the rational use of S. macrophylla as a medicinal plant and raise awareness of the safety of medicinal plants.


Asunto(s)
Metabolómica , Pez Cebra , Animales , Pez Cebra/metabolismo , Metabolómica/métodos , Estrés Oxidativo/efectos de los fármacos , Meliaceae/química , Limoninas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Nueces/química , Larva/efectos de los fármacos , Larva/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metaboloma , Plantas Medicinales/química , Ciclo del Ácido Cítrico/efectos de los fármacos , Glutatión/metabolismo
2.
Nat Commun ; 15(1): 7994, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266555

RESUMEN

Lignin, a major plant cell wall component, has an important role in plant-defense mechanisms against pathogens and is a promising renewable carbon source to produce bio-based chemicals. However, our understanding of microbial metabolism is incomplete regarding certain lignin-related compounds like p-coumaryl and sinapyl alcohols. Here, we reveal peripheral pathways for the catabolism of the three main lignin precursors (p-coumaryl, coniferyl, and sinapyl alcohols) in the plant pathogen Xanthomonas citri. Our study demonstrates all the necessary enzymatic steps for funneling these monolignols into the tricarboxylic acid cycle, concurrently uncovering aryl aldehyde reductases that likely protect the pathogen from aldehydes toxicity. It also shows that lignin-related aromatic compounds activate transcriptional responses related to chemotaxis and flagellar-dependent motility, which might play an important role during plant infection. Together our findings provide foundational knowledge to support biotechnological advances for both plant diseases treatments and conversion of lignin-derived compounds into bio-based chemicals.


Asunto(s)
Lignina , Xanthomonas , Xanthomonas/metabolismo , Xanthomonas/genética , Lignina/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ciclo del Ácido Cítrico , Quimiotaxis , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética
3.
Arch Microbiol ; 206(9): 370, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115561

RESUMEN

Staphylococcus xylosus has emerged as a bovine mastitis pathogen with increasing drug resistance, resulting in substantial economic impacts. This study utilized iTRAQ analysis to investigate the mechanisms driving resistance evolution in S. xylosus under ceftiofur sodium stress. Findings revealed notable variations in the expression of 143 proteins, particularly glycolysis-related proteins (TpiA, Eno, GlpD, Ldh) and peptidoglycan (PG) hydrolase Atl. Following the induction of ceftiofur sodium resistance in S. xylosus, the emergence of resistant strains displaying characteristics of small colony variants (SCVs) was observed. The transcript levels of TpiA, Eno, GlpD and Ldh were up-regulated, TCA cycle proteins (ICDH, MDH) and Atl were down-regulated, lactate content was increased, and NADH concentration was decreased in SCV compared to the wild strain. That indicates a potential role of carbon metabolism, specifically PG hydrolysis, glycolysis, and the TCA cycle, in the development of resistance to ceftiofur sodium in S. xylosus.


Asunto(s)
Antibacterianos , Carbono , Cefalosporinas , Farmacorresistencia Bacteriana , Staphylococcus , Cefalosporinas/farmacología , Cefalosporinas/metabolismo , Antibacterianos/farmacología , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Staphylococcus/metabolismo , Carbono/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Animales , Bovinos , Glucólisis/efectos de los fármacos , Ciclo del Ácido Cítrico , Mastitis Bovina/microbiología , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana , Femenino
4.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201738

RESUMEN

Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.


Asunto(s)
Ciclo del Ácido Cítrico , Reparación del ADN , Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Daño del ADN , Animales
5.
Int Immunopharmacol ; 140: 112828, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39094359

RESUMEN

Changes in isocitrate dehydrogenases (IDH) lead to the production of the cancer-causing metabolite 2-hydroxyglutarate, making them a cause of cancer. However, the specific role of IDH in the progression of colon cancer is still not well understood. Our current study provides evidence that IDH2 is significantly increased in colorectal cancer (CRC) cells and actively promotes cell growth in vitro and the development of tumors in vivo. Inhibiting the activity of IDH2, either through genetic silencing or pharmacological inhibition, results in a significant increase in α-ketoglutarate (α-KG), indicating a decrease in the reductive citric acid cycle. The excessive accumulation of α-KG caused by the inactivation of IDH2 obstructs the generation of ATP in mitochondria and promotes the downregulation of HIF-1A, eventually inhibiting glycolysis. This dual metabolic impact results in a reduction in ATP levels and the suppression of tumor growth. Our study reveals a metabolic trait of colorectal cancer cells, which involves the active utilization of glutamine through reductive citric acid cycle metabolism. The data suggests that IDH2 plays a crucial role in this metabolic process and has the potential to be a valuable target for the advancement of treatments for colorectal cancer.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Isocitrato Deshidrogenasa , Transducción de Señal , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Línea Celular Tumoral , Ratones , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ácidos Cetoglutáricos/metabolismo , Ciclo del Ácido Cítrico , Glucólisis , Ratones Desnudos , Progresión de la Enfermedad , Adenosina Trifosfato/metabolismo , Proliferación Celular , Reprogramación Celular , Mitocondrias/metabolismo , Neoplasias Intestinales/patología , Neoplasias Intestinales/metabolismo , Reprogramación Metabólica
6.
World J Microbiol Biotechnol ; 40(10): 298, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39128979

RESUMEN

Mortierella alpina is popular for lipid production, but the low carbon conversion rate and lipid yield are major obstacles for its economic performance. Here, external addition of organic acids involved in tricarboxylic acid cycle was used to tune carbon flux and improve lipid production. Citrate was determined to be the best organic acid that can be used for enhancing lipid production. By the addition of citrate, the lipid titer and content were approximately 1.24 and 1.34 times higher, respectively. Meanwhile, citrate supplement also promoted the accumulation of succinate, an important value-added platform chemical. Owing to the improved lipid and succinate production through adding citrate, the carbon conversion rate of M. alpina reached up to 52.17%, much higher than that of the control group (14.11%). The addition of citrate could redistribute carbon flux by regulating the expression level of genes related to tricarboxylic acid cycle metabolism. More carbon fluxes flow to lipid and succinate synthesis, which greatly improved the carbon conversion efficiency of M. alpina. This study provides an effective and straightforward strategy with potential economic benefits to improve carbon conversion efficiency in M. alpina.


Asunto(s)
Carbono , Ciclo del Ácido Cítrico , Ácido Cítrico , Mortierella , Ácido Succínico , Mortierella/metabolismo , Mortierella/genética , Ácido Succínico/metabolismo , Carbono/metabolismo , Ácido Cítrico/metabolismo , Lípidos/biosíntesis , Metabolismo de los Lípidos , Regulación Fúngica de la Expresión Génica , Fermentación
7.
Nat Commun ; 15(1): 6777, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117624

RESUMEN

Metabolic rewiring during the proliferation-to-quiescence transition is poorly understood. Here, using a model of contact inhibition-induced quiescence, we conducted 13C-metabolic flux analysis in proliferating (P) and quiescent (Q) mouse embryonic fibroblasts (MEFs) to investigate this process. Q cells exhibit reduced glycolysis but increased TCA cycle flux and mitochondrial respiration. Reduced glycolytic flux in Q cells correlates with reduced glycolytic enzyme expression mediated by yes-associated protein (YAP) inhibition. The increased TCA cycle activity and respiration in Q cells is mediated by induced mitochondrial pyruvate carrier (MPC) expression, rendering them vulnerable to MPC inhibition. The malate-to-pyruvate flux, which generates NADPH, is markedly reduced by modulating malic enzyme 1 (ME1) dimerization in Q cells. Conversely, the malate dehydrogenase 1 (MDH1)-mediated oxaloacetate-to-malate flux is reversed and elevated in Q cells, driven by high mitochondrial-derived malate levels, reduced cytosolic oxaloacetate, elevated MDH1 levels, and a high cytoplasmic NAD+/NADH ratio. Transcriptomic analysis revealed large number of genes are induced in Q cells, many of which are associated with the extracellular matrix (ECM), while YAP-dependent and cell cycle-related genes are repressed. The results suggest that high TCA cycle flux and respiration in Q cells are required to generate ATP and amino acids to maintain de-novo ECM protein synthesis and secretion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Ciclo del Ácido Cítrico , Inhibición de Contacto , Fibroblastos , Glucólisis , Malato Deshidrogenasa , Mitocondrias , Transcriptoma , Proteínas Señalizadoras YAP , Animales , Proteínas Señalizadoras YAP/metabolismo , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fibroblastos/metabolismo , Malato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética , Mitocondrias/metabolismo , Malatos/metabolismo , Proliferación Celular , Ácido Pirúvico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
8.
Sci Rep ; 14(1): 18352, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112781

RESUMEN

Evidence suggests that positive pacing strategy improves exercise performance and fatigue tolerance in athletic events lasting 1-5 min. This study investigated muscle metabolic responses to positive and negative pacing strategies in Thoroughbred horses. Eight Thoroughbred horses performed 2 min treadmill running using positive (1 min at 110% maximal O2 uptake [V̇O2max], followed by 1 min at 90% V̇O2max) and negative (1 min at 90% V̇O2max, followed by 1 min at 110% V̇O2max) pacing strategies. The arterial-mixed venous O2 difference did not significantly differ between the two strategies. Plasma lactate levels increased toward 2 min, with significantly higher concentrations during positive pacing than during negative pacing. Muscle glycogen level was significantly lower at 1 and 2 min of positive pacing than those of negative pacing. Metabolomic analysis showed that the sum of glycolytic intermediates increased during the first half of positive pacing and the second half of negative pacing. Regardless of pacing strategy, the sum of tricarboxylic acid cycle metabolites increased during the first half but remained unchanged thereafter. Our data suggest that positive pacing strategy is likely to activate glycolytic metabolism to a greater extent compared to negative pacing, even though the total workload is identical.


Asunto(s)
Glucógeno , Ácido Láctico , Condicionamiento Físico Animal , Animales , Caballos , Condicionamiento Físico Animal/fisiología , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Glucógeno/metabolismo , Consumo de Oxígeno , Músculo Esquelético/metabolismo , Masculino , Prueba de Esfuerzo , Glucólisis , Femenino , Ciclo del Ácido Cítrico
9.
Cell Metab ; 36(9): 2069-2085.e8, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116884

RESUMEN

Urea cycle impairment and its relationship to obesity and inflammation remained elusive, partly due to the dramatic clinical presentation of classical urea cycle defects. We generated mice with hepatocyte-specific arginase 2 deletion (Arg2LKO) and revealed a mild compensated urea cycle defect. Stable isotope tracing and respirometry revealed hepatocyte urea and TCA cycle flux defects, impaired mitochondrial oxidative metabolism, and glutamine anaplerosis despite normal energy and glucose homeostasis during early adulthood. Yet during middle adulthood, chow- and diet-induced obese Arg2LKO mice develop exaggerated glucose and lipid derangements, which are reversible by replacing the TCA cycle oxidative substrate nicotinamide adenine dinucleotide. Moreover, serum-based hallmarks of urea, TCA cycle, and mitochondrial derangements predict incident fibroinflammatory liver disease in 106,606 patients nearly a decade in advance. The data reveal hierarchical urea-TCA cycle control via ARG2 to drive oxidative metabolism. Moreover, perturbations in this circuit may causally link urea cycle compromise to fibroinflammatory liver disease.


Asunto(s)
Arginasa , Ciclo del Ácido Cítrico , Hepatocitos , Urea , Animales , Arginasa/metabolismo , Hepatocitos/metabolismo , Ratones , Urea/metabolismo , Ratones Noqueados , Masculino , Humanos , Ratones Endogámicos C57BL , Oxidación-Reducción , Mitocondrias/metabolismo , Femenino
10.
Cell Mol Life Sci ; 81(1): 340, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120696

RESUMEN

Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.


Asunto(s)
Senescencia Celular , Cobre , Fibrosis , Riñón , Mitocondrias , Complejo Piruvato Deshidrogenasa , Cobre/metabolismo , Mitocondrias/metabolismo , Fibrosis/metabolismo , Animales , Complejo Piruvato Deshidrogenasa/metabolismo , Riñón/metabolismo , Riñón/patología , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ciclo del Ácido Cítrico
11.
Bioresour Technol ; 412: 131364, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39209227

RESUMEN

Succinate was found extensive applications in the food additives, pharmaceutical, and biopolymers industries. However, the succinate biosynthesis in E. coli required IPTG, lacked NADH, and produced high yields only under anaerobic conditions, unsuitable for cell growth. To overcome these limitations, the glyoxylate shunt and reductive TCA pathway were simultaneously enhanced to produce succinate in both aerobic and anaerobic conditions and achieve a high cell growth meanwhile. On this basis, NADH availability and sugars uptake were increased. Furthermore, an oxygen-dependent promoter was used to dynamically regulate the expression level of key genes of reductive TCA pathway to avoid the usage of IPTG. The final strain E. coli Mgls7-32 could produce succinate from corn stover hydrolysate without an inducer, achieving a titer of 72.8 g/L in 5 L bioreactor (1.2 mol/mol of total sugars). Those findings will aid in the industrial production of succinate.


Asunto(s)
Ciclo del Ácido Cítrico , Escherichia coli , Fermentación , Glioxilatos , Ácido Succínico , Zea mays , Ácido Succínico/metabolismo , Escherichia coli/metabolismo , Glioxilatos/metabolismo , Hidrólisis , Oxidación-Reducción , Reactores Biológicos , Anaerobiosis
12.
J Mol Cell Cardiol ; 195: 103-109, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154711

RESUMEN

It is still debated whether changes in metabolic flux are cause or consequence of contractile dysfunction in non-ischemic heart disease. We have previously proposed a model of cardiac metabolism grounded in a series of six moiety-conserved, interconnected cycles. In view of a recent interest to augment oxygen availability in heart failure through iron supplementation, we integrated this intervention in terms of moiety conservation. Examining published work from both human and murine models, we argue this strategy restores a mitochondrial cycle of energy transfer by enhancing mitochondrial pyruvate carrier (MPC) expression and providing pyruvate as a substrate for carboxylation and anaplerosis. Metabolomic data from failing heart muscle reveal elevated pyruvate levels with a concomitant decrease in the levels of Krebs cycle intermediates. Additionally, MPC is downregulated in the same failing hearts, as well as under hypoxic conditions. MPC expression increases upon mechanical unloading in the failing human heart, as does contractile function. We note that MPC deficiency also alters expression of enzymes involved in pyruvate carboxylation and decarboxylation, increases intermediates of biosynthetic pathways, and eventually leads to cardiac hypertrophy and dilated cardiomyopathy. Collectively, we propose that an unbroken chain of moiety-conserved cycles facilitates energy transfer in the heart. We refer to the transport and subsequent carboxylation of pyruvate in the mitochondrial matrix as an example and a proposed target for metabolic support to reverse impaired contractile function.


Asunto(s)
Miocardio , Humanos , Animales , Miocardio/metabolismo , Transferencia de Energía , Metabolismo Energético , Ácido Pirúvico/metabolismo , Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Ciclo del Ácido Cítrico
13.
J Agric Food Chem ; 72(36): 19710-19720, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39190801

RESUMEN

The enormous potential of carbon dots (CDs) in agriculture has been widely reported, whereas their accurate distribution, transformation, and metabolic fate and potential soil health effects are not clearly understood. Herein, 13C-labeled CDs (13C-CDs) were sprayed on maize leaf, accumulated in all tissues, and promoted photosynthesis. Specifically, 13C-CDs were internalized to participate in the synthesis of glucose, sucrose, citric acid, glyoxylate, and chlorogenic acid, promoting tricarboxylic acid cycle (TCA) and phenylalanine metabolism. Additionally, the catabolism of 13C-CDs in vivo was mainly mediated by O2•- produced by oxidative stress. 13C-CDs did not have an obvious impact on the soil environment at the overall level. The detection of 13C signals in soil fauna suggested 13C-CDs in soil food chain transmission. This study systematically described the exact fate of CDs in plants and potential soil ecological risks and provided a more comprehensive analysis and support for the potential advantages of CDs in agricultural application.


Asunto(s)
Carbono , Hojas de la Planta , Suelo , Zea mays , Zea mays/metabolismo , Zea mays/química , Zea mays/crecimiento & desarrollo , Suelo/química , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Carbono/metabolismo , Carbono/química , Fotosíntesis , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Ciclo del Ácido Cítrico , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo
14.
Talanta ; 280: 126696, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137660

RESUMEN

Circulating tumor cells (CTC) are considered metastatic precursors that are shed from the primary or metastatic deposits and navigate the bloodstream before undergoing extravasation to establish distant metastases. Metabolic reprogramming appears to be a hallmark of metastatic progression, yet current methods for evaluating metabolic heterogeneity within organ-specific metastases in vivo are limited. To overcome this challenge, we present Biofluorescence Imaging-Guided Spatial Metabolic Tracing (BIGSMT), a novel approach integrating in vivo biofluorescence imaging, stable isotope tracing, stain-free laser capture microdissection, and liquid chromatography-mass spectrometry. This innovative technology obviates the need for staining or intricate sample preparation, mitigating metabolite loss, and substantially enhances detection sensitivity and accuracy through chemical derivatization of polar metabolites in central carbon pathways. Application of BIGSMT to a preclinical CTC-mediated metastasis mouse model revealed significant heterogeneity in the in vivo carbon flux from glucose into glycolysis and the tricarboxylic acid (TCA) cycle across distinct metastatic sites. Our analysis indicates that carbon predominantly enters the TCA cycle through the enzymatic reaction catalyzed by pyruvate dehydrogenase. Thus, our spatially resolved BIGSMT technology provides fresh insights into the metabolic heterogeneity and evolution during melanoma CTC-mediated metastatic progression and points to novel therapeutic opportunities.


Asunto(s)
Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Animales , Ratones , Metástasis de la Neoplasia , Imagen Óptica , Humanos , Ciclo del Ácido Cítrico , Línea Celular Tumoral , Ratones Endogámicos C57BL
15.
Nat Commun ; 15(1): 6915, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134530

RESUMEN

Protein post-translational modifications (PTMs) are crucial for cancer cells to adapt to hypoxia; however, the functional significance of lysine crotonylation (Kcr) in hypoxia remains unclear. Herein we report a quantitative proteomics analysis of global crotonylome under normoxia and hypoxia, and demonstrate 128 Kcr site alterations across 101 proteins in MDA-MB231 cells. Specifically, we observe a significant decrease in K131cr, K156cr and K220cr of phosphoglycerate kinase 1 (PGK1) upon hypoxia. Enoyl-CoA hydratase 1 (ECHS1) is upregulated and interacts with PGK1, leading to the downregulation of PGK1 Kcr under hypoxia. Abolishment of PGK1 Kcr promotes glycolysis and suppresses mitochondrial pyruvate metabolism by activating pyruvate dehydrogenase kinase 1 (PDHK1). A low PGK1 K131cr level is correlated with malignancy and poor prognosis of breast cancer. Our findings show that PGK1 Kcr is a signal in coordinating glycolysis and the tricarboxylic acid (TCA) cycle and may serve as a diagnostic indicator for breast cancer.


Asunto(s)
Neoplasias de la Mama , Ciclo del Ácido Cítrico , Glucólisis , Fosfoglicerato Quinasa , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/genética , Humanos , Glucólisis/genética , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Regulación hacia Abajo , Ratones , Proteómica/métodos , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Mitocondrias/metabolismo , Hipoxia de la Célula , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética
16.
Elife ; 132024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093940

RESUMEN

Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.


Bacteria that are resistant to antibiotic drugs pose a significant challenge to human health around the globe. They have acquired genetic mutations that allow them to survive and grow in the presence of one or more antibiotics, making it harder for clinicians to eliminate such bacteria from human patients with life-threatening infections. Some bacteria may be able to temporarily develop tolerance to an antibiotic by altering how they grow and behave, without acquiring any new genetic mutations. Such drug-tolerant bacteria are more likely to survive long enough to gain mutations that may promote drug resistance. Recent studies suggest that genes involved in processes collectively known as energy metabolism, which convert food sources into the chemical energy cells need to survive and grow, may play a role in both tolerance and resistance. For example, Escherichia coli bacteria develop mutations in energy metabolism genes when exposed to members of a family of antibiotics known as the aminoglycosides. However, it remains unclear what exact role energy metabolism plays in antibiotic tolerance. To address this question, Shiraliyev and Orman studied how a range of E. coli strains with different genetic mutations affecting energy metabolism could survive in the presence of aminoglycosides. The experiments found that most of the mutant strains had a higher tolerance to the drugs than normal E. coli. Unexpectedly, this increased tolerance did not appear to be due to the drugs entering the mutant bacterium cells less than they enter normal cells (a common strategy of drug resistance and tolerance). Further experiments using a technique, known as proteomics, revealed that many genes involved in energy metabolism were upregulated in the mutant bacteria, suggesting these cells were compensating for the genetic abnormalities they have. Furthermore, the mutant bacteria had lower levels of the molecules the antibiotics target than normal bacteria. The findings of Shiraliyev and Orman offer critical insights into how bacteria become tolerant of aminoglycoside antibiotics. In the future, this may guide the development of new strategies to combat bacterial diseases.


Asunto(s)
Aminoglicósidos , Antibacterianos , Escherichia coli , Proteínas Ribosómicas , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Metabolismo Energético/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Tolerancia a Medicamentos , Proteómica , Ciclo del Ácido Cítrico/efectos de los fármacos
17.
J Biol Chem ; 300(8): 107565, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002675

RESUMEN

Citrate synthase catalyzes the first and the rate-limiting reaction of the tricarboxylic acid (TCA) cycle, producing citrate from the condensation of oxaloacetate and acetyl-coenzyme A. The parasitic protozoan Toxoplasma gondii has full TCA cycle activity, but its physiological roles remain poorly understood. In this study, we identified three proteins with predicted citrate synthase (CS) activities two of which were localized in the mitochondrion, including the 2-methylcitrate synthase (PrpC) that was thought to be involved in the 2-methylcitrate cycle, an alternative pathway for propionyl-CoA detoxification. Further analyses of the two mitochondrial enzymes showed that both had citrate synthase activity, but the catalytic efficiency of CS1 was much higher than that of PrpC. Consistently, the deletion of CS1 resulted in a significantly reduced flux of glucose-derived carbons into TCA cycle intermediates, leading to decreased parasite growth. In contrast, disruption of PrpC had little effect. On the other hand, simultaneous disruption of both CS1 and PrpC resulted in more severe metabolic changes and growth defects than a single deletion of either gene, suggesting that PrpC does contribute to citrate production under physiological conditions. Interestingly, deleting Δcs1 and Δprpc individually or in combination only mildly or negligibly affected the virulence of parasites in mice, suggesting that both enzymes are dispensable in vivo. The dispensability of CS1 and PrpC suggests that either the TCA cycle is not essential for the asexual reproduction of tachyzoites or there are other routes of citrate supply in the parasite mitochondrion.


Asunto(s)
Citrato (si)-Sintasa , Ciclo del Ácido Cítrico , Ácido Cítrico , Mitocondrias , Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/metabolismo , Toxoplasma/genética , Mitocondrias/metabolismo , Animales , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/genética , Ácido Cítrico/metabolismo , Ratones , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Toxoplasmosis/genética
18.
PLoS Pathog ; 20(7): e1012425, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39078849

RESUMEN

Pathogenic bacteria's metabolic adaptation for survival and proliferation within hosts is a crucial aspect of bacterial pathogenesis. Here, we demonstrate that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, plays a key role as a regulator of gene expression in Staphylococcus aureus. We show that citrate activates the transcriptional regulator CcpE and thus modulates the expression of numerous genes involved in key cellular pathways such as central carbon metabolism, iron uptake and the synthesis and export of virulence factors. Citrate can also suppress the transcriptional regulatory activity of ferric uptake regulator. Moreover, we determined that accumulated intracellular citrate, partly through the activation of CcpE, decreases the pathogenic potential of S. aureus in animal infection models. Therefore, citrate plays a pivotal role in coordinating carbon metabolism, iron homeostasis, and bacterial pathogenicity at the transcriptional level in S. aureus, going beyond its established role as a TCA cycle intermediate.


Asunto(s)
Carbono , Ácido Cítrico , Regulación Bacteriana de la Expresión Génica , Homeostasis , Hierro , Infecciones Estafilocócicas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Hierro/metabolismo , Carbono/metabolismo , Ácido Cítrico/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ciclo del Ácido Cítrico , Ratones , Transducción de Señal
19.
J Pharm Biomed Anal ; 249: 116370, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047467

RESUMEN

Brucellosis, a zoonotic disease caused by brucella infection, presents metabolic profile changes in patients that have not been extensively explored. This study utilized an ultra-high performance liquid chromatography tandem mass spectrometry based targeted metabolomic approach to comprehensively investigated metabolic changes in Brucella patients. Serum samples of brucellosis 50 patients and 50 well-matched healthy controls were analyzed for 228 metabolites, revealing significant alterations in 83 metabolites in brucellosis patients. Notably, disruptions were observed in key metabolite pathways, such as amino acid metabolism, urea cycle, tricarboxylic acid cycle (TCA), and fatty acid metabolism. Patients diagnosed with Brucellosis exhibited distinct differences in the levels of aspartate, glutamate, ß-alanine, and asparagine when compared to controls. Within the urea cycle, a significant downregulation of arginine was observed, whereas ornithine levels were considerably upregulated. In the TCA cycle, concentrations of 2-oxoglutarate, succinate, and malate were significantly elevated, while citrate levels demonstrated a notable decrease. Due to the interruption of the TCA cycle, glycolysis was accelerated to compensate for the resultant energy deficit in Brucella patients. Concurrently, there was a significant increase in the levels of short and medium-chain fatty acids, while long-chain fatty acids showed a marked decrease. The study systematically revealed significant metabolic alterations in Brucellosis patients and further explored the potential correlation between these changes and clinic symptoms, including fatigue, muscle soreness and prolonged fever. The results enhanced our understanding of Brucellosis, offering valuable insights potentially beneficial in formulating more effective treatment strategies and improving prognostic approaches.


Asunto(s)
Brucelosis , Metabolómica , Espectrometría de Masas en Tándem , Humanos , Brucelosis/metabolismo , Metabolómica/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Estudios de Casos y Controles , Metaboloma , Ciclo del Ácido Cítrico , Adulto Joven , Aminoácidos/metabolismo , Aminoácidos/sangre , Ácidos Grasos/metabolismo
20.
Biochem Biophys Res Commun ; 730: 150367, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38991255

RESUMEN

Rapid tumor growth and insufficient blood supply leads to the development of a hypoxic and nutrient deprived microenvironment. To survive, tumor cells need to tolerate these adverse conditions. Here we found the expression of CD39 was enhanced in necrotic regions distant from blood vessels. We speculate that this is a strategy for tumor cells to actively adapt to the hostile environment. Further studies showed that CD39 was induced by nutrient deprivation through the AMPK signalling pathway. We next explored the significance of CD39 for tumor cells. Our results showed that CD39 reduced cellular oxygen consumption, which could be significant for tumor cells if the available oxygen is limited. Metabolomics analysis showed that overexpression of CD39 significantly altered cellular metabolism, and tricarboxylic acid (TCA) cycle was identified as the most impacted metabolic pathway. In order to explore the molecular mechanism, we performed RNA-seq analysis. The results showed that CD39 significantly up-regulated the expression of pyruvate dehydrogenase kinase isozyme 2 (PDK2), thus inhibiting the activity of pyruvate dehydrogenase (PDH) and TCA cycle. Finally, CD39 was shown to protect tumor cells from hypoxia-induced cell death and reduce intratumoral hypoxia levels. CD39 has attracted a great deal of attention as a newly discovered immune checkpoint molecule in recent years. Our results indicate that CD39 not only plays a role in immune regulation, but also enables tumor cells to tolerate hypoxia by inhibiting TCA cycle and reducing cellular oxygen consumption. This study provides evidence that targeting CD39 may be a novel strategy to prevent adaptation of tumor cells in stressed conditions.


Asunto(s)
Apirasa , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Apirasa/metabolismo , Apirasa/genética , Línea Celular Tumoral , Nutrientes/metabolismo , Hipoxia de la Célula , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Ciclo del Ácido Cítrico , Microambiente Tumoral , Animales , Transducción de Señal , Consumo de Oxígeno , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA