RESUMEN
It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;43:1855-1869. © 2024 SETAC.
Asunto(s)
Cadmio , Microalgas , Níquel , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua , Níquel/toxicidad , Cadmio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Microalgas/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Clorofila A , Clorofila/metabolismoRESUMEN
Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.
Asunto(s)
Aclimatación , Dióxido de Carbono , Lipidómica , Transcriptoma , Dióxido de Carbono/metabolismo , Aclimatación/genética , Lipidómica/métodos , Microalgas/genética , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Fotosíntesis/genética , Metabolismo de los Lípidos/genética , Chlorophyceae/genética , Chlorophyceae/metabolismoRESUMEN
In this study, the effects of CO2 addition on the growth performance and biochemical composition of the green microalga Tetradesmus obliquus cultured in a hybrid algal production system (HAPS) were investigated. The HAPS combines the characteristics of tubular photobioreactors (towards a better carbon dioxide dissolution coefficient) with thin-layer cascade system (with a higher surface-to-volume ratio). Experimental batches were conducted with and without CO2 addition, and evaluated in terms of productivity and biomass characteristics (elemental composition, protein and lipid contents, pigments and fatty acids profiles). CO2 enrichment positively influenced productivity, and proteins, lipids, pigments and unsaturated fatty acids contents in biomass. The HAPS herein presented contributes to the optimization of microalgae cultures in open systems, since it allows, with a simple adaptation-a transit of the cultivation through a tubular portion where injection and dissolution of CO2 is efficient-to obtain in TLC systems, greater productivity and better-quality biomass.
Asunto(s)
Chlorophyceae , Microalgas , Fotobiorreactores , Biomasa , Dióxido de Carbono/metabolismo , Ácidos Grasos/metabolismoRESUMEN
Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities. To the best of our knowledge, there are no studies that investigated the combined effects of these metals on a freshwater Chlorophyceae. Therefore, this study analyzed the isolated and combined effects of Co and Ni in cell density, physiological and morphological parameters, reactive oxygen species (ROS), carbohydrates and photosynthetic parameters of the microalga Raphidocelis subcapitata. Data showed that Co affected the cell density from 0.25 mg Co L-1; the fluorescence of chlorophyll a (Chl a) (0.10 mg Co L-1); ROS production (0.50 mg Co L-1), total carbohydrates and efficiency of the oxygen evolving complex (OEC) at all tested concentrations; and the maximum quantum yield (ΦM) from 0.50 mg Co L-1. Ni exposure decreased ROS and cell density (0.35 mg Ni L-1); altered Chl a fluorescence and carbohydrates at all tested concentrations; and did not alter photosynthetic parameters. Regarding the Co-Ni mixtures, our data best fitted the concentration addition (CA) model and dose-ratio dependent (DR) deviation in which synergism was observed at low doses of Co and high doses of Ni and antagonism occurred at high doses of Co and low doses of Ni. The combined metals affected ROS production, carbohydrates, ΦM, OEC and morphological and physiological parameters.
Asunto(s)
Chlorophyceae , Microalgas , Contaminantes Químicos del Agua , Humanos , Níquel/toxicidad , Clorofila A/farmacología , Cobalto/toxicidad , Especies Reactivas de Oxígeno , Metales , Carbohidratos/farmacología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisisRESUMEN
The Tunuyán and Mendoza River Basins (Province of Mendoza, Argentina) have been selected as a representative semiarid region to test the applicability of an integrated water quality evaluation. To detect spatio-temporal variations of anthropic contamination, physicochemical and bacteriological parameters, as well as three ecotoxicological assays, were assessed in reference sites for 3 years. Bioassays based on the nematode Caenorhabditis elegans, the vascular plant Lactuca sativa, and the algae Pseudokirchneriella subcapitata were performed and toxicological categories were established. Our results showed that water quality, as well as water toxicity, deteriorates as both river systems run through urban areas. Interestingly, monitoring sites with good physicochemical and bacteriological qualities but with toxicity were identified, illustrating that traditional water quality studies do not predict potential toxic effects on living organisms. In addition, a multivariate statistical analysis was performed to detect clusters of monitoring sites according to the water quality status. In the context of climate change, this study provides information to support that integrated water monitoring is an essential tool to ensure sustainable water management and to guarantee economic growth, human health, food security, and environmental protection.
Asunto(s)
Chlorophyceae , Contaminantes Químicos del Agua , Humanos , Calidad del Agua , Ríos/química , Monitoreo del Ambiente/métodos , Argentina , Contaminantes Químicos del Agua/análisisRESUMEN
The Asian tiger mosquito, Aedes albopictus, is a highly invasive and aggressive species capable of transmitting a large number of etiological agents of medical and veterinary importance, posing a high risk for the transmission of emerging viruses between animals and humans. In this work, we evaluated the mosquitocidal activity of Neochloris aquatica against A. albopictus throughout its development and analyzed whether this effect was potentiated when the microalga was cultivated under stress conditions due to nutrient deprivation. Our results suggest that N. aquatica produces metabolites that have negative effects on these insects, including larval mortality, interruption of pupal development, and incomplete emergence of adults when fed on microalgae in the larval stages. When microalgae were cultured under stress conditions, an increase in molting defects was recorded, and the number of healthy adults emerged drastically decreased. Histological studies revealed severe signs of total disintegration of different tissues and organs in the thorax and abdomen regions. The muscles and fat bodies in the midgut and foregut were severely distorted. In particular, larval intestinal tissue damage included vacuolization of the cytoplasm, destruction of brush border microvilli, and dilation of the intercellular space, which are distinctive morphological characteristics of apoptotic cells. Evidence suggests that N. aquatica produces metabolites with mosquitocidal effects that affect development and, therefore, the ability to vector etiological agents of medical and veterinary importance.
Asunto(s)
Aedes , Chlorophyceae , Microalgas , Humanos , Animales , Larva , MudaRESUMEN
Carbofuran is one of the most toxic broad-spectrum pesticides. We evaluated the effects of carbofuran on two species of microalgae, Pseudopediastrum boryanum and Desmodesmus communis, through measurements of cell viability, biomass, chlorophyll content, and the production of reactive oxygen species (ROS). The ability of these algae to remove carbofuran dissolved in the media was also determined. For the evaluations, both microalgae species were exposed to carbofuran (FURADAN 350 SC®) at concentrations of 100, 1000, and 10,000 µg L-1 for 7 days. Algae cell viability and chlorophyll-a concentration were not affected by the presence of carbofuran. Both species grew when exposed to the pesticide; however, the microalgae D. communis grew less than its respective control when exposed to the highest concentration (10,000 µg L-1 of carbofuran), indicating an adverse effect of the pesticide on this species. A significant increase in ROS production was observed in D. communis and P. boryanum when exposed to the highest concentration tested. The microalgae P. boryanum completely removed carbofuran in the media within 2 days, regardless of the concentration, whereas D. communis achieved the same result only after 5 days of exposure. Growth inhibition was observed only until the disappearance of carbofuran from the media. The present study suggests the use of microalgae, mainly P. boryanum, as potential tools for the remediation of environments contaminated by carbofuran because of their resistance to the insecticide and their ability to remove it rapidly from water. Environ Toxicol Chem 2024;43:926-937. © 2023 SETAC.
Asunto(s)
Carbofurano , Chlorophyceae , Microalgas , Plaguicidas , Plaguicidas/toxicidad , Carbofurano/toxicidad , Biodegradación Ambiental , Especies Reactivas de Oxígeno , ClorofilaRESUMEN
Stressed organisms identify intracellular molecules released from damaged cells due to trauma or pathogen infection as components of the innate immune response. These molecules called DAMPs (Damage-Associated Molecular Patterns) are extracellular ATP, sugars, and extracellular DNA, among others. Animals and plants can recognize their own DNA applied externally (self-exDNA) as a DAMP with a high degree of specificity. However, little is known about the microalgae responses to damage when exposed to DAMPs and specifically to self-exDNAs. Here we compared the response of the oilseed microalgae Neochloris oleoabundans to self-exDNA, with the stress responses elicited by nonself-exDNA, methyl jasmonate (MeJA) and sodium bicarbonate (NaHCO3). We analyzed the peroxidase enzyme activity related to the production of reactive oxygen species (ROS), as well as the production of polyphenols, lipids, triacylglycerols, and phytohormones. After 5 min of addition, self-exDNA induced peroxidase enzyme activity higher than the other elicitors. Polyphenols and lipids were increased by self-exDNA at 48 and 24 h, respectively. Triacylglycerols were increased with all elicitors from addition and up to 48 h, except with nonself-exDNA. Regarding phytohormones, self-exDNA and MeJA increased gibberellic acid, isopentenyladenine, and benzylaminopurine at 24 h. Results show that Neochloris oleoabundans have self-exDNA specific responses.
Asunto(s)
Chlorophyceae , Microalgas , Animales , Reguladores del Crecimiento de las Plantas , Peroxidasa , Alarminas , Colorantes , ADN , Oxilipinas , PeroxidasasRESUMEN
The present study shows the characterization of the bacterial communities associated with different systems during the cultivation of the microalga Tetradesmus obliquus. For that, sequential cultivation was performed in three different systems: (1) Photobioreactor bench-scale; (2) flat-panel photobioreactor; and (3) thin-layer cascade. Cultures were monitored daily for growth parameters and biomass samples were collected for characterization of bacterial communities using metagenomic. A total of 195,177 reads were produced, resulting in the identification of 72 OTUs. In the grouping of bacterial communities, 3 phyla, 6 classes, 28 families, and 35 taxa were found. The bacteria Brevundimonas and Porphyrobacter had a higher relative abundance compared with other taxa found. These taxa were present in all cultivation systems forming a possible core community. Bacterial communities associated with different cultivation systems of the microalga T. obliquus showed an increase in taxa richness and diversity in the super-intensive and intensive systems.
Asunto(s)
Chlorophyceae , Microalgas , Humanos , Bacterias/genética , BiomasaRESUMEN
Selenastrum capricornutum efficiently degrades benzo(a)pyrene (BaP) but few proteins related to BaP degradation have been identified in this microalgae. So far, it has only been suggested that it could degrade BaP via the monooxygenase and/or dioxygenase pathways. To know more about this fact, in this work, cultures of S. capricornutum incubated with BaP were used to obtain the molecular weights (MWs) of proteins existing in its extra- and cellular extracts by electrophoresis and UPLC-ESI(+)-TOF MS analysis. The results of this proteomic approach indicated that BaP markedly induces the MWs: 6-20, 30, 45, and 65 kDa in cells; 6-20, 30.3, 38-45, and 55 kDa in liquid medium. So, these proteins could be related to BaP biodegradation. An identified protein with monooxygenase activity and rubredoxins (Rds) show to be related to BaP degradation: Rds could participate, together with the monooxygenase in the electron transfer during the formation of monohydroxylated-BaP metabolites. Rds may be also associated with a dioxygenase system that degrades BaP to form dihydrodiol-BaP metabolites. A multi-pass membrane protein was identified too, and it can regulate the transport of molecules like enzymes from inside the cell to the outside environment. At the same time, the presence of a dihydrolipoamide acetyltransferase validated the stress caused by the exposure to BaP. It is noteworthy that these findings provide valuable and original information on the characterization of the proteins of S. capricornutum cultures degrading BaP, whose enzymes have so far not been known. It is important to highlight that the functions of the identified proteins can help in understanding the metabolic and environmental behavior of this microalgae, and the extracts containing the degrading enzymes could be utilized in bioremediation applications.
Asunto(s)
Chlorophyceae , Chlorophyta , Dioxigenasas , Chlorophyta/metabolismo , Benzo(a)pireno/metabolismo , Proteómica , Chlorophyceae/metabolismo , Oxigenasas de Función Mixta/metabolismo , Dioxigenasas/metabolismo , Espectrometría de MasasRESUMEN
The present work evaluated the ultrasound (US) effects on the growth of Pseudoneochloris marina and Chlorella zofingiensis. For P. marina, US treatment did not increase cell proliferation and reduced cell density when used for 60 min (exponential phase, for 5 days), indicating a possible occurrence of cell damage. For C. zofingiensis, the application of discontinuous US for 10 min resulted in an increase of 65 % in biomass concentration compared to the control. These distinct behaviors indicate that microalgae species react differently to physical stimuli. After US treatment, a reduction of carotenoid, chlorophyll, lipid and protein concentrations was observed, which may be related to changes in the metabolic pathways to produce these compounds. Overall, the results of the present study show the potential of discontinuous US to enhance microalgae cell proliferation.
Asunto(s)
Chlorella , Chlorophyceae , Microalgas , Chlorella/metabolismo , Nitrógeno/metabolismo , Carotenoides/metabolismo , Chlorophyceae/metabolismo , Microalgas/metabolismo , BiomasaRESUMEN
The present study sought to evaluate the secondary wastewater from dairy industry as a culture medium for Monoraphidium contortum, in bench-scale tubular photobioreactor, aiming at tertiary wastewater treatment and microalgae biomass production. Since the used secondary wastewater contained residual phosphorus (P) but negligible residual nitrogen (N), we also evaluated the nitrogen supplementation, following Redfield ratio (N:P = 16:1) and the same N:P proportion of Bold Medium (N:P = 1.71:1). These cultures were compared to secondary wastewater without N and Bold Medium (control). Secondary wastewater without N addition provided lower values of maximum biomass concentration, indicating the importance of this supplementation. The nitrogen supplementation following Bold Medium represented the best protocol, since biomass productivity was higher than that in control culture, but with lower nitrogen addition (in comparison with the supplementation following Redfield proportion). The biomass of M. contortum showed to be an excellent candidate for oil production, which could be employed as feedstock for biodiesel, for example.
Asunto(s)
Chlorophyceae , Microalgas , Aguas Residuales , Biomasa , Nitrógeno , Industria Lechera , Fósforo , Biocombustibles , Suplementos DietéticosRESUMEN
Microalgae require copper (Cu) in trace levels for their growth and metabolism, it is a vital component of certain metalloproteins. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less studied. We studied the photosynthesis and growth of the Chlorophyte Monoraphidium sp. exposed to Cu ranging from low (1.7 nM) to high (589.0 nM) free Cu ions (Cu2+) concentrations. The growth rate was unaffected by Cu concentrations in the range of 1.7-7.4 nM Cu2+, but decreased beyond it. The relative maximum electron transport rate (rETRm), saturation irradiance (Ek), photochemical quenching (qP and qL), and PSII operating efficiency [Formula: see text] were stimulated in the 3.4-7.4 nM Cu2+ range, concentrations slightly higher than the control, whereas non-photochemical quenching (NPQ) gradually increased with increasing Cu2+. The photosystem II antenna size [Sigma (II)440] increased under high Cu (589.0 nM), which resulted in a decrease in the quinone A (QA) reduction time (tau). In contrast, the QA re-oxidation time was unaffected by Cu exposure. These findings show that a slight increase in Cu stimulated photosynthesis in Monoraphidium sp., whereas high Cu reduced photosynthesis and increased the dissipation of captured light energy. This research is a contribution to the understanding of the dynamic photo-physiological responses of Monoraphidium sp. to Cu ions.
Asunto(s)
Chlorophyceae , Microalgas , Cobre/farmacología , Fotosíntesis/fisiología , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Microalgas/metabolismo , Chlorophyceae/metabolismo , Clorofila/metabolismoRESUMEN
Silver nanoparticles (AgNPs) are applied in diverse industries due to their biocide and physicochemical properties; therefore, they can be released into aquatic systems, interact with environmental factors, and ultimately exert adverse effects on the biota. We analyzed AgNPs effects on Ceriodaphnia reticulata (Cladocera) through mortality and life-history traits, considering the influence of food (Tetradesmus obliquus, Chlorophyceae) presence and concentration. C. reticulata was exposed to AgNPs in acute (absence and two algae concentrations plus five AgNPs treatments) and chronic assays (two algae concentrations plus three AgNPs treatments). AgNPs did not affect algae flocculation but increased Ag+ release, being these ions less toxic than AgNPs (as proved by the exposure to AgNO3). A reduction in AgNPs acute toxicity was observed when algae concentration increased. Acute AgNP exposure decreased C. reticulata body size and heart rate. The chronic AgNP exposure reduced C. reticulata molt number, growth, heart rate, and neonate size:number ratio, being these effects mitigated at the highest algae concentration. Increases in relative size and number of neonates were observed in AgNP treatments suggesting energy trade off. The increased Ag+ release with food presence suggests that the AgNP-algae interaction might be responsible of the decreased toxicity. Although algae reduced AgNP toxicity, they still exerted adverse effects on C. reticulata below predicted environmental concentrations. Since algae presence reduces AgNP effects but increases Ag+ release, studies should be continued to provide evidence on their toxicity to other organisms.
Asunto(s)
Chlorophyceae , Cladóceros , Nanopartículas del Metal , Animales , Humanos , Recién Nacido , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Plata/toxicidad , Plata/químicaRESUMEN
Pesticides have reached aquatic ecosystems and have caused numerous impacts on organisms. The present study aimed to assess the sensitivity of Daphnia similis Straus 1820 and Pseudokirchneriella subcapitata (Korshikov) F.Hindák to three commercial pesticides with different active ingredients: Siptran 500SC® (atrazine), Dimilin® (diflubenzuron), and Aproach Prima® (picoxystrobin + cyproconazole). For this purpose, we performed acute toxicity tests on these organisms. The compound most toxic to D. similis was the insecticide Dimilin® (toxic up to 5 µg/L of the active ingredient), followed by the fungicide Aproach Prima® (48h-EC50: 47.33 µg of the active ingredients/L) and the herbicide Siptran 500SC® (48h-EC50: 534.69 mg of the active ingredient/L). In contrast, Siptran 500SC® was the most toxic compound (96h-IC50: 52.61 µg/L) to P. subcapitata, followed by Aproach Prima® (96h-IC50: 164.73 µg/L) and Dimilin® (non-toxic up to 1 g/L). The toxicity of the fungicide to algae and microcrustaceans demonstrates that compounds developed for certain organisms are able to affect others, indicating the relevance of conducting ecotoxicological tests on different organisms.
Asunto(s)
Chlorophyceae , Cladóceros , Diflubenzurón , Fungicidas Industriales , Plaguicidas , Animales , Daphnia , Plaguicidas/toxicidad , EcosistemaRESUMEN
The biotechnological potential of microalgae has been the target of a range of research aimed at using its potential to produce macromolecules with high added value. Particular focus has been given to biofuels' production, such as biohydrogen, biodiesel, and bioethanol from lipids and carbohydrates extracted from microalgal biomass. Bioprospecting and accurate identification of microalgae from the environment are important in the search for strains with better performance. Methodologies that combine morphology and molecular techniques allow more precise knowledge of species. Thereby, this work aimed to identify the new strain LGMM0013 collected at Iraí Reservoir, located in Paraná state, Brazil, and to evaluate the production of biomass, carbohydrates, and lipids from this new microalgal strain. Based on morphology and phylogenetic tree from internal transcribed spacer (ITS), strain LGMM0013 was identified as Desmodesmus abundans. D. abundans accumulated 1500 mg L-1 of dried biomass after 22 days of cultivation in autotrophic conditions, 50% higher than Tetradesmus obliquus (LGMM0001) (Scenedesmaceae-Chlorophyceae), usually grown in photobioreactors located at NPDEAS at the Federal University of Paraná (UFPR) to produce biomass. Analysis of the D. abundans biomass from showed an accumulation of 673.39 mg L-1 of carbohydrates, 130% higher than T. obliquus (LGMM0001). Lipid production was 259.7 mg L-1, equivalent to that of T. obliquus. Nitrogen deprivation increased the production of biomass and carbohydrates in D. abundans LGMM0013, indicating this new strain greater biomass production capacity.
Asunto(s)
Chlorophyceae , Microalgas , Biomasa , Filogenia , Brasil , Microalgas/genética , Biocombustibles , Carbohidratos , LípidosRESUMEN
Microalgae are photosynthetic microorganisms that stand out from conventional food sources and ingredients due to their high growth rate and adaptability. In addition to being highly sustainable, significant concentrations of proteins, lipids, and pigments accumulate in their cell structures from photosynthesis. Hence, this study sought to evaluate the food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultures enriched with 3, 5, 10, 15, 20, and 25% carbon dioxide (CO2) (v/v). Cultivations with 3, 5, and 10% CO2 showed greater amino acids and proteins synthesis; the protein content reached values above 56% of the dry biomass and high protein quality, due to the presence of most essential amino acids at recommended levels for the human diet. The highest concentrations of chlorophylls were found in cultures with 15, 20, and 25% CO2 (24.2, 23.1 and 30.8 mg g-1, respectively), although the profiles showed higher percentages of degradation compounds. Carotenoid concentrations were three times higher in cultures with 3, 5, and 10% CO2 (25.3, 22.7 and 18.1 mg g-1, respectively) and all-trans-ß-carotene was the major compound. Lipid synthesis was intensified at higher CO2 enrichment; the percentages obtained were 14.8% of lipids in the culture with 15% CO2, 15.0% with 20% CO2, and 13.7% with 25% CO2. In addition, greater polyunsaturated fatty acids accumulation and a significant reduction in the n6/n3 ratio were also observed at the highest CO2 concentrations. Our findings showed that CO2 treatments significantly altered all compounds concentrations in S. obliquus biomasses, which presented satisfactory composition for application in foods and as ingredients.
Asunto(s)
Chlorophyceae , Scenedesmus , Biomasa , Dióxido de Carbono/metabolismo , Chlorophyceae/metabolismo , Humanos , Lípidos , Fotosíntesis , Scenedesmus/metabolismoRESUMEN
The study evaluated the techno-economic feasibility of an industrial SFE plant to produce astaxanthin-rich extracts in Chile based on previously published data. A kinetic study comparing two solvent flow rates (3.62 and 7.24 g/min) at a scale production of 2 × 10 L showed the FER period as the more economically feasible with a cost of manufacturing (COM) of US$ 656.31/kg at 7.24 g/min. The study also demonstrated that the extraction times used at a laboratory scale were not industrially feasible due to the flowrate limits of industrial pumps. After adjusting extraction time to real industrial conditions, the results demonstrated that a 5-fold scale increase (2 × 10 L to 2 × 50 L) decreased the COM by 30 % and the process was profitable at all production scales. Finally, the sensitivity study demonstrated that it is possible to reduce the selling price by 25 % at 2 × 50 L scale.
Asunto(s)
Chlorophyceae , Cromatografía con Fluido Supercrítico , Cromatografía con Fluido Supercrítico/métodos , Solventes , XantófilasRESUMEN
The environmental and health risks associated with the application of synthetic chemical inputs in agriculture increased the demand for technologies that allow higher performance and quality of vegetable crops by implementing synergistic materials with the principles of sustainability. In this work, the seed coating with the biomass of Dunaliella salina incorporated in a bioplastic film of Manihot esculenta (cassava) was evaluated as an initial growth and secondary compounds stimulator of Coriandrum sativum (coriander) plants. The obtained results demonstrated that the coating stimulated an increase in the germination percentage (28.75%) and also in concentration of bioactive compounds, such as the six-fold increment of caffeic acid (13.33 mg 100 g-1). The carbohydrates, lipids, and proteins present in the microalgae biomass seem to be responsible for these increments once they are known for providing energy to the seedling development and coordinating the secondary metabolites synthesis. As conclusion, we consider the coating with biomass of D. salina an alternative for crop improvement that contributes to the development of sustainable agricultural practices.
Asunto(s)
Biomasa , Chlorophyceae , Coriandrum , Microalgas , Desarrollo de la Planta , Metabolismo Secundario , Semillas , Ácidos Cafeicos , Carbohidratos , Chlorophyceae/química , Coriandrum/química , Coriandrum/efectos de los fármacos , Coriandrum/crecimiento & desarrollo , Coriandrum/metabolismo , Producción de Cultivos/métodos , Lípidos , Manihot/química , Microalgas/química , Desarrollo de la Planta/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Semillas/química , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Desarrollo SostenibleRESUMEN
Flocculation has been proved an efficient method for microalgal biomass harvesting, but some coagulant agents may have adverse effects on microalgae growth, making the reuse of the medium unfeasible. In this study, Haematococcus pluvialis was harvested by different flocculants, and the feasibility of the reuse of the culture medium was evaluated. Results suggested that both inorganics, polyaluminum chloride (PA) and ferric chloride (FC), and organics, extracted from Moringa oleifera seed (MSE) and chitosan (CH) resulted in efficient flocculation - flocculation efficiency above 99 %. However, using PA and FC had adverse effects on the astaxanthin recovery from haematocysts - losses of 58.6 and 73.5 %, respectively. Bioflocculants in the reused medium also had higher growth performance than inorganic ones. Furthermore, bioflocculants in reused medium increase the contents of ß-carotene, astaxanthin, and linolenic acid. This investigation demonstrated that using MSE and CHI for harvesting H. pluvialis enables the water reusability from a flocculated medium.