Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Plant Foods Hum Nutr ; 79(3): 551-562, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976203

RESUMEN

Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.


Asunto(s)
Productos Agrícolas , Germinación , Valor Nutritivo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Semillas/química , Semillas/crecimiento & desarrollo , Zea mays/química , Zea mays/crecimiento & desarrollo , Humanos , Chenopodium quinoa/química , Gusto , Fibras de la Dieta/análisis , Amaranthus/química , Amaranthus/crecimiento & desarrollo , Minerales/análisis , Proteínas en la Dieta/análisis , Fabaceae/química
2.
Sci Rep ; 14(1): 12345, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811833

RESUMEN

Pitseed goosefoot (Chenopodium berlandieri) is a free-living North American member of an allotetraploid complex that includes the Andean pseudocereal quinoa (C. quinoa). Like quinoa, pitseed goosefoot was domesticated, possibly independently, in eastern North America (subsp. jonesianum) and Mesoamerica (subsp. nuttaliae). To test the utility of C. berlandieri as a resource for quinoa breeding, we produced the whole-genome DNA sequence of PI 433,231, a huauzontle from Puebla, México. The 1.295 Gb genome was assembled into 18 pseudomolecules and annotated using RNAseq data from multiple tissues. Alignment with the v.2.0 genome of Chilean-origin C. quinoa cv. 'QQ74' revealed several inversions and a 4A-6B reciprocal translocation. Despite these rearrangements, some quinoa x pitseed goosefoot crosses produce highly fertile hybrids with faithful recombination, as evidenced by a high-density SNP linkage map constructed from a Bolivian quinoa 'Real-1' × BYU 937 (Texas coastal pitseed goosefoot) F2 population. Recombination in that cross was comparable to a 'Real-1' × BYU 1101 (Argentine C. hircinum) F2 population. Furthermore, SNP-based phylogenetic and population structure analyses of 90 accessions supported the hypothesis of multiple independent domestications and descent from a common 4 × ancestor, with a likely North American Center of Origin.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Fitomejoramiento/métodos , Genoma de Planta , México , Filogenia
3.
Sci Rep ; 14(1): 9205, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649738

RESUMEN

Quinoa (Chenopodium quinoa Willd.), an Andean crop, is a facultative halophyte food crop recognized globally for its high nutritional value and plasticity to adapt to harsh conditions. We conducted a genome-wide association study on a diverse set of quinoa germplasm accessions. These accessions were evaluated for the following agronomic and biochemical traits: days to 50% flowering (DTF), plant height (PH), panicle length (PL), stem diameter (SD), seed yield (SY), grain diameter (GD), and thousand-grain weight (TGW). These accessions underwent genotyping-by-sequencing using the DNBSeq-G400R platform. Among all evaluated traits, TGW represented maximum broad-sense heritability. Our study revealed average SNP density of ≈ 3.11 SNPs/10 kb for the whole genome, with the lowest and highest on chromosomes Cq1B and Cq9A, respectively. Principal component analysis clustered the quinoa population in three main clusters, one clearly representing lowland Chilean accessions, whereas the other two groups corresponded to germplasm from the highlands of Peru and Bolivia. In our germplasm set, we estimated linkage disequilibrium decay to be ≈ 118.5 kb. Marker-trait analyses revealed major and consistent effect associations for DTF on chromosomes 3A, 4B, 5B, 6A, 7A, 7B and 8B, with phenotypic variance explained (PVE) as high as 19.15%. Nine associations across eight chromosomes were also found for saponin content with 20% PVE by qSPN5A.1. More QTLs were identified for PL and TGW on multiple chromosomal locations. We identified putative candidate genes in the genomic regions associated with DTF and saponin content. The consistent and major-effect genomic associations can be used in fast-tracking quinoa breeding for wider adaptation across marginal environments.


Asunto(s)
Chenopodium quinoa , Genoma de Planta , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Fenotipo , Perú , Genotipo , Bolivia , Cromosomas de las Plantas/genética , Carácter Cuantitativo Heredable
4.
PLoS One ; 19(4): e0300464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626197

RESUMEN

Our research occurred in the Andean region, one of the eight global centers of domestication of plant species grown for agriculture. The shores of Lake Titicaca (located between Peru and Bolivia), at 3800 meters above sea level, are recognized as the center of origin of quinoa (Chenopodium quinoa Willd.). In this region, complex societies have emerged, thanks to the development of water and soil management technologies. They have managed to overcome high mountain territories' extreme and variable climatic conditions. These societies have traditionally protected and preserved quinoa as food for present and future generations through their long-standing knowledge and cultivation practices. The fieldwork occurred in the context of Andean family farming, and our study analyzes nature-society dynamics with a chorematic approach and interviews with local communities. The interest of this work is the transformation of the landscape at the scale of the mountain agroecosystem to understand better the impacts of rural development policies. Chorematic modeling was applied to two periods, before and after 1970, a pivotal year in Peru for agriculture, to show how socio-spatial dynamics in the Andean environment are changing, particularly concerning the evolution of quinoa cultivation. The results show that wild quinoa relatives' distribution is strongly linked to the socio-spatial organization of the agroecosystem. Different species of wild quinoa relatives are maintained by villagers for their multiple foods, medicinal and cultural uses in natural areas, grazed areas, on edge, and also within cultivated fields. However, this management is changing under the pressure of global issues related to the international quinoa market, whose requirements imply reducing the presence of wild relatives in cultivated fields.


Asunto(s)
Chenopodium quinoa , Perú , Bolivia , Domesticación , Agricultura
5.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543010

RESUMEN

Wheat flour is a common raw material in the food industry; however, Andean grains, such as quinoa and kiwicha, are gaining popularity due to their quality proteins, fiber, and bioactive compounds. A trend has been observed toward the enrichment of products with these Andean flours, with them even being used to develop gluten-free foods. However, evaluating interactions between raw materials during industrial processes can be complicated due to the diversity of inputs. This study focused on evaluating the technofunctional and rheological properties of wheat, quinoa and kiwicha flours using a simple lattice mixture design. Seven treatments were obtained, including pure flours and ternary mixtures. Analyses of particle size distribution, water absorption index, subjective water absorption capacity, soluble material index, swelling power, apparent density and physicochemical properties were performed. Additionally, color analysis, photomicrographs and Raman spectroscopy were carried out. The results indicate significant differences in properties such as particle size, water absorption and rheological properties between the flours and their mixtures. Variations in color and microstructure were observed, while Raman spectroscopy provided information on molecular composition. These findings contribute to the understanding of the behavior of Andean flours in baking and pastry making, facilitating their application in innovative food products.


Asunto(s)
Chenopodium quinoa , Harina , Harina/análisis , Chenopodium quinoa/química , Triticum/química , Reología , Agua
6.
Nutrients ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542751

RESUMEN

This study aimed to provide an updated critical review of the nutritional, therapeutic, biotechnological, and environmental aspects involved in the exploitation of Chenopodium quinoa Willd and its biowastes. Special attention was devoted to investigations of the therapeutic and nutritional properties of different parts and varieties of quinoa as well as of the use of the biowaste resulting from the processing of grain. Studies published from 2018 onward were prioritized. Extracts and fractions obtained from several Chenopodium quinoa matrices showed antioxidant, antidiabetic, immunoregulatory, neuroprotective, and antimicrobial effects in in vitro and in vivo models and some clinical studies. The activities were attributed to the presence of phytochemicals such as polyphenols, saponins, peptides, polysaccharides, and dietary fibers. Quinoa wastes are abundant and low-cost sources of bioactive molecules for the development of new drugs, natural antioxidants, preservatives, dyes, emulsifiers, and carriers for food and cosmetics applications. Among the demands to be fulfilled in the coming years are the following: (1) isolation of new bioactive phytochemicals from quinoa varieties that are still underexploited; (2) optimization of green approaches to the sustainable recovery of compounds of industrial interest from quinoa by-products; and (3) well-conducted clinical trials to attest safety and efficacy of extracts and compounds.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Antioxidantes/farmacología , Antioxidantes/química , Polifenoles , Fibras de la Dieta/análisis , Polisacáridos
7.
Food Chem ; 447: 138887, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492299

RESUMEN

The impact of different pressure levels in the HHP-assisted hydrolysis by Alcalase of quinoa proteins on the catalytic efficiency, peptide release, phenolic compounds content, and biological activities was investigated. The protein profile (SDS-PAGE) showed a more extensive peptide breakdown for the HHP-assisted proteolysis at 300-400 MPa, which was confirmed by the higher extent of hydrolysis and peptide concentration. Quinoa protein hydrolysates (QPH) produced at 200 and 300 MPa exhibited higher total phenolic contents and antioxidant activities (methanol-acetone and aqueous extracts) when compared to the non-hydrolyzed (QPI) and non-pressurized hydrolyzed samples. Kaempferol dirhamnosyl-galactopyranoside was the prevalent phenolic compound in those samples, increasing total flavonoids by 1.8-fold over QPI. The QPH produced at 300 MPa inhibited ACE more effectively, exhibiting the greatest anti-hypertensive potential, along with the presence of several ACE-inhibitory peptides. The peptide sequences GSHWPFGGK, FSIAWPR, and PWLNFK presented the highest Peptide Ranker scores and were predicted to have ACE inhibitory, DPP-IV inhibitory, and antioxidant activities. Mild pressure levels were effective in producing QPH with enhanced functionality due to the effects of bioactive soluble phenolics and low molecular weight peptides.


Asunto(s)
Antioxidantes , Chenopodium quinoa , Hidrólisis , Antioxidantes/farmacología , Antioxidantes/química , Hidrolisados de Proteína/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Péptidos/química
8.
World J Microbiol Biotechnol ; 40(4): 118, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429465

RESUMEN

This work aimed to study and characterize a product based on vegetable extract of quinoa (WVEQ) fermented with water kefir grains. The effect of sucrose concentration (SC), inulin concentration (IC), and xanthan gum (XG) concentration were evaluated using a central composite design (CCD) 23. They were subsequently characterized regarding cellular growth of the grains, beverage yield, pH, soluble solids, carbon dioxide (CO2) production, lactic acid, and ethanol production. Therefore, for the final stage, two formulations (F1 and F8) of the CCD were chosen to be characterized in terms of proximate composition, microbiological composition of the kefir culture, analysis of organic compounds, sensory analysis, and enzymatic and microbiological characterization before and after simulation of in vitro gastrointestinal digestion. In the two chosen products, one can see that fermentation optimized the bioavailability of proteins due to the high proteolytic activity of the microorganisms in kefir and the increase in lipid content. In identifying microorganisms, there was a prevalence of Saccharomyces sp. yeasts. In the sensory analysis, the F8 formulation showed better results than the F1 formulation. In vitro, gastrointestinal digestion showed reduced lactic acid bacteria and yeast and increased acetic acid bacteria in the liquid phase for both formulations. In the enzymatic profile, there was a reduction in all enzymes analyzed for both formulations, except for amylase in F1, which went from 14.05 U/mL to 39.41 U/mL. Therefore, it is concluded that using WVEQ as a substrate for the product appears to be a viable alternative with nutritional and technological advantages for serving a specific market niche.


Asunto(s)
Chenopodium quinoa , Kéfir , Lactobacillales , Kéfir/análisis , Kéfir/microbiología , Verduras , Levaduras , Extractos Vegetales , Fermentación
9.
Food Chem ; 448: 139055, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554587

RESUMEN

Due to allergenic concerns, only pea, potato, and wheat proteins have been approved as alternatives for replacing animal-based fining agents in wines. In pursuit of other substitutes, this work aimed to determine the fining ability of amaranth (Amaranthus caudatus L.) proteins (AP) in red wine, compared to quinoa (Chenopodium quinoa Willd.) (QP) and a commercial pea protein. Phenolic and volatile composition, as well as color characteristics, were analyzed. AP was as effective as QP at decreasing condensed tannins, with AP at 50 g/hL being the most effective treatment (25.6% reduction). QP and AP produced a minor or no statistical change in the total anthocyanins and wine color intensity. They reduced the total ester concentration, but the total alcohols remained unchanged. The outcomes of AP and QP were similar, and sometimes better than the pea proteins, thus suggesting that they could be promising options for the development of novel fining agents.


Asunto(s)
Amaranthus , Chenopodium quinoa , Proteínas de Plantas , Vino , Amaranthus/química , Chenopodium quinoa/química , Proteínas de Plantas/química , Proteínas de Plantas/análisis , Vino/análisis , Fenoles/química , Fenoles/análisis , Extractos Vegetales/química , Color
10.
Nutrients ; 16(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38337665

RESUMEN

Brain physiology and morphology are vulnerable to chronic stress, impacting cognitive performance and behavior. However, functional compounds found in food may alleviate these alterations. White quinoa (Chenopodium quinoa, Wild) seeds contain a high content of n-3 fatty acids, including alpha-linolenic acid. This study aimed to evaluate the potential neuroprotective role of a quinoa-based functional food (QFF) in rats. Prepubertal male Sprague-Dawley rats were fed with rat chow or QFF (50% rat chow + 50% dehydrated quinoa seeds) and exposed or not to restraint stress protocol (2 h/day; 15 days). Four experimental groups were used: Non-stressed (rat chow), Non-stressed + QFF, Stressed (rat chow) and Stressed + QFF. Weight gain, locomotor activity (open field), anxiety (elevated plus maze, light-dark box), spatial memory (Y-maze), and dendritic length in the hippocampus were measured in all animals. QFF intake did not influence anxiety-like behaviors, while the memory of stressed rats fed with QFF improved compared to those fed with rat chow. Additionally, QFF intake mitigated the stress-induced dendritic atrophy in pyramidal neurons located in the CA3 area of the hippocampus. The results suggest that a quinoa-supplemented diet could play a protective role in the memory of chronically stressed rats.


Asunto(s)
Chenopodium quinoa , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Aprendizaje por Laberinto , Suplementos Dietéticos , Hipocampo/fisiología , Estrés Psicológico/psicología
11.
Protoplasma ; 261(4): 655-669, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38217740

RESUMEN

Quinoa is a facultative halophyte with excellent tolerance to salinity. In this study, the epidermal bladder cell complex (EBCc) of quinoa leaves was studied to determine their cellular characteristics and involvement in salt tolerance. We used light microscopy, confocal RAMAN microscopy, confocal fluorescence microscopy, transmission electron microscopy, and environmental scanning electron microscopy complemented by energy dispersive X-ray analysis. Ionic content was quantified with flame atomic absorption spectroscopy and with flame emission photometry. Results show that: (i) the number of EBCcs remains constant but their density and area vary with leaf age; (ii) stalk cells store lipids and exhibit thick walls, bladder cells present carotenes in small vesicles, oxalate crystals in vacuoles and lignin in their walls and both stalk and bladder cells have cuticles that differ in wax and cutin content; (iii) chloroplasts containing starch can be found on both stalk and bladder cells, and the latter also presents grana; (iv) plasmodesmata are observed between the stalk cell and the bladder cell, and between the epidermal cell and the stalk cell, and ectodesmata-like structures are observed on the bladder cell. Under high salinity conditions, (v) there is a clear tendency to accumulate greater amounts of K+ with respect to Na+ in the bladder cell; (vi) stalk cells accumulate similar amounts of K+ and Na+; (vii) Na+ accumulates mainly in the medullary parenchyma of the stem. These results add knowledge about the structure, content, and role of EBCc under salt stress, and surprisingly present the parenchyma of the stem as the main area of Na+ accumulation.


Asunto(s)
Chenopodium quinoa , Epidermis de la Planta , Chenopodium quinoa/metabolismo , Chenopodium quinoa/química , Epidermis de la Planta/ultraestructura , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Estrés Salino , Cationes , Hojas de la Planta/ultraestructura , Hojas de la Planta/metabolismo , Salinidad
12.
Molecules ; 28(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067603

RESUMEN

Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.


Asunto(s)
Chenopodium quinoa , Nanocápsulas , Solanum tuberosum , Almidón , Antioxidantes/química , Goma Arábiga/química , Antocianinas/análisis , Temperatura , Bahías , Fenoles/análisis
13.
Mol Nutr Food Res ; 67(21): e2300047, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667444

RESUMEN

SCOPE: Quinoa intake exerts hypoglycemic and hypolipidemic effects in animals and humans. Although peptides from quinoa inhibit key enzymes involved in glucose homeostasis in vitro, their in vivo antidiabetic properties have not been investigated. METHODS AND RESULTS: This study evaluated the effect of oral administration of a quinoa protein hydrolysate (QH) produced through enzymatic hydrolysis and fractionation by electrodialysis with ultrafiltration membrane (EDUF) (FQH) on the metabolic and pregnancy outcomes of Lepdb/+ pregnant mice, a preclinical model of gestational diabetes mellitus. The 4-week pregestational consumption of 2.5 mg mL-1 of QH in water prevented glucose intolerance and improves hepatic insulin signaling in dams, also reducing fetal weights. Sequencing and bioinformatic analyses of the defatted FQH (FQHD) identified 11 peptides 6-10 amino acids long that aligned with the quinoa proteome and exhibited putative anti-dipeptidyl peptidase-4 (DPP-IV) activity, confirmed in vitro in QH, FQH, and FDQH fractions. Peptides homologous to mouse and human proteins enriched for biological processes related to glucose metabolism are also identified. CONCLUSION: Processing of quinoa protein may be used to develop a safe and effective nutritional intervention to control glucose intolerance during pregnancy. Further studies are required to confirm if this nutritional intervention is applicable to pregnant women.


Asunto(s)
Chenopodium quinoa , Diabetes Gestacional , Intolerancia a la Glucosa , Humanos , Ratones , Femenino , Animales , Embarazo , Diabetes Gestacional/terapia , Hidrolisados de Proteína/química , Ultrafiltración , Hipoglucemiantes , Péptidos/química
14.
Braz J Biol ; 83: e271954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37132743

RESUMEN

Chenopodium quinoa Willd. it is an Andean cereal of great importance for human consumption due to its high nutritional value. In Colombia there is a high phenotypic and genotypic variability within quinoa crops, which has not been studied and has been maintained by the same farmers cycle after production cycle. The objective of this study was to carry out an interpopulation characterization of quinoa cultivated in different producing municipalities of the department of Boyacá, in Colombia, for which 19 morphological descriptors were used, which were evaluated in situ in nine municipalities and analyzed through descriptive statistics, principal component analysis, correlation and conglomerates. In the evaluation of the quantitative traits for all the populations, it was observed that the most variable descriptors were Number of teeth lower leaf (DHI), Lower leaf length (LHI), Width upper leaf (AHI) and Number of teeth upper leaf (DHS). Great segregation between and within individuals of Blanca de Jericó and Piartal was observed for panicle and leaf color and shape, stem color, presence of teeth, and axils on upper and lower leaves. A classification key is proposed that allows in the field to be able to morphologically differentiate the genotypes of Piartal and Blanca de Jericó. This research shows that among the most cultivated genotypes in the department of Boyacá, there is still an important phenotypic diversity given at the inter and intra-individual level, due to the phenological state and the agroclimatological conditions of the different producing regions.


Asunto(s)
Chenopodium quinoa , Humanos , Chenopodium quinoa/genética , Colombia , Grano Comestible , Fenotipo , Genotipo
15.
Int J Biol Macromol ; 242(Pt 3): 124938, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37210060

RESUMEN

The development of green and biodegradable nanomaterials is significant for the sustainable utilization of renewable lignocellulosic biomass. This work aimed to obtain the cellulose nanocrystals from quinoa straws (QCNCs) by acid hydrolysis. The optimal extraction conditions were investigated by response surface methodology, and the physicochemical properties of QCNCs were evaluated. The maximum yield of QCNCs (36.58 ± 1.42 %) was obtained under the optimal extraction conditions of 60 % (w/w) sulfuric acid concentration, 50 °C reaction temperature, and 130 min reaction time. The characterization results of QCNCs showed that it is a rod-like material with an average length of 190.29 ± 125.25 nm, an average width of 20.34 ± 4.69 nm, excellent crystallinity (83.47 %), good water dispersibility (Zeta potential = -31.34 mV) and thermal stability (over 200 °C). The addition of 4-6 wt% QCNCs could significantly improve the elongation at break and water resistance of high-amylose corn starch films. This study will pave the route for improving the economic value of quinoa straw, and provide relevant proof of QCNCs for the preliminary application in starch-based composite films with the best performance.


Asunto(s)
Chenopodium quinoa , Nanopartículas , Almidón/química , Chenopodium quinoa/química , Celulosa/química , Agua/química , Nanopartículas/química
16.
Plant Dis ; 107(9): 2628-2632, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36880865

RESUMEN

Quinoa (Chenopodium quinoa Willd.) is a native American crop mainly grown in the Andes of Bolivia and Peru. During the last decades, the cultivation of quinoa has expanded to more than 125 countries. Since then, several diseases of quinoa have been characterized. A leaf disease was observed on quinoa plants growing in an experimental plot in Eastern Denmark in 2018. The symptoms produced by the associated fungi consisted of small yellow blotches on the upper surface of leaves with a pale chlorotic halo surrounding the lesion. These studies used a combination of morphology, molecular diagnostics, and pathogenicity tests to identify two different Alternaria species belonging to Alternaria sections Infectoriae and Alternata as the causal agent of observed disease symptoms. To the best of our knowledge, this is the first report of Alternaria spp. as foliar pathogens of quinoa. Our findings indicate the need for additional studies to determine potential risks to quinoa production.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/microbiología , Alternaria/genética , Perú , Hojas de la Planta/microbiología
17.
World J Microbiol Biotechnol ; 39(4): 95, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759385

RESUMEN

The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.


Asunto(s)
Chenopodium quinoa , Lactobacillales , Antioxidantes , Chenopodium quinoa/microbiología , Pan/microbiología , Lactobacillaceae , Fermentación , Microbiología de Alimentos
18.
Crit Rev Food Sci Nutr ; 63(29): 9634-9647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35544604

RESUMEN

The Andean geography induces favorable conditions for the growth of food plants of high nutritional and functional value. Among these plants are the Andean grains, which are recognized worldwide for their nutritional attributes. The objective of this article is to show the nutritional and functional properties, as well as industrial potential, of Andean grains. Quinoa, amaranth, canihua, and Andean corn are grains that contain bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activities that benefit the health of the consumer. Numerous in vitro and in vivo studies demonstrate their functional potential. These high-Andean crops could be used industrially to add value to other functional food products. These reports suggest the inclusion of these grains in the daily diets of people and the application of their active compounds in the food industry.


Asunto(s)
Amaranthus , Chenopodium quinoa , Humanos , Perú , Antioxidantes , Productos Agrícolas
19.
Neotrop Entomol ; 52(2): 273-282, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35729313

RESUMEN

In recent years, Liorhyssus hyalinus (Fabricius) (Hemiptera: Rhopalidae) and Nysius simulans Stål (Hemiptera: Lygaeidae) have emerged as important pests of quinoa in Peru, when the crop started to be cultivated at relatively low elevations. The potential of the native lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) was evaluated as a biological control agent of these two pest species. Prey consumption on all immature stages of L. hyalinus and N. simulans was assessed, as well as development on first instars of these heteropterans and eggs of Sitotroga cerealella (Olivier) (Lepidoptera: Pyralidae) as a factitious prey. In addition, prey preference was examined in the absence and presence of a preferred prey, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae). Larvae of the predator were not able to feed on L. hyalinus eggs, but they effectively did on N. simulans eggs as well as on all nymphal instars of both species. Nymphs of L. hyalinus were less suitable prey for larval development of C. externa than eggs of S. cerealella, whereas N. simulans was overall an unsuitable prey. There was a clear prey preference of C. externa for aphids over the two heteropteran species, as well as a preference for N. simulans over L. hyalinus. The predation rates in this study indicate the potential of C. externa as a predator of these heteropteran pests that can play a role in both conservation and augmentation biological control programs.


Asunto(s)
Áfidos , Chenopodium quinoa , Heterópteros , Animales , Insectos , Conducta Predatoria , Larva , Ninfa
20.
F1000Res ; 12: 1477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38854700

RESUMEN

Background: The growing popularity of nutrient-rich foods, among which is quinoa, is due to the increasing demand for healthier choices. Oils and hydrolyzed proteins from these foods may help prevent various health issues. The objective of this work was to perform extraction from the endosperm of the grain from high-protein quinoa flour by physical means via a differential abrasive milling process and extracting the oil using an automatic auger extractor at 160°C, as well as characterizing extracted oil. Methods: Quinoa oil extraction and physicochemical characterization were carried out. Chemical and physical quality indexes of quinoa oil were established, and both characterizations were conducted based on international and Columbian standards. Thermal properties were evaluated by differential scanning calorimetry, and rheological and interfacial properties of the oil were evaluated using hybrid rheometers and Drop Tensiometers, respectively, to determine its potential for obtaining functional foods. Results: The result was 10.5 g of oil/ 100 g of endosperm, with a moisture content of 0.12%, insoluble impurities of 0.017%, peroxide index of 18.5 meq O 2/kg of oil, saponification index of 189.6 mg potassium hydroxide/g of oil, refractive index of 1.401, and a density of 0.9179 g/cm 3 at 20°C. Regarding contaminating metals, it presented 7 mg of iron/kg of oil, a value higher than previously established limits of 5 mg of iron/kg of oil. The oil contained 24.9% oleic acid, 55.3% linoleic acid, and 4% linolenic acid, demonstrating antioxidant capacity. Quinoa oil showed thermal properties similar to other commercial oils. Conclusions: The interfacial and rheological properties were suitable for the stabilization of emulsions, gels, and foams, which are important in various industrial applications and could facilitate the development of new products. The extracted quinoa oil presented similar characteristics to other commercial oils, which could make it a potential product for commercialization and application in different industries.


Asunto(s)
Chenopodium quinoa , Aceites de Plantas , Reología , Chenopodium quinoa/química , Aceites de Plantas/química , Fenómenos Químicos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA