Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros











Intervalo de año de publicación
1.
PeerJ ; 12: e17814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157764

RESUMEN

The aim of this study was to evaluate the effect of starvation and refeeding on the growth and food intake of gilthead seabream (Sparus aurata) and seabass (Dicentrarchus labrax) and on the growth and nitrogen uptake of glasswort (Salicornia europaea) in a polyculture aquaponic system under 12 ppt salinity for 75 days. Nine small-scale autonomous aquaponic systems were used, each containing 10 gilthead seabreams (average weight of 6.33 ± 0.73 g and average length of 5.73 ± 0.72 cm) and 10 seabasses (5.82 ± 0.77 g and 6.35 ± 0.45 cm), as well as five glasswort plants. Three fish feeding treatments were performed, a control (A), in which fish were fed daily until satiation, and two fasting treatments for 4 (B) and 7 days (C). Fish growth performance was significantly lower (p < 0.05) in the C treatment for both species compared to treatments A and B. Food consumption (FC) and feed conversion ratio (FCR) were significantly higher (p < 0.05) in treatment C. Glasswort growth performance was significantly higher in treatment C (p < 0.05). The results showed that the 4-day food-deprived fish were similar to the control fish by achieving partial compensatory growth. The more extended fasting period (7 days) resulted in significantly lower growth performance. The lipid and nitrogen retention levels in both species were significantly lower in food-deprived fish than in the control fish both before and during compensatory growth. The results suggest that a feeding schedule involving starvation-refeeding cycles is a promising feed management option for these species in polyculture aquaponic systems. The effect of food deprivation was also significantly beneficial (p < 0.05) for the growth performance of glasswort compared to the control treatment.


Asunto(s)
Lubina , Dorada , Animales , Dorada/crecimiento & desarrollo , Dorada/fisiología , Lubina/crecimiento & desarrollo , Lubina/fisiología , Inanición , Chenopodiaceae/metabolismo , Chenopodiaceae/crecimiento & desarrollo , Acuicultura/métodos , Alimentación Animal/análisis , Nitrógeno/metabolismo , Técnicas de Cocultivo
2.
Chemosphere ; 362: 142918, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043273

RESUMEN

Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.


Asunto(s)
Carbono , Carbón Orgánico , Micorrizas , Microbiología del Suelo , Suelo , Humedales , Carbón Orgánico/química , Carbono/metabolismo , Suelo/química , Micorrizas/fisiología , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Fotosíntesis , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
3.
Mar Pollut Bull ; 206: 116754, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053262

RESUMEN

Soil salinity in the root rhizosphere is highly heterogeneous in natural environments. Suaeda salsa L. is a highly salt-adapted halophyte, but it is unclear how S. salsa responds to non-uniform salinity conditions. The results of the root-splitting experiment showed that the increase in root dry weight in the low salt side (50/350-50) root of S. salsa may be associated with relative increases in root morphology. The concentration of Na+, Cl-, K+, the Na+ efflux and the expression of SsSOS1 in the low salt side root were higher than that of uniform low salt treatment. The expression of SsPIP1-4, SsPIP2-1, SsNRT1.1 and SsNRT2.1 were upregulated, which increased water and NO3- uptake in the low salt side root compared to uniform low salt treatment. In conclusion, under non-uniform salt treatment, the increased Na+ efflux, water and NO3- uptake from the low salt side root can alleviate salt stress in S. salsa.


Asunto(s)
Chenopodiaceae , Raíces de Plantas , Salinidad , Plantas Tolerantes a la Sal , Chenopodiaceae/metabolismo , Raíces de Plantas/metabolismo , Sodio/metabolismo , Iones , Suelo/química
4.
Chemosphere ; 363: 142795, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986781

RESUMEN

Constructed wetlands use vegetation and microorganisms to remove contaminants like nitrogen and phosphorus from water. For mariculture, the impact of salinity on the efficiency of wastewater treatment of wetlands is unneglectable. However, little is known about their impact on the microbiome in constructed wetlands. Here, we set four salinity levels (15, 22, 29, and 36) in Salicornia constructed wetlands, and the experiment was conducted for a period of 72 days. The 15 group exhibited the highest removal rates of nitrogen compounds and phosphate, compared to the other salinity groups, the nosZ gene exhibited significantly higher expression in the 22 group (p < 0.05), indicated that microorganisms in 22 salinity have higher denitrification abilities. The three dominant phyla identified within the microbiomes were Proteobacteria, known for their diverse metabolic capabilities; Cyanobacteria, important for photosynthesis and nitrogen fixation; and Firmicutes, which include many fermenters. The ecological network analysis revealed a 'small world' model, characterized by high interconnectivity and short path lengths between microbial species, and had higher co-occurrence (45.13%) observed in this study comparing to the Erdös-Réyni random one (32.35%). The genus Microbulbifer emerged as the sole connector taxon, pivotal for integrating different microbial communities involved in nitrogen removal. A negative correlation was observed between salinity levels and network complexity, as assessed by the number of connections and diversity of interactions within the microbial community. Collectively, these findings underscore the critical role of microbial community interactions in optimizing nitrogen removal in constructed wetlands, with potential applications in the design and management of such systems for improved wastewater treatment in mariculture.


Asunto(s)
Chenopodiaceae , Microbiota , Nitrógeno , Salinidad , Aguas Residuales , Humedales , Chenopodiaceae/metabolismo , Nitrógeno/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fósforo/metabolismo , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Desnitrificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación
5.
Plant Physiol Biochem ; 214: 108921, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991594

RESUMEN

The use of halophytes in conjunction with arbuscular mycorrhizal (AM) fungi has been found to enhance the removal efficacy of heavy metals and salts in heavy metals contaminated saline soil. The mechanisms of AM fungi on promoting halophyte growth and regulating metabolism remain unclear. In this study, combinations of 0 g kg-1 NaCl and 3 mg kg-1 Cd (S0Cd3), 6 g kg-1 NaCl and 3 mg kg-1 Cd (S6Cd3), and 12 g kg-1 NaCl and 3 mg kg-1 Cd (S12Cd3) were employed to explore the impact of Funneliformis mosseae on the growth and metabolism of Suaeda salsa. The results showed that AM fungi increased the biomass and the P, K+, Ca2+, and Mg2+ accumulations, reduced the Cd and Na+ concentrations in S0Cd3 and S6Cd3, and increased the Cd concentrations in S12Cd3. AM fungi inoculation reduced the Cd and Na+ transfer factors and increased the Cd and Na+ accumulations in S6Cd3. The metabolomics of S6Cd3 showed that AM fungi upregulated the expression of 5-hydroxy-L-tryptophan and 3-indoleacid acid in tryptophan metabolism, potentially acting as crucial antioxidants enabling plants to actively cope with abiotic stresses. AM fungi upregulated the expression of arbutin in glycolysis process, enhancing the plants' osmoregulation capacity. AM fungi upregulated the expression of 2-hydroxycinnamic acid in phenylalanine metabolism and dopaquinone in tyrosine metabolism. These two metabolites help effectively remove reactive oxygen species. Correspondingly, AM fungi decreased MDA content and increased soluble sugar content. These results indicate that AM fungi improve the stress resistance of S. salsa by increasing nutrient uptake and regulating physiological and metabolic changes.


Asunto(s)
Aminoácidos , Cadmio , Chenopodiaceae , Glucólisis , Micorrizas , Reguladores del Crecimiento de las Plantas , Micorrizas/fisiología , Micorrizas/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Chenopodiaceae/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Aminoácidos/metabolismo , Estrés Salino , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/microbiología , Hongos
6.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891835

RESUMEN

Two genes of nitrate transporters SaNRT2.1 and SaNRT2.5, putative orthologs of high-affinity nitrate transporter genes AtNRT2.1 and AtNRT2.5 from Arabidopsis thaliana, were cloned from the euhalophyte Suaeda altissima. Phylogenetic bioinformatic analysis demonstrated that the proteins SaNRT2.1 and SaNRT2.5 exhibited higher levels of homology to the corresponding proteins from the plants of family Amaranthaceae; the similarity of amino acid sequences between proteins SaNRT2.1 and SaNRT2.5 was lower (54%). Both SaNRT2.1 and SaNRT2.5 are integral membrane proteins forming 12 transmembrane helices as predicted by topological modeling. An attempt to demonstrate nitrate transporting activity of SaNRT2.1 or SaNRT2.5 by heterologous expression of the genes in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the only yeast nitrate transporter was not successful. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied in S. altissima plants that were grown in hydroponics under either low (0.5 mM) or high (15 mM) nitrate and salinity from 0 to 750 mM NaCl. The growth of the plants was strongly inhibited by low nitrogen supply while stimulated by NaCl; it peaked at 250 mM NaCl for high nitrate and at 500 mM NaCl for low nitrate. Under low nitrate supply, nitrate contents in S. altissima roots, leaves and stems were reduced but increased in leaves and stems as salinity in the medium increased. Potassium contents remained stable under salinity treatment from 250 to 750 mM NaCl. Quantitative real-time PCR demonstrated that without salinity, SaNRT2.1 was expressed in all organs, its expression was not influenced by nitrate supply, while SaNRT2.5 was expressed exclusively in roots-its expression rose about 10-fold under low nitrate. Salinity increased expression of both SaNRT2.1 and SaNRT2.5 under low nitrate. SaNRT2.1 peaked in roots at 500 mM NaCl with 15-fold increase; SaNRT2.5 peaked in roots at 500 mM NaCl with 150-fold increase. It is suggested that SaNRT2.5 ensures effective nitrate uptake by roots and functions as an essential high-affinity nitrate transporter to support growth of adult S. altissima plants under nitrogen deficiency.


Asunto(s)
Proteínas de Transporte de Anión , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Transportadores de Nitrato , Nitratos , Filogenia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Nitratos/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Secuencia de Aminoácidos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética
7.
Plant Physiol Biochem ; 212: 108770, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823092

RESUMEN

Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil. The inbuilt salinity tolerance mechanisms of halophytes help them to survive in heavy metal-contaminated rhizospheric soil. In the present study, growth and ionomic responses, reactive oxygen species (ROS) accumulation, modulations of phytochelatins, antioxidative defense, and metabolomic responses were studied in S. maritima imposed to Cd and Pb stresses with an aim to elucidate Cd and Pb tolerance mechanisms and phytoremediation potential of this halophyte. Our results showed a reduction of biomass in S. maritima, which may serve as an energy conservation strategy for survival under heavy metal stress. The increased accumulation of ROS with concomitant higher expression of various antioxidative enzymes suggests the efficient scavenging of ROS. The metabolite profiling revealed significant up-regulation of sugars, sugar alcohols, amino acids, polyphenols, and organic acids under Cd and Pb stresses suggesting their possible role in osmotic balance, ionic homeostasis, ROS scavenging, and signal transduction for stress tolerance. In S. maritima, the translocation factors (Tf) are <1 in both Cd and Pb treatments, which indicates that this halophyte has high phytostabilization potential for Cd and Pb in roots and through restricted translocation of heavy metal ions to the aboveground part. The findings of this study offer comprehensive information on Cd and Pb tolerance mechanisms in S. maritima and suggest that this halophyte can detoxify the HMs through physiological, ionic, antioxidative, and metabolic regulations.


Asunto(s)
Biodegradación Ambiental , Cadmio , Chenopodiaceae , Plomo , Especies Reactivas de Oxígeno , Plantas Tolerantes a la Sal , Cadmio/metabolismo , Cadmio/toxicidad , Chenopodiaceae/metabolismo , Chenopodiaceae/efectos de los fármacos , Plantas Tolerantes a la Sal/metabolismo , Plomo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolómica , Antioxidantes/metabolismo , Metaboloma/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Fitoquelatinas/metabolismo
8.
Nat Commun ; 15(1): 4279, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769297

RESUMEN

The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.


Asunto(s)
Chenopodiaceae , Proteínas de Plantas , Tolerancia a la Sal , Chenopodiaceae/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Vacuolas/metabolismo , Salinidad , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés Salino , Proteómica , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Transcriptoma
9.
Biopolymers ; 115(4): e23586, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747448

RESUMEN

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL-1), xylanase (35.21 IU mL-1), and laccase (15.89 IU mL-1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.


Asunto(s)
Celulosa , Celulosa/química , Plantas Tolerantes a la Sal/química , Plantas Tolerantes a la Sal/metabolismo , Lignina/química , Resistencia a la Tracción , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Poligalacturonasa/metabolismo , Poligalacturonasa/química , Espectroscopía Infrarroja por Transformada de Fourier , Lacasa/metabolismo , Lacasa/química , Nanofibras/química , Pectinas/química , Pectinas/aislamiento & purificación , Pectinas/metabolismo , Chenopodiaceae/química , Chenopodiaceae/metabolismo , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química
10.
Plant Physiol Biochem ; 208: 108536, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38507839

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) plays a crucial role in the initial carbon fixation process in C4 plants. However, its nonphotosynthetic functions in Haloxylon ammodendron, a C4 perennial xerohalophytic shrub, are still poorly understood. Previous studies have reported the involvement of PEPC in plant responses to abiotic stresses such as drought and salt stress. However, the underlying mechanism of PEPC tolerance to drought stress has not been determined. In this study, we cloned the C4-type PEPC gene HaPEPC1 from H. ammodendron and investigated its biological function by generating transgenic Arabidopsis plants with ectopic expression of HaPEPC1. Our results showed that, compared with WT (wild-type) plants, ectopic expression of HaPEPC1 plants exhibited significantly greater germination rates and chlorophyll contents. Furthermore, under drought stress, the transgenic plants presented increased root length, fresh weight, photosynthetic capacity, and antioxidant enzyme activities, particularly ascorbate peroxidase and peroxidase. Additionally, the transgenic plants exhibited reduced levels of malondialdehyde, H2O2 (hydrogen peroxide), and O2- (superoxide radical). Transcriptome analysis indicated that ectopic expression of HaPEPC1 primarily regulated the expression of genes associated with the stress defence response, glutathione metabolism, and abscisic acid (ABA) synthesis and signalling pathways in response to drought stress. Taken together, these findings suggest that the ectopic expression of HaPEPC1 enhances the reduction of H2O2 and O2- in transgenic plants, thereby improving reactive oxygen species (ROS) scavenging capacity and enhancing drought tolerance. Therefore, the HaPEPC1 gene holds promise as a candidate gene for crop selection aimed at enhancing drought tolerance.


Asunto(s)
Arabidopsis , Chenopodiaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Resistencia a la Sequía , Peróxido de Hidrógeno/metabolismo , Expresión Génica Ectópica , Chenopodiaceae/metabolismo , Antioxidantes , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Funct Plant Biol ; 512024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38388483

RESUMEN

Tolerance mechanisms to single abiotic stress events are being investigated in different plant species, but how plants deal with multiple stress factors occurring simultaneously is still poorly understood. Here, we introduce Salicornia europaea as a species with an extraordinary tolerance level to both flooding and high salt concentrations. Plants exposed to 0.5MNaCl (mimicking sea water concentrations) grew larger than plants not exposed to salt. Adding more salt reduced growth, but concentrations up to 2.5MNaCl were not lethal. Regular tidal flooding with salt water (0.5MNaCl) did not affect growth or chlorophyll fluorescence, whereas continuous flooding stopped growth while plants survived. Quantitative polymerase chain reaction (qPCR) analysis of plants exposed to 1% oxygen in air revealed induction of selected hypoxia responsive genes, but these genes were not induced during tidal flooding, suggesting that S. europaea did not experience hypoxic stress. Indeed, plants were able to transport oxygen into waterlogged soil. Interestingly, sequential exposure to salt and hypoxic air changed the expression of several but not all genes as compared to their expression upon hypoxia only, demonstrating the potential to use S . europaea to investigate signalling-crosstalk between tolerance reactions to multiple environmental perturbations.


Asunto(s)
Chenopodiaceae , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo , Oxígeno/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Hipoxia
12.
Sci Rep ; 14(1): 5040, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424208

RESUMEN

Allergens originated from Salsola kali (Russian thistle) pollen grains are one of the most important sources of aeroallergens causing pollinosis in desert and semi-desert regions. T-cell epitope-based vaccines (TEV) are more effective among different therapeutic approaches developed to alleviate allergic diseases. The physicochemical properties, and B as well as T cell epitopes of Sal k 1 (a major allergen of S. kali) were predicted using immunoinformatic tools. A TEV was constructed using the linkers EAAAK, GPGPG and the most suitable CD4+ T cell epitopes. RS04 adjuvant was added as a TLR4 agonist to the amino (N) and carboxyl (C) terminus of the TEV protein. The secondary and tertiary structures, solubility, allergenicity, toxicity, stability, physicochemical properties, docking with immune receptors, BLASTp against the human and microbiota proteomes, and in silico cloning of the designed TEV were assessed using immunoinformatic analyses. Two CD4+ T cell epitopes of Sal k1 that had high affinity with different alleles of MHC-II were selected and used in the TEV. The molecular docking of the TEV with HLADRB1, and TLR4 showed TEV strong interactions and stable binding pose to these receptors. Moreover, the codon optimized TEV sequence was cloned between NcoI and XhoI restriction sites of pET-28a(+) expression plasmid. The designed TEV can be used as a promising candidate in allergen-specific immunotherapy against S. kali. Nonetheless, effectiveness of this vaccine should be validated through immunological bioassays.


Asunto(s)
Chenopodiaceae , Salsola , Vacunas , Humanos , Alérgenos , Epítopos de Linfocito T , Simulación del Acoplamiento Molecular , Receptor Toll-Like 4/genética , Antígenos de Plantas , Chenopodiaceae/metabolismo , Epítopos de Linfocito B , Biología Computacional , Vacunas de Subunidad
13.
Gene ; 900: 148139, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38185292

RESUMEN

The heat stress is a significant environmental challenge and impede the plant growth, development and productivity. The characterization and utilization of novel genes for improving stress tolerance represents a paramount approach in crop breeding. In the present study, we report on cloning of a novel heat-induced chaperonin 10-like gene (SbCPN10L) from Salicornia brachiata and elucidation of its in-planta role in conferring the heat stress endurance. The transgenic tobacco over-expressing SbCPN10L gene exhibited enhanced growth attributes such as higher rate of seed germination, germination and vigor index at elevated (35 ± 1 °C) temperature (eT). The SbCPN10L tobacco exhibited greenish and healthy seedling growth under stress. Compared with control tobacco at eT, the transgenic tobacco had higher water contents, membrane stability index, stress tolerance index and photosynthetic pigments. Lower electrolyte leakage and less accumulation of malondialdehyde, hydrogen peroxide and reactive oxygen species indicated better heat stress tolerance in transgenic tobacco over-expressing SbCPN10L gene. Transgenic tobacco accumulated higher contents of sugars, starch, amino acids and polyphenols at eT. The negative solute potential observed in transgenic tobacco contributed to maintain water content and support improved growth under stress. The up-regulation of NtAPX, NtPOX and NtSOD in transgenic tobacco under stress indicated higher ROS scavenging ability and better physiological conditioning. The results recommend the SbCPN10L gene as a potential candidate gene with an ability to confer heat stress tolerance for climate resilient crops.


Asunto(s)
Chaperonina 10 , Chenopodiaceae , Plantas Modificadas Genéticamente/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Respuesta al Choque Térmico/genética , Agua/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
14.
Funct Plant Biol ; 50(9): 701-711, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37531972

RESUMEN

Suaeda salsa is an important salt- and drought-tolerant plant with important ecological restoration roles. However, little is known about its underlying molecular regulatory mechanisms. Therefore, understanding the response mechanisms of plants to salt and drought stress is of great importance. In this study, metabolomics analysis was performed to evaluate the effects of salt and drought stress on S. salsa . The experiment consisted of three treatments: (1) control (CK); (2) salt stress (Ps); and (3) drought stress (Pd). The results showed that compared with the control group, S. salsa showed significant differences in phenotypes under salt and drought stress conditions. First, a total of 207 and 292 differential metabolites were identified in the Ps/CK and Pd/CK groups, respectively. Second, some soluble sugars and amino acids, such as raffinose, maltopentoses, D -altro-beptulose, D -proline, valine-proline, proline, tryptophan and glycine-L -leucine, showed increased activity under salt and drought stress conditions, suggesting that these metabolites may be responsible for salt and drought resistance in S. salsa . Third, the flavonoid biosynthetic and phenylalanine metabolic pathways were significantly enriched under both salt and drought stress conditions, indicating that these two metabolic pathways play important roles in salt and drought stress resistance in S. salsa . The findings of this study provide new insights into the salt and drought tolerance mechanisms of S. salsa .


Asunto(s)
Chenopodiaceae , Sequías , Metabolómica/métodos , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Estrés Salino , Redes y Vías Metabólicas
15.
Plant Physiol Biochem ; 201: 107894, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37482030

RESUMEN

Suaeda salsa is remarkable for its high oil content and abundant unsaturated fatty acids. In this study, the regulatory networks on fatty acid and lipid metabolism were constructed by combining the de novo transcriptome and lipidome data. Differentially expressed genes (DEGs) associated with lipids biosynthesis pathways were identified in the S. salsa transcriptome. DEGs involved in fatty acid and glycerolipids were generally up-regulated in leaf tissues. DEGs for TAG assembly were enriched in developing seeds, while DEGs in phospholipid metabolic pathways were enriched in root tissues. Polar lipids were extracted from S. salsa tissues and analyzed by lipidomics. The proportion of galactolipid MGDG was the highest in S. salsa leaves. The molar percentage of PG was high in the developing seeds, and the other main phospholipids had higher molar percentage in roots of S. salsa. The predominant C36:6 molecular species indicates that S. salsa is a typical 18:3 plant. The combined transcriptomic and lipidomic data revealed that different tissues of S. salsa were featured with DEGs associated with specific lipid metabolic pathways, therefore, represented unique lipid profiles. This study will be helpful on understanding lipid metabolism pathway and exploring the key genes involved in lipid synthesis in S. salsa.


Asunto(s)
Chenopodiaceae , Metabolismo de los Lípidos , Metabolismo de los Lípidos/genética , Perfilación de la Expresión Génica , Transcriptoma , Chenopodiaceae/metabolismo , Ácidos Grasos/metabolismo
16.
Plant Mol Biol ; 112(4-5): 261-277, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37341869

RESUMEN

Haloxylon ammodendron, an important shrub utilized for afforestation in desert areas, can withstand harsh ecological conditions such as drought, high salt and extreme heat. A better understanding of the stress adaptation mechanisms of H. ammodendron is vital for ecological improvement in desert areas. In this study, the role of the H. ammodendron 14-3-3 protein HaFT-1 in thermotolerance was investigated. qRT-PCR analysis showed that heat stress (HS) priming (the first HS) enhanced the expression of HaFT-1 during the second HS and subsequent recovery phase. The subcellular localization of YFP-HaFT-1 fusion protein was mainly detected in cytoplasm. HaFT-1 overexpression increased the germination rate of transgenic Arabidopsis seeds, and the survival rate of HaFT-1 overexpression seedlings was higher than that of wild-type (WT) Arabidopsis after priming-and-triggering and non-primed control treatments. Cell death staining showed that HaFT-1 overexpression lines exhibited significantly reduced cell death during HS compared to WT. Transcriptome analysis showed that genes associated with energy generation, protein metabolism, proline metabolism, autophagy, chlorophyll metabolism and reactive oxygen species (ROS) scavenging were important to the thermotolerance of HS-primed HaFT-1 transgenic plants. Growth physiology analysis indicated that priming-and-triggering treatment of Arabidopsis seedlings overexpressing HaFT-1 increased proline content and strengthened ROS scavenging activity. These results demonstrated that overexpression of HaFT-1 increased not only HS priming but also tolerance to the second HS of transgenic Arabidopsis, suggesting that HaFT-1 is a positive regulator in acquired thermotolerance.


Asunto(s)
Arabidopsis , Chenopodiaceae , Termotolerancia , Arabidopsis/metabolismo , Termotolerancia/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Plantones , Prolina/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas
17.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240446

RESUMEN

Haloxylon ammodendron and Haloxylon persicum, as typical desert plants in arid areas, show strong drought tolerance and environmental adaptability and are therefore ideal model plants for studying the molecular mechanisms of drought tolerance. A metabolomic analysis of H. ammodendron and H. persicum in their natural environment is lacking, and their metabolic response to drought therefore remains unclear. To elucidate the response of H. ammodendron and H. persicum to drought at the metabolic level, a non-targeted metabolomics analysis was carried out herein. Under a dry environment, H. ammodendron exhibited 296 and 252 differentially expressed metabolites (DEMs) in the positive and negative ion modes, respectively, whereas 452 and 354 DEMs were identified in the positive and negative ion modes in H. persicum, respectively. The results indicated that H. ammodendron responds to drought by increasing the content of organic nitrogen compounds and lignans, neolignans, and related compounds, and reducing the content of alkaloids and derivatives. By contrast, H. persicum adapts to the dry environment by increasing the content of organic acids and their derivatives and reducing the content of lignans, neolignans, and related compounds. In addition, H. ammodendron and H. persicum improved their osmoregulation ability, reactive oxygen species detoxification ability, and cell membrane stability by regulating the key metabolic pathways and anabolism of associated metabolites. This is the first metabolomics report on the response of H. ammodendron and H. persicum to drought in their natural environment, providing a foundation for the further study of their regulatory mechanisms under drought stress.


Asunto(s)
Chenopodiaceae , Sequías , Chenopodiaceae/metabolismo , Metabolómica
18.
Sci Total Environ ; 880: 163279, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019226

RESUMEN

Polycyclic aromatic hydrocarbon (PAH) contaminated saline-alkali soil is commonly salinized and hardened, which leads to low self-purification efficiency, making it difficult to reuse and remediate. In this study, pot experiments were conducted to investigate remediation of PAH contaminated saline-alkali soil using biochar-immobilized Martelella sp. AD-3, and Suaeda salsa L (S. salsa). Reduction in phenanthrene concentration, PAH degradation functional genes, and the microbial community in the soil were analyzed. The soil properties and plant growth parameters were also analyzed. After a 40-day remediation, the removal rate of phenanthrene by biochar-immobilized bacteria combined with S. salsa (MBP group) was 91.67 %. Additionally, soil pH and electrical conductivity (EC) reduced by 0.15 and 1.78 ds/m, respectively. The fresh weight and leaf pigment contents increased by 1.30 and 1.35 times, respectively, which effectively alleviated the growth pressure on S. salsa in PAH-contaminated saline-alkali soil. Furthermore, this remediation resulted in abundance of PAH degradation functional genes in the soil, with a value of 2.01 × 103 copies/g. The abundance of other PAH degraders such as Halomonas, Marinobacter, and Methylophaga in soil also increased. Furthermore, the highest abundance of Martelella genus was observed after the MBP treatment, indicating that strain AD-3 has a higher survival ability in the rhizosphere of S. salsa under the protection of biochar. This study provides a green, low-cost technique for remediation of PAH-contaminated saline-alkali soils.


Asunto(s)
Chenopodiaceae , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Suelo/química , Álcalis , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Bacterias/metabolismo , Chenopodiaceae/metabolismo
19.
Sci Total Environ ; 878: 162791, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36907425

RESUMEN

Lithium (Li), gallium (Ga) and indium (In) are industry-critical metals, with no known plant species that (hyper)accumulate these metals to any substantial degree. We hypothesised that sodium (Na) hyperaccumulators (i.e., halophytes) may accumulate Li, whilst aluminium (Al) hyperaccumulators may accumulate Ga and In, based on the chemical similarities of these elements. Experiments were conducted in hydroponics at various molar ratios for six weeks to determine accumulation in roots and shoots of the target elements. For the Li experiment, the halophytes Atriplex amnicola, Salsola australis and Tecticornia pergranulata were subjected to Na and Li treatments, whilst for the Ga and In experiment, Camellia sinensis was exposed to Al, Ga, and In. The halophytes were able to accumulate high shoot Li and Na concentrations reaching up to ~10 g Li kg-1 and 80 g Na kg-1, respectively. The translocation factors for Li were higher than for Na (about two-fold) in A. amnicola and S. australis. The results from the Ga and In experiment show that C. sinensis is capable of accumulating high concentrations of Ga (mean 150 mg Ga kg-1), comparable with Al (mean 300 mg Al kg-1), but virtually no In (<20 mg In kg-1) in its leaves. Competition between Al and Ga suggests that Ga might be taken up via Al pathways in C. sinensis. The findings suggest that there are opportunities to explore Li and Ga phytomining on respective Li- and Ga-enriched mine water/soil/mine waste materials using halophytes and Al hyperaccumulators to complement the global supply of these critical metals.


Asunto(s)
Atriplex , Chenopodiaceae , Galio , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Galio/metabolismo , Indio/metabolismo , Plantas Tolerantes a la Sal/metabolismo , Litio , Aluminio/metabolismo , Chenopodiaceae/metabolismo
20.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841232

RESUMEN

AIM: The objective of the work was to assess the effect of biostimulation with selected plant growth-promoting bacteria on growth and metabolite profile of Salicornia europaea. METHODS AND RESULTS: Salicornia europaea seeds were inoculated with different combinations of plant growth-promoting bacteria Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20. Plants germinated from inoculated seeds were grown either in laboratory conditions or in a saline crop field. Fresh and dry weight were determined at the end of the experiment, for biomass quantification. The microbiological quality of fresh shoots for human consumption as salad greens was assessed, and the persistence of the inoculated strains in the plant rhizosphere was confirmed by next-generation sequencing (Illumina) of the 16S rDNA gene. The primary metabolite profile of biostimulated plants was characterized by GC-TOF-MS.In laboratory conditions, inoculation with the two strains Br. casei EB3 and Ps. oryzihabitans RL18 caused the most significant increase in biomass production (fresh and dry weight), and caused a shift in the central metabolic pathways of inoculated plants toward amino acid biosynthesis. In the field experiment, no significant biostimulation effect was detected with any of the tested inoculants. Seed inoculation had no significant effect on the microbiological quality of the edible parts. The persistence of inoculants was confirmed in both experiments. CONCLUSIONS: Manipulation of the plant microbiome can trigger primary metabolic reconfiguration and modulate the plant metabolism while promoting plant growth.


Asunto(s)
Bacterias , Chenopodiaceae , Humanos , Desarrollo de la Planta , Semillas , Productos Agrícolas , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA