Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Steroids ; 209: 109467, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959994

RESUMEN

BACKGROUND: Breast cancer stands as a leading contributor to global cancer-related mortality. Progressing Research and Medical Innovations Elevate Treatment Choices and Results for Breast Cancer. Among these, Peimine, a natural steroid inherent in plants, notably within the Fritillaria species, demonstrates the capability to trigger apoptosis in breast cancer cells through the mitochondrial membrane permeation pathway. Nevertheless, its impact on an appropriate cancer model remains an area necessitating further exploration. AIM: This study explored the in vivo anticancer effects of peimine on MRMT-1 Cell-line induced breast cancer in rats. METHOD: Cancer was induced by the administration of MRMT-1 (6 x 106 cells) cells in the mammary pads of SD rats. The daily drug treatmentcommenced on day 14 and continued till 39 days. Peimine was administered in two doses (0.24 mg/kg and 0.48 mg/kg p.o) to examine its efficacy in curing breast cancer while tamoxifen was used as standard. RESULTS: A reduction in tumour size was observed in the peimine-treated groups. Peimine can correct the changed blood cell count in addition to its anti-tumour activity. In peimine-treated rats, imbalanced immune marker IgE, serum oxidative marker, and tissue apoptotic markers like cytochrome c and calcium level were shown to be restored significantly. CONCLUSION: Our findings imply that quinine has beneficial effects as an anti-neoplastic medication for breast cancer, most likely through its apoptotic activity. More research is necessary to thoroughly understand their mechanisms of action, ideal dose, and potential side effects.


Asunto(s)
Apoptosis , Cevanas , Ratas Sprague-Dawley , Animales , Apoptosis/efectos de los fármacos , Femenino , Ratas , Línea Celular Tumoral , Cevanas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Antineoplásicos Fitogénicos/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/metabolismo , Fritillaria/química
2.
Phytochemistry ; 224: 114140, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750709

RESUMEN

Eight previously undescribed cevanine-type steroidal alkaloids, cirrhosinones I-N and cirrhosinols A-B, along with five known analogs, were isolated from the bulbs of Fritillaria cirrhosa D. Don. Their structures were elucidated on the basis of comprehensive analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and single-crystal X-ray diffraction analyses. All compounds revealed weak NO inhibitory activities in the LPS-stimulated NR8383 cells at the concentration of 20 µM, with inhibition ratios ranging from 5.1% to 14.3%.


Asunto(s)
Alcaloides , Fritillaria , Raíces de Plantas , Fritillaria/química , Raíces de Plantas/química , Estructura Molecular , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Cevanas/química , Cevanas/farmacología , Cevanas/aislamiento & purificación , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Animales , Conformación Molecular , Cristalografía por Rayos X , Línea Celular , Ratas , Esteroides/química , Esteroides/aislamiento & purificación , Esteroides/farmacología , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Modelos Moleculares
3.
Cells ; 12(6)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36980235

RESUMEN

Glioblastoma (GBM) is a primary brain tumor of unknown etiology. It is extremely aggressive, incurable and has a short average survival time for patients. Therefore, understanding the precise molecular mechanisms of this diseases is essential to establish effective treatments. In this study, we cloned and sequenced a splice variant of the hydroxysteroid 11-ß dehydrogenase 1 like gene (HSD11B1L) and named it HSD11B1L-181. HSD11 B1L-181 was specifically expressed only in GBM cells. Overexpression of this variant can significantly promote the proliferation, migration and invasion of GBM cells. Knockdown of HSD11B1L-181 expression inhibited the oncogenic potential of GBM cells. Furthermore, we identified the direct interaction of parkin with HSD11B1L-181 by screening the GBM cDNA expression library via yeast two-hybrid. Parkin is an RBR E3 ubiquitin ligase whose mutations are associated with tumorigenesis. Small interfering RNA treatment of parkin enhanced the proliferative, migratory and invasive abilities of GBM. Finally, we found that the alkaloid peiminine from the bulbs of Fritillaria thunbergii Miq blocks the interaction between HSD11B1L-181 and parkin, thereby lessening carcinogenesis of GBM. We further confirmed the potential of peiminine to prevent GBM in cellular, ectopic and orthotopic xenograft mouse models. Taken together, these findings not only provide insight into GBM, but also present an opportunity for future GBM treatment.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Neoplasias Encefálicas , Glioblastoma , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/efectos de los fármacos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis/genética , Cevanas/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Ecotoxicol Environ Saf ; 239: 113615, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35567927

RESUMEN

Fine particulate matter (PM2.5) exposure can cause lung injury and a large number of respiratory diseases. Sipeimine is a steroidal alkaloid isolated from Fritillaria roylei which has been associated with anti-inflammatory, antitussive and antiasthmatic properties. In this study, we explored the potential effects of sipeimine against PM2.5-induced lung injury in Sprague Dawley rats. Sipeimine alleviated lung injury caused by PM2.5 and decreased pulmonary edema, inflammation and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the bronchoalveolar lavage fluid. In addition, sipeimine upregulated the glutathione (GSH) expression and downregulated the expression of 4-hydroxynonenal (4-HNE), tissue iron and malondialdehyde (MDA). The downregulation of proteins involved in ferroptosis, including nuclear factor E2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1) and solute carrier family 7 member 11 (SLC7A11) was reversed by sipeimine. The administration of RSL3, a potent ferroptosis-triggering agent, blocked the effects of sipeimine. Using network pharmacology, we found that the effects of sipeimine were presumably mediated through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. A PI3K inhibitor (LY294002) blocked the PI3K/Akt signaling pathway and reversed the effects of sipeimine. Overall, this study suggested that the protective effect of sipeimine against PM2.5-induced lung injury was mainly mediated through the PI3K/Akt pathway, ultimately leading to a reduction in ferroptosis.


Asunto(s)
Cevanas , Ferroptosis , Lesión Pulmonar , Material Particulado , Animales , Cevanas/farmacología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Factor 2 Relacionado con NF-E2/metabolismo , Farmacología en Red , Material Particulado/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681946

RESUMEN

Fritillaria bulbs are used in Traditional Chinese Medicine to treat several illnesses. Peimine (Pm), an anti-inflammatory compound from Fritillaria, is known to inhibit some voltage-dependent ion channels and muscarinic receptors, but its interaction with ligand-gated ion channels remains unexplored. We have studied if Pm affects nicotinic acetylcholine receptors (nAChRs), since they play broad functional roles, both in the nervous system and non-neuronal tissues. Muscle-type nAChRs were incorporated to Xenopus oocytes and the action of Pm on the membrane currents elicited by ACh (IAChs) was assessed. Functional studies were combined with virtual docking and molecular dynamics assays. Co-application of ACh and Pm reversibly blocked IACh, with an IC50 in the low micromolar range. Pm inhibited nAChR by: (i) open-channel blockade, evidenced by the voltage-dependent inhibition of IAch, (ii) enhancement of nAChR desensitization, revealed by both an accelerated IACh decay and a decelerated IACh deactivation, and (iii) resting-nAChR blockade, deduced from the IACh inhibition elicited by Pm when applied before ACh superfusion. In good concordance, virtual docking and molecular dynamics assays demonstrated that Pm binds to different sites at the nAChR, mostly at the transmembrane domain. Thus, Pm from Fritillaria bulbs, considered therapeutic herbs, targets nAChRs with high affinity, which might account for its anti-inflammatory actions.


Asunto(s)
Antiinflamatorios/farmacología , Cevanas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Músculos/efectos de los fármacos , Oocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores Nicotínicos/metabolismo , Animales , Medicamentos Herbarios Chinos/farmacología , Músculos/metabolismo , Oocitos/metabolismo , Receptores Nicotínicos/genética , Xenopus laevis
6.
Front Endocrinol (Lausanne) ; 12: 736863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630331

RESUMEN

Osteoclasts (OCs) play an important role in osteoporosis, a disease that is mainly characterized by bone loss. In our research, we aimed to identify novel approach for regulating osteoclastogenesis and thereby treating osteoporosis. Previous studies have set a precedent for screening traditional Chinese herbal extracts for effective inhibitors. Peiminine is an alkaloid extracted from the bulb of Fritillaria thunbergii Miq that reportedly has anticancer and anti-inflammatory effects. Thus, the potential inhibitory effect of peiminine on OC differentiation was investigated via a series of experiments. According to the results, peiminine downregulated the levels of specific genes and proteins in vitro and consequently suppressed OC differentiation and function. Based on these findings, we further investigated the underlying molecular mechanisms and identified the NF-κB and ERK1/2 signaling pathways as potential targets of peiminine. In vivo, peiminine alleviated bone loss in an ovariectomized mouse model.


Asunto(s)
Cevanas/farmacología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ligando RANK/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Fémur/efectos de los fármacos , Fémur/metabolismo , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Ovariectomía
7.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638579

RESUMEN

Parkinson's disease (PD) is a degenerative disease that can cause motor, cognitive, and behavioral disorders. The treatment strategies being developed are based on the typical pathologic features of PD, including the death of dopaminergic (DA) neurons in the substantia nigra of the midbrain and the accumulation of α-synuclein in neurons. Peiminine (PMN) is an extract of Fritillaria thunbergii Miq that has antioxidant and anti-neuroinflammatory effects. We used Caenorhabditis elegans and SH-SY5Y cell models of PD to evaluate the neuroprotective potential of PMN and address its corresponding mechanism of action. We found that pretreatment with PMN reduced reactive oxygen species production and DA neuron degeneration caused by exposure to 6-hydroxydopamine (6-OHDA), and therefore significantly improved the DA-mediated food-sensing behavior of 6-OHDA-exposed worms and prolonged their lifespan. PMN also diminished the accumulation of α-synuclein in transgenic worms and transfected cells. In our study of the mechanism of action, we found that PMN lessened ARTS-mediated degradation of X-linked inhibitor of apoptosis (XIAP) by enhancing the expression of PINK1/parkin. This led to reduced 6-OHDA-induced apoptosis, enhanced activity of the ubiquitin-proteasome system, and increased autophagy, which diminished the accumulation of α-synuclein. The use of small interfering RNA to down-regulate parkin reversed the benefits of PMN in the PD models. Our findings suggest PMN as a candidate compound worthy of further evaluation for the treatment of PD.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cevanas/farmacología , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Degeneración Nerviosa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sustancia Negra/metabolismo , Ubiquitina/metabolismo
8.
Pharm Biol ; 59(1): 129-133, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33721550

RESUMEN

CONTEXT: Peimine and paeoniflorin can be combined for the treatment of cough in paediatrics. The interaction during the co-administration could dramatically affect the bioavailability of drugs. OBJECTIVE: The interaction between peimine and paeoniflorin was investigated in this study. MATERIALS AND METHODS: The pharmacokinetics of paeoniflorin (20 mg/kg) with or without the coadministration of peimine (5 mg/kg for 10 days before paeoniflorin) was orally investigated in Sprague-Dawley rats (n = 6). The group without the peimine was set as the control group. The metabolic stability of paeoniflorin was studied in rat liver with microsomes. The effect of peimine on the absorption of paeoniflorin was investigated with Caco-2 cell monolayers. RESULTS: The Cmax (244.98 ± 10.95 vs. 139.18 ± 15.14 µg/L) and AUC(0-t) (3295.92 ± 263.02 vs. 139.18 ± 15.14 h·µg/L) of paeoniflorin was increased by peimine. The t1/2 was prolonged from 5.33 ± 1.65 to 14.21 ± 4.97 h and the clearance was decreased from 15.43 ± 1.75 to 4.12 ± 0.57 L/h/kg. Consistently, peimine increased the metabolic stability of paeoniflorin with rat liver microsomes with the increased t1/2 (56.78 ± 2.62 vs. 26.33 ± 3.15 min) and the decreased intrinsic clearance (24.42 ± 3.78 vs. 52.64 ± 4.47 µL/min/mg protein). Moreover, the transportation of paeoniflorin was also inhibited by peimine as the efflux ratio decreased from 3.06 to 1.63. DISCUSSION AND CONCLUSIONS: Peimine increased the systemic exposure of paeoniflorin through inhibiting the activity of CYP3A4 and P-gp. These results provide a reference for further in vivo studies in a broader population.


Asunto(s)
Cevanas/farmacología , Glucósidos/farmacocinética , Microsomas Hepáticos/metabolismo , Monoterpenos/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Área Bajo la Curva , Células CACO-2 , Cevanas/administración & dosificación , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Glucósidos/administración & dosificación , Semivida , Humanos , Masculino , Monoterpenos/administración & dosificación , Ratas , Ratas Sprague-Dawley
9.
Anticancer Drugs ; 32(2): 148-156, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32740014

RESUMEN

Colorectal cancer (CRC) is a commonly diagnosed type of cancer globally. The molecular mechanism by which peiminine suppressed the progression of CRC is not fully addressed. The viability was assessed through cell counting kit 8 assay. Colony formation assay was used to analyze the colony formation ability. The metastasis was evaluated by transwell migration and invasion assays. Quantitative real-time PCR was performed to measure the expression of LINC00659 and miR-760 in CRC cells. The binding sites between miR-760 and LINC00659 were predicted by Starbase software and verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA-pull down assay. The in-vivo function of peiminine in CRC progression was confirmed by murine xenograft model. Peiminine inhibited the viability, colony formation and metastasis of CRC cells. Peiminine notably down-regulated the expression of LINC00659, while the expression of miR-760 was up-regulated by peiminine treatment. MiR-760 was a direct target of LINC00659 in CRC cells. The depletion of miR-760 attenuated the inhibitory effects of LINC00659 intervention on the viability, colony formation and metastasis of CRC cells. Peiminine restrained the progression of CRC through LINC00659 and miR-760. LINC00659 inhibited the growth of CRC tumors through LINC00659/miR-760 axis in vivo. Peiminine suppressed the development of CRC through inhibiting the viability, colony formation and metastasis of CRC cells via LINC00659/miR-760 axis. LINC00659/miR-760 axis might be an underlying target for CRC therapy.


Asunto(s)
Cevanas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , MicroARNs/biosíntesis , ARN Largo no Codificante/efectos de los fármacos , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Regulación hacia Abajo , Masculino , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
10.
Xenobiotica ; 50(10): 1202-1207, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32338127

RESUMEN

Peimine is a major component of Fritillaria ussuriensis, which is a widely used herb in pediatric. It is very common in Chinese traditional medicine to combine with two or more herbs in the clinic. To investigate the effect of peimine on the activity of cytochrome P450 enzymes (CYP450) is necessary for the clinical application of peimine.The effects of peimine on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro in human liver microsomes (HLMs) with the specific inhibitors as positive control and without peimine or inhibitors as negative control. The enzyme kinetic parameters were calculated.It was found that peimine inhibited the activity of CYP3A4, 2E1, and 2D6 in a concentration-dependent manner with the IC50 values of 13.43, 21.93, and 22.46 µM, respectively. The inhibition of CYP3A4 was performed in a non-competitive manner with the Ki value of 6.49 µM, and the inhibition of CYP2E1 and 2D6 was performed in a competitive manner with Ki values of 10.76 and 11.95 µM. Additionally, peimine inhibited the activity of CYP3A4 in a time-dependent manner with the KI/Kinact value of 6.17/0.049 min-1 µM-1.Peimine inhibited the activity of CYP3A4, 2E1, and 2D6, which indicated the potential interaction between peimine and drugs metabolized by CYP3A4, 2E1, and 2D6. Further studies are needed to verify the drug-drug interaction and the in vivo effects.


Asunto(s)
Cevanas/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Hígado/metabolismo , Microsomas Hepáticos/metabolismo
11.
Inflammation ; 43(3): 1110-1119, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32152924

RESUMEN

Acute lung injury (ALI) is a kind of lung serious disease which leads to the damage of alveolar epithelial cells and capillary endothelial. Lipopolysaccharide (LPS) is one of the common factors inducing ALI. The previous study has reported that the anti-inflammatory effect of peiminine, but little is known about its effect on the ALI induced by LPS. The aim of this study is to investigate the therapeutic effect of peiminine on LPS-induced acute lung injury and potential mechanisms. Mice were given LPS through nasal cavity to establish ALI model, and then the peiminine (1, 3, or 5 mg/kg) was injected into the mice as the experimental group. In the present study, we would measure the W/D ratio, activity of MPO, the histopathological changes, and the levels of cytokines. The results showed that peiminine could reduce the W/D ratio and the MPO activity significantly. Furthermore, the histopathological changes and the expression of TNF-α, IL-1ß, and IL-6 were inhibited after the peiminine treatment. In vitro, peiminine significantly inhibited LPS-induced IL-8 production in A549 lung epithelial cells. Meanwhile, the activity of NF-κB signaling pathway was suppressed obviously by peiminine with the western blot analysis. Also, peiminine significantly attenuated LPS-induced AKT and PI3K phosphorylation. In addition, peiminine was found to disrupt lipid rafts formation by attenuating the cholesterol content. In conclusion, peiminine could attenuate LPS-induced ALI in mice and it may become a new approach to treat ALI.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Cevanas/uso terapéutico , Lipopolisacáridos/toxicidad , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Células A549 , Lesión Pulmonar Aguda/inducido químicamente , Alcaloides/farmacología , Alcaloides/uso terapéutico , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cevanas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
12.
J Cell Biochem ; 121(1): 81-92, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31081133

RESUMEN

Prostate cancer (PC) is one of the most common malignant tumors in man. Peimine (PM) is a bioactive substance isolated from Fritillaria. Previous studies have shown that PM could inhibit the occurrence of a variety of cancers. However, the roles of PM in PC and its related mechanism have not been elucidated. Calcium (Ca2+ ) is an important intracellular messenger involved in a variety of cell processes. In this study, we found that the appropriate doses of PM (2.5, 5, and 10 µM) significantly inhibited the growth of PC cells (DU-145, LNCap, and PC-3), but has no significant effect on normal prostate cells (RWPE-1). In addition, PM treatment inhibited the invasion and migration of PC-3 cells and blocked the epithelial-mesenchymal transition process. These effects were exhibited a dose-dependent manner. Furthermore, the current results also showed that PM treatment significantly increased the Ca2+ concentration, the increased Ca2+ promoted the phosphorylation of Ca2+ /calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK), further inhibited the growth and invasion of PC-3 cells, and induced its apoptosis. Ca2+ chelator BAPTA-AM (1 µM) could counteract the increase of intracellular Ca2+ concentration. Similarly, JNK pathway inhibitor SP600125 (10 µM) also inhibited cell growth and invasion and induced apoptosis. In addition, experiments in nude mice showed that PM inhibited tumor formation through Ca2+ /CaMKII/JNK signaling pathway. In conclusion, our results show that PM inhibits the growth and motility of prostate cancer cells and induces apoptosis by disruption of intracellular calcium homeostasis through Ca2+ /CaMKII/JNK pathway.


Asunto(s)
Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Cevanas/farmacología , MAP Quinasa Quinasa 4/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Antracenos/farmacología , Señalización del Calcio , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Fritillaria/química , Homeostasis/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Fosforilación , Cicatrización de Heridas
13.
Int J Mol Med ; 43(5): 2241-2251, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30896805

RESUMEN

Osteoarthritis (OA) is the most common type of degenerative joint disease and secreted inflammatory molecules serve a pivotal role in it. Peimine has been reported to have anti­inflammatory activity. In order to investigate the potential therapeutic role of Peimine in OA, mouse articular chondrocytes were treated with IL­1ß and different doses of Peimine in vitro. The data revealed that Peimine not only suppressed IL­1ß­induced production of nitric oxide (NO) and prostaglandin E2, but also reduced the protein levels of inducible NO synthase (iNOS) and cyclooxygenase­2 (COX­2). In addition, Peimine inhibited the IL­1ß­induced mRNA expression of matrix metalloproteinase (MMP)­1, MMP­3, MMP­9, MMP­13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)­4 and ADAMTS­5. Furthermore, Peimine inhibited IL­1ß­induced activation of the mitogen­activated protein kinase (MAPK) pathway. The protective effect of Peimine on IL­1ß­treated chondrocytes was attenuated following activation of the MAPK pathway, as demonstrated by the increased expression levels of MMP­3, MMP­13, ADAMTS­5, iNOS and COX­2 compared with the Peimine group. The in vivo data suggested that Peimine limited the development of OA in the mouse model. In general, the data indicate that Peimine suppresses IL­1ß­induced inflammation in mouse chondrocytes by inhibiting the MAPK pathway, suggesting a promising therapeutic role for Peimine in the treatment of OA.


Asunto(s)
Cevanas/uso terapéutico , Condrocitos/enzimología , Condrocitos/patología , Regulación hacia Abajo , Inflamación/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas ADAMTS/metabolismo , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Supervivencia Celular/efectos de los fármacos , Cevanas/farmacología , Condrocitos/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Dinoprostona/biosíntesis , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Inflamación/patología , Interleucina-1beta , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoartritis/patología
14.
PLoS One ; 14(1): e0201864, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30615617

RESUMEN

Peiminine is a compound isolated from Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae family), which has demonstrated antitumor activities. But its precise molecular mechanism underlying antitumor activity remain elusive. In this study, peiminine-induced apoptosis towards human hepatocellular carcinoma and its molecular mechanism were investigated. MTT assay was employed to assess anticancer effects of peiminine upon Hela, HepG2, SW480 and MCF-7 cell lines. Nuclear staining and flow cytometry were carried out to detect apoptosis induced by peiminine. Mitochondrial membrane potential evaluation and Western blot analysis were performed to investigate the mechanism of peiminine-induced apoptosis. The results showed peiminine reduced the viability of HepG2 cells in a time- and dose-dependent manner and had an IC50 of 4.58 µg/mL at 24h. Peiminine significantly increased the percentage of apoptotic cells and the mitochondrial membrane potential dose-dependently in HepG2 cells. The results of Western blotting indicated the expressions of Bcl-2, procaspase-3, procaspase-8, procaspase-9, and PARP decreased in HepG2 cells treated with peiminine, while the expressions of Bax, caspase-3, caspase-8, caspase-9, and cleaved PARP1 increased. The result suggests that peiminine can induce apoptosis in human hepatocellular carcinoma HepG2 cells through both extrinsic and intrinsic apoptotic pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Cevanas/farmacología , Neoplasias Hepáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Neoplasias/metabolismo
15.
Cell Physiol Biochem ; 51(4): 1566-1583, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30497066

RESUMEN

BACKGROUND/AIMS: Glioblastoma multiforme (GBM) is the most devastating and widespread primary central nervous system tumour in adults, with poor survival rate and high mortality rates. Existing treatments do not provide substantial benefits to patients; therefore, novel treatment strategies are required. Peiminine, a natural bioactive compound extracted from the traditional Chinese medicine Fritillaria thunbergii, has many pharmacological effects, especially anticancer activities. However, its anticancer effects on GBM and the underlying mechanism have not been demonstrated. This study was conducted to investigate the potential antitumour effects of peiminine in human GBM cells and to explore the related molecular signalling mechanisms in vitro and in vivo Methods: Cell viability and proliferation were detected with MTT and colony formation assays. Morphological changes associated with autophagy were assessed by transmission electron microscopy (TEM). The cell cycle rate was measured by flow cytometry. To detect changes in related genes and signalling pathways in vitro and in vivo, RNA-seq, Western blotting and immunohistochemical analyses were employed. RESULTS: Peiminine significantly inhibited the proliferation and colony formation of GBM cells and resulted in changes in many tumour-related genes and transcriptional products. The potential anti-GBM role of peiminine might involve cell cycle arrest and autophagic flux blocking via changes in expression of the cyclin D1/CDK network, p62 and LC3. Changes in Changes in flow cytometry results and TEM findings were also observed. Molecular alterations included downregulation of the expression of not only phospho-Akt and phospho-GSK3ß but also phospho-AMPK and phospho-ULK1. Furthermore, overexpression of AKT and inhibition of AKT reversed and augmented peiminine-induced cell cycle arrest in GBM cells, respectively. The cellular activation of AMPK reversed the changes in the levels of protein markers of autophagic flux. These results demonstrated that peiminine mediates cell cycle arrest by suppressing AktGSk3ß signalling and blocks autophagic flux by depressing AMPK-ULK1 signalling in GBM cells. Finally, peiminine inhibited the growth of U251 gliomas in vivo. CONCLUSION: Peiminine inhibits glioblastoma in vitro and in vivo via arresting the cell cycle and blocking autophagic flux, suggesting new avenues for GBM therapy.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cevanas/uso terapéutico , Glioblastoma/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Cevanas/farmacología , Femenino , Fritillaria/química , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/efectos de los fármacos
16.
Int J Mol Sci ; 19(9)2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30200569

RESUMEN

Peiminine, an alkaloid extracted from Fritillaria plants, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effect of peiminine on a mouse lipopolysaccharide (LPS)-induced mastitis model remains to be elucidated. The purpose of this experiment was to investigate the effect of peiminine on LPS-induced mastitis in mice. LPS was injected through the canals of the mammary gland to generate the mouse LPS-induced mastitis model. Peiminine was administered intraperitoneally 1 h before and 12 h after the LPS injection. In vitro, mouse mammary epithelial cells (mMECs) were pretreated with different concentrations of peiminine for 1 h and were then stimulated with LPS. The mechanism of peiminine on mastitis was studied by hematoxylin-eosin staining (H&E) staining, western blotting, and enzyme-linked immunosorbent assay (ELISA). The results showed that peiminine significantly decreased the histopathological impairment of the mammary gland in vivo and reduced the production of pro-inflammatory mediators in vivo and in vitro. Furthermore, peiminine inhibited the phosphorylation of the protein kinase B (AKT)/ nuclear factor-κB (NF-κB), extracellular regulated protein kinase (ERK1/2), and p38 signaling pathways both in vivo and in vitro. All the results suggested that peiminine exerted potent anti-inflammatory effects on LPS-induced mastitis in mice. Therefore, peiminine might be a potential therapeutic agent for mastitis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Cevanas/administración & dosificación , Lipopolisacáridos/efectos adversos , Mastitis/tratamiento farmacológico , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antiinflamatorios/farmacología , Células Cultivadas , Cevanas/farmacología , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Infusiones Parenterales , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Mastitis/inducido químicamente , Mastitis/metabolismo , Ratones , Fosforilación/efectos de los fármacos
17.
Int J Mol Sci ; 19(3)2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29534526

RESUMEN

Neuroinflammation, characterized marked by microglial activation, plays a very important role in the pathogenesis of Parkinson's disease (PD). Upon activation, pro-inflammatory mediators are produced by microglia, triggering excessive inflammatory responses and ultimately damaging dopaminergic neurons. Therefore, the identification of agents that inhibit neuroinflammation may be an effective approach for developing novel treatments for PD. In this study, we sought to investigate whether peiminine protects dopaminergic neurons by inhibiting neuroinflammation. We evaluated the effects of peiminine on behavioural dysfunction, microglial activation and the loss of dopaminergic neurons in a rat model of lipopolysaccharide (LPS)-induced PD. BV-2 cells were pretreated with peiminine for 1 h and then stimulated with LPS for different times. Then, inflammatory responses and the related signalling pathways were analysed. Peiminine markedly attenuated behavioural dysfunction and inhibited the loss of dopaminergic neurons and microglial activation in the LPS-induced PD rat model. In BV-2 cells, peiminine significantly decreased LPS-induced expression of the pro-inflammatory mediators TNF-α, IL-6 and IL-1ß, COX-2 and iNOS by inhibiting the phosphorylation of ERK1/2, AKT and NF-κB p65. Based on these results demonstrated that peiminine has a role in protecting dopaminergic neurons in the LPS-induced PD rat model by inhibiting neuroinflammation.


Asunto(s)
Antiinflamatorios/farmacología , Cevanas/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Transducción de Señal , Animales , Muerte Celular , Línea Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Interleucinas/genética , Interleucinas/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Oncol Rep ; 39(3): 1299-1305, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29328433

RESUMEN

Gastric cancer (GC) is one of the most common malignancies of the digestive tract. Adriamycin (ADR) has been widely utilized in various chemotherapy regimens for treating GC, yet its long-term application may increase drug resistance resulting in treatment failure. Increasing evidence shows that bioactive natural products can be used as chemotherapeutic sensitizers that can significantly improve chemotherapy sensitivity. Peiminine (PMI) is a biologically active component extracted from Fritillaria walujewii Regel. Thus, in the present study, we aimed to investigate whether peiminine (PMI) alters the chemosensitivity of GC to adriamycin (ADR). GC cells were treated with ADR with or without PMI. MTT assay, flow cytometry and a nude mouse tumor xenograft model of SGC7901 cells were used to evaluate the chemosensitization activity of PMI combined with ADR. Western blotting was used to examine the expression of cyclin D1 and cleaved PARP. The RayBio® Human RTK phosphorylation antibody array kit was used to test the differential protein expression. Compared with the ADR group, PMI combined with ADR significantly suppressed cell proliferation and induced cell apoptosis in vitro. The growth curve and tumor weight of the tumor xenografts were significantly decreased in mice treated with the combination of PMI and ADR. However, the organs showed no obvious abnormality after treatment with PMI plus ADR. The expression of cyclin D1 was decreased and the level of cleaved PARP was increased after treatment with PMI and ADR. The expression of p-EGFR and p-FAK was downregulated in cells treated with PMI and ADR, and the validation of p-EGFR and p-FAK was in accordance with the result of the phosphorylation antibody array kit. PMI may serve as a new chemosensitizer by inhibiting the proliferation and inducing the apoptosis to enhance the chemotherapeutic drug sensitivity of ADR in GC.


Asunto(s)
Cevanas/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Análisis por Matrices de Proteínas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncotarget ; 8(29): 47619-47631, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28496003

RESUMEN

Peiminine, a compound extracted from the bulbs of Fritillaria thunbergii and traditionally used as a medication in China and other Asian countries, was reported to inhibit colorectal cancer cell proliferation and tumor growth by inducing autophagic cell death. However, its mechanism of anticancer action is not well understood, especially at the metabolic level, which was thought to primarily account for peiminine's efficacy against cancer. Using an established metabolomic profiling platform combining ultra-performance liquid chromatography/tandem mass spectrometry with gas chromatography/mass spectrometry, we identified metabolic alterations in colorectal cancer cell line HCT-116 after peiminine treatment. Among the identified 236 metabolites, the levels of 57 of them were significantly (p < 0.05) different between peiminine-treated and -untreated cells in which 45 metabolites were increased and the other 12 metabolites were decreased. Several of the affected metabolites, including glucose, glutamine, oleate (18:1n9), and lignocerate (24:0), may be involved in regulation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway and in the oxidative stress response upon peiminine exposure. Peiminine predominantly modulated the pathways responsible for metabolism of amino acids, carbohydrates, and lipids. Collectively, these results provide new insights into the mechanisms by which peiminine modulates metabolic pathways to inhibit colorectal cancer cell growth, supporting further exploration of peiminine as a potential new strategy for treating colorectal cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cevanas/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Cevanas/química , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metabolismo Energético/efectos de los fármacos , Células HCT116 , Humanos , Metaboloma , Metabolómica/métodos , Ratones
20.
Biomed Pharmacother ; 89: 838-844, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28282785

RESUMEN

BACKGROUND AND OBJECTIVE: Fritillaria is a Chinese traditional herb. It has a long history and many medicinal usages including antitussive, anti-inflammatory and pain relieving actions. It is also used as food. However, its cardiac safety has not been tested. Peimine is one of the main active compounds of Fritillaria. To be listed as an herb in the Chinese Pharmacopoeia, a special minimal percentage of Peimine in the dry sample of Fritillaria is required. The main concern for cardiac safety determination is the possible inhibition of hERG ion channels. Thus, Peimine was chosen to investigate its inhibitory effects on hERG channels. METHODS: Whole cell patch clamp technique was used. RESULTS AND CONCLUSION: We found that Peimine inhibited the hERG peak tail currents in a concentration dependent manner with an IC50 value of 43.7µM (n=4) by whole cell patch clamp techniques. Multiple results suggest that the inhibition was related to the channel inactivation. First, Peimine inhibition was significantly increased when the prepulse voltage was increased from -30mV to +10mV. Second, increasing prepulse length also significantly increased blockade by Peimine. Third, our finding that the inhibition by Peimine was use-dependent is related to changes in the inactivated state of the channel. Finally, the result that Peimine significantly decreased inactivation constant also suggested that Peimine affect the channel inactivation state. Mutation of Y652 to Alanine reduced sensitivity to Peimine, suggesting that Y652 is an important hERG binding sites for Peimine.


Asunto(s)
Cevanas/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Técnicas de Placa-Clamp , Canales de Potasio Éter-A-Go-Go/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA