RESUMEN
Malassezia pachydermatis is often reported as the causative agent of dermatitis in dogs. This study aims to evaluate the in vitro and in vivo antifungal activity of azoles and terbinafine (TRB), alone and in combination with the 8-hydroxyquinoline derivatives (8-HQs) clioquinol (CQL), 8-hydroxyquinoline-5-(n-4-chlorophenyl)sulfonamide (PH151), and 8-hydroxyquinoline-5-(n-4-methoxyphenyl)sulfonamide (PH153), against 16 M. pachydermatis isolates. Susceptibility to the drugs was evaluated by in vitro broth microdilution and time-kill assays. The Toll-deficient Drosophila melanogaster fly model was used to assess the efficacy of drugs in vivo. In vitro tests showed that ketoconazole (KTZ) was the most active drug, followed by TRB and CQL. The combinations itraconazole (ITZ)+CQL and ITZ+PH151 resulted in the highest percentages of synergism and none of the combinations resulted in antagonism. TRB showed the highest survival rates after seven days of treatment of the flies, followed by CQL and ITZ, whereas the evaluation of fungal burden of dead flies showed a greater fungicidal effect of azoles when compared to the other drugs. Here we showed for the first time that CQL is effective against M. pachydermatis and potentially interesting for the treatment of malasseziosis.
Asunto(s)
Antifúngicos , Azoles , Dermatomicosis , Drosophila melanogaster , Malassezia , Pruebas de Sensibilidad Microbiana , Animales , Antifúngicos/farmacología , Malassezia/efectos de los fármacos , Malassezia/crecimiento & desarrollo , Azoles/farmacología , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , Drosophila melanogaster/microbiología , Drosophila melanogaster/efectos de los fármacos , Perros , Terbinafina/farmacología , Sinergismo Farmacológico , Quimioterapia Combinada , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/tratamiento farmacológico , Cetoconazol/farmacología , Oxiquinolina/farmacología , Sulfonamidas/farmacología , Itraconazol/farmacología , Clioquinol/farmacología , Modelos Animales de EnfermedadRESUMEN
Modified release systems depend on the selection of an appropriate agent capable of controlling the release of the drug, sustaining the therapeutic action over time, and/or releasing the drug at the level of a particular tissue or target organ. Polyethylene glycol 4000 (PEG 4000) is commonly employed in drug release formulations while polymethyl methacrylate (PMMA) is non-toxic and has a good solubility in organic solvents. This study aimed at the incorporation of ketoconazole in PMMA-g-PEG 4000 and its derivatives, thus evaluating its release profile and anti-Candida albicans and cytotoxic activities. Ketoconazole was characterized and incorporated into the copolymers. The ketoconazole incorporated in the copolymer and its derivatives showed an immediate release profile. All copolymers with ketoconazole showed activity against Candida albicans and were non-toxic to human cells in the entire concentration tested.
Asunto(s)
Candida albicans , Cetoconazol , Antifúngicos/farmacología , Humanos , Cetoconazol/farmacología , Polietilenglicoles , Polimetil Metacrilato , SolventesRESUMEN
Chronic myeloid leukemia (CML) is a hematologic disorder characterized by the oncogene BCR-ABL1, which encodes an oncoprotein with tyrosine kinase activity. Imatinib, a BCR-ABL1 tyrosine kinase inhibitor, performs exceptionally well with minimal toxicity in CML chemotherapy. According to clinical trials, however, 20-30% of CML patients develop resistance to imatinib. Although the best studied resistance mechanisms are BCR-ABL1-dependent, P-glycoprotein (P-gp, a drug efflux transporter) may also contribute significantly. This study aimed to establish an imatinib-resistant human CML cell line, evaluate the role of P-gp in drug resistance, and assess the capacity of ketoconazole to reverse resistance by inhibiting P-gp. The following parameters were determined in both cell lines: cell viability (as the IC50) after exposure to imatinib and imatinib + ketoconazole, P-gp expression (by Western blot and immunofluorescence), the intracellular accumulation of a P-gp substrate (doxorubicin) by flow cytometry, and the percentage of apoptosis (by the Annexin method). In the highly resistant CML cell line obtained, P-gp was overexpressed, and the level of intracellular doxorubicin was low, representing high P-gp activity. Imatinib plus a non-toxic concentration of ketoconazole (10 µM) overcame drug resistance, inhibited P-gp overexpression and its efflux function, increased the intracellular accumulation of doxorubicin, and favored greater apoptosis of CML cells. P-gp contributes substantially to imatinib resistance in CML cells. Ketoconazole reversed CML cell resistance to imatinib by targeting P-gp-related pathways. The repurposing of ketoconazole for CML treatment will likely help patients resistant to imatinib.
Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Mesilato de Imatinib , Cetoconazol , Leucemia Mielógena Crónica BCR-ABL Positiva , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/genética , Humanos , Mesilato de Imatinib/efectos adversos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Células K562 , Cetoconazol/farmacología , Cetoconazol/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
Malassezia are common yeasts in human skin microbiome. Under certain conditions these yeasts may cause disease from skin disorders to systemic infections. In the absence of clinical breakpoints, epidemiological cutoff values (ECVs) are useful to differentiate isolates with acquired or mutational resistance. The aim of this work was to propose tentative ECVs of Malassezia furfur, M. sympodialis, M. globosa for fluconazole (FCZ), itraconazole (ITZ), voriconazole (VCZ), ketoconazole (KTZ) and amphotericin B (AMB). A total of 160 isolates (80 M. furfur, 50 M. sympodialis, and 30 M. globosa) were tested. Minimal inhibitory concentrations (MICs) were determined by modified broth microdilution method (CLSI). ECVs were estimated by ECOFFinder software and twofold dilutions beyond the mode. ITZ, KTZ, and VCZ showed the lowest MICs. The highest MIC and widest ranges were for FCZ and AMB. For ITZ, KTZ, and VCZ both ECVs were similar. For FCZ, AMB especially M. furfur, modal ECVs were lower than values obtained by statistical method. When MIC distribution is the only data available, ECV could provide information to help guide therapy decisions. In that drug/species combination in which different peaks in the MIC distribution were observed, difference between both ECV was greater. This is the first study that provides ECV data of 160 Malassezia yeasts. Although ECVs cannot be used as predictors of clinical response, identification of non wild-type isolates suggests that it may be less likely to respond to a given antifungal agent. LAY SUMMARY: Malassezia species causes skin disorders to systemic infections. Epidemiological cutoff value (ECV) allows for differentiation of wild-type and non wild-type isolates. Based on MIC data of 160 isolates we propose tentative ECVs for three Malassezia species. ECVs are useful in surveillance and guide therapy decisions.
Asunto(s)
Malassezia , Anfotericina B/farmacología , Animales , Antifúngicos/farmacología , Fluconazol/farmacología , Humanos , Itraconazol/farmacología , Cetoconazol/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria , Voriconazol/farmacologíaRESUMEN
BACKGROUND: Leishmania parasites cause leishmaniasis that range from self-limiting cutaneous lesions to more serious forms of the disease. The search for potential drug targets focusing on biochemical and metabolic pathways revealed the sterol biosynthesis inhibitors (SBIs) as a promising approach. In this class of inhibitors is found ketoconazole, a classical inhibitor of 14α-methysterol 14-demethylase. OBJECTIVE: The present study aimed to better understand the biological response of Leishmania (Leishmania) amazonensis promastigotes at the cellular level after ketoconazole treatment. METHODS: Herein, techniques, such as fluorimetry, flow cytometry, fluorescence microscopy, electron and scanning microscopy were used to investigate the cellular structures and to identify organelles affected by ketoconazole treatment. FINDINGS: The study demonstrated, for the first time, the effect of ketoconazole on mitochondrion functioning and its probable relationship to cell cycle and death on L. (L.) amazonensis promastigotes (IFLA/BR/67/PH8 strain). MAIN CONCLUSIONS: Ketoconazole-induced mitochondrial damages led to hyperpolarisation of this single organelle and autophagic vacuoles formation, as a parasite survival strategy. These damages did not reflect directly on the parasite cell cycle, but drove the parasites to death, making them susceptible to ketoconazole treatment in in vitro models.
Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Citometría de Flujo , Humanos , Cetoconazol/farmacología , Ratones , Ratones Endogámicos BALB C , MitocondriasRESUMEN
Ketoconazole (KTZ) is an antifungal agent; however, its bioavailability and therapeutic efficacy are reduced by the low aqueous solubility of the drug. Aiming at providing to improve the biopharmaceutical properties of KTZ, we studied the water-soluble different calix[n]arenes as carrier systems for KTZ. All calix[n]arene-KTZ tested showed in vitro antifungal activity superior or similar to free KTZ against Candida spp. The CX6Na/KTZ obtained by physical mixture and freeze-drying methods were the most active, decreasing KTZ concentrations required for growth inhibition against azole-resistant isolates (e.g., C. auris). Moreover, CX6Na/KTZ showed no toxic effect on Galleria mellonella larvae and the treatment of infected larvae with C. albicans and C. auris was effective at a lower dose compared with free KTZ. Thus, CX6Na/KTZ may have a potential approach to treat mycosis, especially by improvement of KTZ inhibitory activity against azole-resistant Candida.
Asunto(s)
Antifúngicos , Cetoconazol , Antifúngicos/farmacología , Azoles/farmacología , Candida , Candida albicans , Cetoconazol/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
The use of ketoconazole (KTZ) plus pentamidine (PMD) could be an interesting treatment option for New World cutaneous leishmaniasis. The aim of this work was to generate KTZ- and PMD-resistant strains and to determine some characteristics of the selection process and the resulting parasites. Resistance to one or two drugs was selected on promastigotes by progressively increasing drug concentrations for eleven months. The resistance levels (IC50) to one or two drugs (synergism assay) were determined using a colorimetric resazurin methodology. The stability of the resistance phenotype (without drug pressure or after mouse passage), cross resistance with paromomycin and miltefosine, and resistance transference to intracellular amastigotes were determined. In addition, some parasite attributes compared with WT, such as growth kinetics, amastigogenesis, THP-1 cells, and mouse infection, were determined. Promastigotes resistant to KTZ or PMD were obtained three times earlier than the combined KTZ + PMD-resistant strains. Resistant parasites (promastigotes and intracellular amastigotes) were three to twelve times less susceptible to KTZ and PMD than WT parasites. The resistance phenotype on parasites was unstable, and no cross resistance was observed. Similar parasite fitness related to our evaluated characteristics was observed except for in vivo infection, where a delay of the onset of cutaneous lesions was observed after KTZ + PMD-resistant parasite infection. CONCLUSION: Combined treatment with KTZ and PMD delayed the onset of parasite resistance and was more effective in vitro than each drug separately for WT and all resistant strains. Parasites resistant to KTZ and PMD acquired similar in vitro behaviour to WT parasites, were less virulent to mice and maintained their resistance phenotype on intracellular amastigotes but not without drug pressure or after mouse infection.
Asunto(s)
Antiprotozoarios/farmacología , Cetoconazol/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmaniasis Cutánea/parasitología , Pentamidina/farmacología , Análisis de Varianza , Animales , Resistencia a Medicamentos , Quimioterapia Combinada , Femenino , Humanos , Concentración 50 Inhibidora , Leishmaniasis Cutánea/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Células THP-1RESUMEN
The role of Malassezia yeasts in dandruff and seborrheic dermatitis is unclear; however, antifungal therapy with ketoconazole is commonly used. We propose that ketoconazole shifts skin lipid profile, affects Malassezia lipid metabolism and favours biotin-producing bacteria. Biotin regulates inflammatory response and cell proliferation, contributing to symptom improvement.
Asunto(s)
Caspa , Dermatitis Seborreica , Malassezia , Antifúngicos/farmacología , Biotina , Biología Computacional , Caspa/tratamiento farmacológico , Caspa/microbiología , Dermatitis Seborreica/tratamiento farmacológico , Dermatitis Seborreica/microbiología , Humanos , Cetoconazol/farmacología , Metabolismo de los LípidosRESUMEN
BACKGROUND: Oral candidiasis is an opportunistic disease caused by fungi of the Candida genus. The occurrence of Candida spp. resistance to the commercial antifungal drugs points to the search for alternative treatments. Propolis has been successfully used in the treatment of infectious diseases for centuries. It has been proposed that an ultrasound pretreatment in the propolis extraction protocol can enhance the concentrations of molecules with antimicrobial activities in the final extract. Thus, this study aimed to compare the antifungal activity against oral Candida spp. isolates of green and red propolis extracts submitted or not to an ultrasound pretreatment before the extraction procedure. METHODS: Candida spp. were isolated from denture stomatitis lesions and identified by sequencing. Oral Candida spp. isolates and reference strains were submitted to broth microdilution assays using commercial antifungals and Brazilian green and red propolis extracts submitted or not to an ultrasound pretreatment. Minimal Inhibitory Concentrations (MIC) and Minimal Fungicide Concentrations (MFC) were determined and biofilm formation interference was evaluated for resistant isolates. RESULTS: C. albicans, Candida tropicalis and Candida dubliniensis were isolated from denture stomatitis lesions. Growth inhibition was observed in all Candida isolates incubated with all green and red propolis extracts. At lower doses, red propolis extracts presented significant antifungal activity. The ultrasound pretreatment did not promote an increase in the antifungal activity of green or red propolis. Three isolates, which were highly resistant to fluconazole and itraconazole, were susceptible to low doses of red propolis extracts. These same three specimens had their biofilm formation inhibted by red propolis ethanolic extract. CONCLUSIONS: Thus, red propolis can be faced as a promising natural product to be used in the auxiliary antifungal therapy of denture stomatitis.
Asunto(s)
Antifúngicos/farmacología , Candidiasis Bucal/tratamiento farmacológico , Extractos Vegetales/farmacología , Própolis/farmacología , Estomatitis Subprotética/tratamiento farmacológico , Fluconazol/farmacología , Humanos , Itraconazol/farmacología , Cetoconazol/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
A series of new metal complexes, [Zn(KTZ)2(Ac)2]·H2O (1), [Zn(KTZ)2Cl2]·0.4CH3OH (2), [Zn(KTZ)2(H2O)(NO3)](NO3) (3), [Cu(KTZ)2(Ac)2]·H2O (4), [Cu(KTZ)2Cl2]·3.2H2O (5), [Cu(KTZ)2(H2O)(NO3)](NO3)·H2O (6), were synthesized by a reaction of ketoconazole (KTZ) with their respective zinc or copper salts under mild conditions. Similarly, six corresponding metal-CTZ (clotrimazole) complexes [Zn(CTZ)2(Ac)2]·4H2O (7), [Zn(CTZ)2Cl2] (8), [Zn(CTZ)2(H2O)(NO3)](NO3)·4H2O (9), [Cu(CTZ)2(Ac)2]·H2O (10), [Cu(CTZ)2Cl2]·2H2O (11), [Cu(CTZ)2(H2O)(NO3)](NO3)·2H2O (12), were obtained. These metal complexes were characterized by elemental analyses, molar conductivity, 1H and 13C{1H} nuclear magnetic resonance, UV/Vis, and infrared spectroscopies. Further, the crystal structure for complexes 7 and 10 was determined by single-crystal X-ray diffraction. The antifungal activity of these metal complexes was evaluated against three fungal species of medical relevance: Candida albicans, Cryptococcus neoformans, and Sporothrix brasiliensis. Complexes 1 and 3 exhibited the greatest antifungal activity with a broad spectrum of action at low concentrations and high selectivity. Some morphological changes induced by these metal complexes in S. brasiliensis cells included yeast-hyphae conversion, an increase in cell size and cell wall damage. The strategy of coordination of clinic drugs (KTZ and CTZ) to zinc and copper was successful, since the corresponding metal complexes were more effective than the parent drug. Particularly, the promising antifungal activities displayed by Zn-KTZ complexes make them potential candidates for the development of an alternative drug to treat mycoses.
Asunto(s)
Antifúngicos/química , Clotrimazol/química , Complejos de Coordinación/química , Cobre/química , Cetoconazol/química , Zinc/química , Antifúngicos/farmacología , Azoles/química , Candida albicans/efectos de los fármacos , Clotrimazol/farmacología , Complejos de Coordinación/farmacología , Cryptococcus neoformans/efectos de los fármacos , Cetoconazol/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Sporothrix/efectos de los fármacos , Difracción de Rayos X/métodosRESUMEN
INTRODUCTION: The resistance of fungal species to drugs usually used in clinics is of great interest in the medical field. OBJECTIVE: To evaluate susceptibility and in vitro response of species of Trichophyton spp. to antifungal drugs of interest in clinical medicine. METHODS: 12 samples of clinical isolates from humans were used, nine of T. mentagrophytes and three of T. tonsurans. Susceptibility tests were performed according to the agar diffusion (AD) and broth microdilution (BM) methods. RESULTS: In the AD method, the species T. tonsurans presented a percentage of sensitivity of 33% in relation to amphotericin B and 66% to itraconazole, with 100% resistance to ketoconazole and fluconazole. T. mentagrophytes also showed 100% resistance to ketoconazole in this technique, with 11% sensitivity to ketoconazole, 22% to itraconazole and 22% of samples classified as sensitive dose dependent. In the MC method, the species T. tonsurans presented a sensitivity percentage of 66%, 55% and 33% in relation to ketoconazole, fluconazole and itraconazole, respectively. The T. mentagrophytes species presented sensitivity percentages of 11%, 11%, 33% and 55% for amphotericin B, itraconazole, ketoconazole and fluconazole, respectively. CONCLUSION: There was resistance in vitro of the species of T. mentagrophytes and T. tonsurans against the antifungal fluconazole and relative resistance against ketoconazole in the AD method. In BM, however, important percentages of sensitivity were observed for the two species analyzed in relation to the antifungals fluconazole and ketoconazole when compared to itraconazole and amphotericin B.
INTRODUÇÃO: A resistência de espécies fúngicas às drogas usualmente empregadas no meio clínico é motivo de grande interesse na área médica. OBJETIVO: Avaliar susceptibilidade e resposta in vitro de espécies de Trichophyton spp. a drogas antifúngicas de interesse em clínica médica. MÉTODOS: Foram utilizadas 12 amostras de isolados clínicos de humanos, sendo nove de T. mentagrophytes e três de T. tonsurans. Foram realizados testes de susceptibilidade segundo os métodos de difusão em ágar (DA) e microdiluição em caldo (MC). RESULTADOS: No método de DA, a espécie T. tonsurans apresentou percentual de sensibilidade de 33% em relação à anfotericina B e de 66% ao itraconazol, com 100% de resistência frente ao cetoconazol e ao fluconazol. A espécie T. mentagrophytes também apresentou 100% de resistência frente ao cetoconazol nesta técnica, com 11% de sensibilidade ao cetoconazol, 22% ao itraconazol e 22% das amostras classificadas como sensível dose dependente. No método de MC, a espécie T. tonsurans apresentou percentual de sensibilidade de 66%, 55% e 33% em relação ao cetoconazol, fluconazol e itraconazol, respectivamente. A espécie T. mentagrophytes apresentou percentuais de sensibilidade de 11%, 11%, 33% e 55% para anfotericina B, itraconazol, cetoconazol e fluconazol, respectivamente. CONCLUSÃO: Houve resistência in vitro das espécies do T. mentagrophytes e T. tonsurans frente ao antifúngico fluconazol e resistência relativa frente ao cetoconazol no método de DA. Na MC, no entanto, foram observados importantes percentuais de sensibilidade das duas espécies analisadas frente aos antifúngicos fluconazol e cetoconazol quando comparadas ao itraconazol e à anfotericina B.
Asunto(s)
Trichophyton/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica , Susceptibilidad a Enfermedades/microbiología , Antifúngicos/farmacología , Tiña/microbiología , Tiña/tratamiento farmacológico , Recuento de Colonia Microbiana , Fluconazol/farmacología , Anfotericina B/farmacología , Itraconazol/farmacología , Cetoconazol/farmacologíaRESUMEN
The investigation of the effects of three essential oils (EOs) from Taxandria fragrans (FRA), Melaleuca alternifolia (TTO) and Boswellia serrata (IF), alone and combined with ketoconazole (KTZ), and their functionalised gold nanoparticles (AuNP) against Trichophyton interdigitale both in vitro and in vivo indicated that EOs presented activity against T. interdigitale. The combination of EOs and KTZ was antagonistic. FRA, TTO, gold nanoparticles capped with T. fragrans (AuNPFRA) and gold nanoparticles capped with M. alternifolia (AuNPTTO) presented antidermatophytic activity in vivo, with the capacity to reduce fungal burden and to preserve tissue architecture; however, combination treatment with KTZ increased fungal burden and caused tissue damage. The combination of EO with KTZ exhibited antagonistic activity and was histologically harmful. In contrast, FRA, TTO, AuNPFRA and AuNPTTO are promising treatments for dermatophytosis.
Asunto(s)
Melaleuca , Nanopartículas del Metal , Nanosferas , Aceites Volátiles , Arthrodermataceae , Oro , Cetoconazol/farmacología , Aceites Volátiles/farmacologíaRESUMEN
Sporotrichosis, a mycosis caused by pathogenic species of the genus Sporothrix, affects diverse species of mammals. Until 2007, Sporothrix schenckii was considered the unique etiologic agent of sporotrichosis. Canine sporotrichosis is a poorly reported disease, and the majority of cases are from Rio de Janeiro, Brazil. There are scarce studies on the characterization of canine isolates of Sporothrix schenckii complex, as well as few antifungal susceptibility data available. The aim of this study was to characterize the clinical isolates of Sporothrix from dogs from Brazil at species level and evaluate their antifungal susceptibility profile. Polyphasic taxonomy was used to characterization at species level (morphological, phenotypical characteristics, and molecular identification). Antifungal susceptibility profiles (amphotericin B, itraconazole, ketoconazole, posaconazole, and terbinafine) were determined using the Clinical and Laboratory Standards Institute broth microdilution method (M38-A2). According to phenotypic identification and molecular analysis, 46 isolates included in this study were identified as S. brasiliensis and one as S. schenckii. Amphotericin B presented the highest minimum inhibitory concentration values, and the other drugs showed effective in vitro antifungal activity. This is the first report of S. schenckii in dogs from Brazil, since S. brasiliensis is the only species that has been described in canine isolates from Rio de Janeiro to date. Nevertheless, no differences were observed in the antifungal susceptibility profiles between the S. brasiliensis and S. schenckii isolates, and it is important to continuously study new canine clinical isolates from Rio de Janeiro, Brazil.
Asunto(s)
Antifúngicos/farmacología , Enfermedades de los Perros/microbiología , Sporothrix/efectos de los fármacos , Sporothrix/aislamiento & purificación , Esporotricosis/veterinaria , Anfotericina B/farmacología , Animales , Brasil/epidemiología , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/epidemiología , Perros , Itraconazol/farmacología , Cetoconazol/farmacología , Pruebas de Sensibilidad Microbiana , Filogenia , Sporothrix/clasificación , Sporothrix/genética , Esporotricosis/tratamiento farmacológico , Esporotricosis/epidemiología , Esporotricosis/microbiología , Terbinafina/farmacologíaRESUMEN
Background: A novel multicomponent complex (MC) of ketoconazole (KET) with ß-cyclodextrin (ß-CD) and N-acetylcysteine (NAC) was developed with the purpose of improving the solubility as well as the antifungal and antibiofilm activity of KET against Candida albicans. Results & methodology: The interactions among the components were studied using nuclear magnetic resonance, thermal analysis, powder x-ray diffraction, infrared spectroscopy and scanning electron microscopy. Phase-solubility studies demonstrated a considerable increase in the solubility of the MC. An enhancement in antibiofilm and antifungal activity of MC was determined against C. albicans by XTT assay and microbiological studies. Conclusion: This MC, with improvements in the drug pharmaceutical performance, might have an important potential in the development of new pharmaceutical formulations of KET.
Asunto(s)
Antifúngicos , Cetoconazol , Antifúngicos/farmacología , Biopelículas , Rastreo Diferencial de Calorimetría , Cetoconazol/farmacología , Microscopía Electrónica de Rastreo , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos XRESUMEN
BACKGROUND: Maytenus ilicifolia is a Brazilian popular medicine commonly used to treat ulcer and gastritis. Despite the absence of toxicity regarding its consumption, possible interactions when co-administrated with conventional drugs, are unknown. OBJECTIVE: This study aimed to evaluate the effects of M. ilicifolia extracts on Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp) activities. METHODS: The extracts were obtained by infusion (MI) or turbo-extraction using hydro-acetonic solvent (MT70). The content of polyphenols in each extract was determined. To assess the modulation of M. ilicifolia on P-gp activity, the uptake of fexofenadine (FEX) by Caco-2 cells was investigated in the absence or presence of MI or MT70. The effect on CYP3A activity was evaluated by the co-administration of midazolam (MDZ) with each extract in male Wistar rats. The pharmacokinetic parameters of the drug were determined and compared with those from the control group. The content of total phenolic compounds, tannins, and flavonoids on MT70 extract was about double of that found in MI. RESULTS: In the presence of the extracts, the uptake of the P-gp marker (FEX) by Caco-2 cells increased from 1.7 ± 0.4 ng.mg-1 protein (control) to 3.5 ± 0.2 ng.mg-1 protein (MI) and 4.4 ± 0.5 ng.mg-1 protein (MT70), respectively. When orally co-administrated with MDZ (substrate of CYP3A), the extracts augmented the AUC(0-∞) (Control: 911.7 ± 215.7 ng.h.mL-1; MI: 1947 ± 554.3 ng.h.mL-1; MT70: 2219.0 ± 506.3 ng.h.mL-1) and the Cmax (Control: 407.7 ± 90.4 ng.mL-1; MI: 1770.5 ± 764.5 ng.mL-1; MT70: 1987.2 ± 544.9 ng.mL-1) of the drug in rats indicating a 50% reduction of the oral Cl. No effect was observed when midazolam was given intravenously. CONCLUSION: The results suggest that M. ilicifolia can inhibit the intestinal metabolism and transport of drugs mediated by CYP3A and P-gp, respectively, however, the involvement of other transporters and the clinical relevance of such interaction still need to be clarified.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Maytenus/química , Extractos Vegetales/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/agonistas , Animales , Células CACO-2 , Línea Celular , Inhibidores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas , Humanos , Cetoconazol/farmacología , Masculino , Midazolam/farmacocinética , Quinolinas/farmacología , Ratas , Ratas Wistar , Terfenadina/análogos & derivadosRESUMEN
This study investigated the monoterpene linalool and its resistance modulating activity involving ergosterol biosynthesis inhibitors (ketoconazole, fluconazole, and itraconazole) in strains of Microsporum spp. and Trichophyton spp. The minimum inhibitory concentration (MIC) of test-drugs were determined by microdilution. The modulating effect of linalool was evaluated by determining the MIC of the antifungals in the presence of subinhibitory concentrations of linalool. We also investigated the association effect (checkerboard) of linalool together with ketoconazole and itraconazole. The fungi became more sensitive to ketoconazole and itraconazole in the presence of linalool. The linalool and azole drug associations presented synergism.
Asunto(s)
Monoterpenos Acíclicos/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Microsporum/efectos de los fármacos , Trichophyton/efectos de los fármacos , Sinergismo Farmacológico , Itraconazol/farmacología , Cetoconazol/farmacología , Pruebas de Sensibilidad Microbiana , Microsporum/crecimiento & desarrollo , Trichophyton/crecimiento & desarrolloRESUMEN
Abstract: This article describes the chemical composition of Vernonia chalybaea essential oil, and investigates its antimicrobial, antioxidant and hemolytic activities. The evaluation of the antifungal activity was performed by the broth microdilution method using strains of yeasts and dermatophytic fungi. The checkerboard technique to find antimicrobial modulatory effects was performed using ketoconazole as standard drug. The antioxidant activity was evaluated by DPPH scavenging assay and β-carotene/linoleic-acid system. The toxicity was characterized by the brine shrimp lethality test and hemolysis bioassays. The essential oil was obtained by hydrodistillation and analyzed by GC-MS method, showing to be rich in the sesquiterpenes β-caryophyllene (39.06%) and bicyclogermacrene (19.69%), and also demonstrated a relevant antifungal activity against strains of Trichophyton rubrum. In the modulatory activity assay, the essential oil of V. chalybaea and β-caryophyllene demonstrated a synergistic interaction with ketoconazole, with increasing of its antifungal action. The antioxidant activity was evidenced mainly by β-carotene/linoleic acid system, with IC50 value of 35.87 ± 0.32 µg/mL. The results suggest that V. chalybaea essential oil and β-caryophyllene are valuable natural medicinal agents with antioxidant and antimicrobial activities.
Asunto(s)
Humanos , Animales , Aceites Volátiles/farmacología , Vernonia/química , Cetoconazol/farmacología , Antifúngicos/farmacología , Artemia , Bacterias/efectos de los fármacos , Aceites Volátiles/química , Ácido Linoleico/farmacología , beta Carioferinas/farmacología , Hongos/clasificación , Hongos/efectos de los fármacos , Antibacterianos/farmacología , Antifúngicos/química , Antioxidantes/farmacologíaRESUMEN
The emergence of multiresistant bacteria directly impacts on the search for new compounds with antimicrobial activity, and it is important the improvement of new techniques are able to determine the minimum inhibitory concentration (MIC) of antimicrobial compounds. The microdilution technique is widely used for saving culture media, reagents and compounds to be tested. However, the literature does not describe a colorimetric method capable of correlating absorbance with concentration of viable microorganisms (CFUâ¯mL-1). Therefore, the novelty of this work was the standardization and validation of a colorimetric and quantitative method capable of determining the MIC of several compounds with antimicrobial activity and the conversion of absorbance values to CFUâ¯mL-1. The conditions carried out for the method were: the use of 0.125% (w/v) 2,3,5-triphenyltetrazolium chloride (TTC) solution added after 22â¯h of incubation at 35⯰C, followed by 2 more hours of incubation and subsequent reading in a spectrophotometer. The tested microorganisms were: Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027) and Candida albicans (ATCC 10231). The method was validated and showed linearity (R2â¯>â¯0.95), precision (RSD <26%), accuracy (75% to 122%) and robustness (pâ¯>â¯0.05). The validated parameters ensured the harmonization of methodology to determine not only MIC as well as inhibitory concentrations of 50% (IC50%) and 90% (IC90%) of the antimicrobial compounds.
Asunto(s)
Candida albicans/efectos de los fármacos , Cloranfenicol/farmacología , Escherichia coli/efectos de los fármacos , Cetoconazol/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Colorimetría/métodos , Pruebas de Sensibilidad MicrobianaRESUMEN
Yeasts are unicellular fungi widespread in the environment, and studies suggest that there is a positive correlation between yeast and polluted aquatic environments. The aim of this study was to analyze the diversity and resistance of yeasts isolated from water samples collected along the Arroio Dilúvio in Porto Alegre to antifungals. Yeast isolates from the Arroio Dilúvio were subjected to susceptibility assays against antifungals using the minimum inhibitory concentration (MIC) test, and amplification of the ITS1-5.8S-IT2 region; in addition, the ITS-5.8S region was sequenced for some of the isolates. The amplification product was subjected to PCR-RFLP, and the restriction profile allowed the construction of a dendrogram. Susceptibility tests showed a high prevalence of resistance to azole antifungals, where 16.8% of the isolates had a resistance profile to amphotericin B. The sequence analysis allowed the identification of Candida species, including potentially pathogenic species, and species of the Debaryomyces spp. The resistance to antifungals in yeasts isolated from Arroio Dilúvio reinforces the importance of studies of environmental microbiota, and indicates that environmental degradation influences the phenotype displayed.
Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Agua Dulce/microbiología , Levaduras/efectos de los fármacos , Anfotericina B/farmacología , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Itraconazol/farmacología , Cetoconazol/farmacología , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Valores de Referencia , Análisis de Secuencia de ADN , Voriconazol/farmacología , Levaduras/genética , Levaduras/aislamiento & purificaciónRESUMEN
PURPOSE: To investigate the ultimate tensile strength of temporary soft denture liners modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm (SC5314) determined in previous microbiological research. MATERIALS AND METHODS: Dumbbell-shaped specimens (n = 7) with a central cross-sectional area of 6 × 3 × 33 mm were produced by Softone and Trusoft, without (control) or with incorporation of drugs in powder form at MICs for C. albicans biofilm (per g of material powder): nystatin (0.032 g), chlorhexidine diacetate (0.064 g), ketoconazole (0.128 g), miconazole (0.256 g), and itraconazole (0.256 g). After plasticization, specimens were immersed in distilled water at 37°C for 24 hours, 7 or 14 days, and then tested in tension in a universal testing machine at 40 mm/min. Data of tensile strength (MPa) and elongation percentage (%) were submitted to 3-way ANOVA and Tukey's test (α = 0.05). RESULTS: At the end of 14 days, the tensile strength for both materials was significantly lower in the groups modified by miconazole and itraconazole compared to the other groups (p < 0.0001), which showed no significant difference between them (p > 0.05). After 7 and 14 days in water, miconazole and itraconazole added into both materials resulted in significantly lower elongation percentages compared to the other antifungal agents and control (p < 0.0001), which were similar to each other (p > 0.05). CONCLUSIONS: The addition of the nystatin, chlorhexidine, and ketoconazole at MICs for C. albicans biofilm resulted in no harmful effects on the tensile strength and elongation percentage of the temporary soft denture liner materials up to 14 days.