RESUMEN
More sustainable materials have been becoming an important concern of worldwide scientists, and cellulosic materials are one alternative in water decontamination. An efficient strategy to improve removal capacity is functionalizing or incorporating nanomaterials in cellulose-based materials. The new hybrid cDAC/ZnONPs was produced by green synthesis of zinc oxide nanoparticles (ZnONPs), promoting the in situ reduction and immobilization on the cationic dialdehyde cellulose microfibers (cDAC) surface to remove Congo red dye from water. cDAC/ZnONPs was characterized by scanning electron microscopy (SEM-EDS) and infrared spectroscopy (FTIR), which showed efficient nanoparticles reduction. Adsorption efficiency on cationic cellulose surface was investigated by pH, contact time, initial concentration, and dye selectivity tests. The material followed the H isotherm model, which resulted in a maximum adsorption capacity of 1091.16 mg/g. Herein, was developed an efficient and ecologically correct new adsorbent, highly effective in Congo red dye adsorption even at high concentrations, suitable for the remediation of contaminated industrial effluents.
Asunto(s)
Rojo Congo , Contaminantes Químicos del Agua , Purificación del Agua , Óxido de Zinc , Óxido de Zinc/química , Rojo Congo/química , Rojo Congo/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Purificación del Agua/métodos , Tecnología Química Verde , Concentración de Iones de Hidrógeno , Celulosa/química , Celulosa/análogos & derivados , Colorantes/química , Nanopartículas/química , Cinética , Nanopartículas del Metal/química , Celulosa Oxidada/química , Cationes/químicaRESUMEN
Optical monitoring is applied, in situ and in real time, to non-newtonian, power law fluids in the spin coating process. An analytical exact solution is presented for thickness evolution that well fits to most measurement data. As result, typical rheological parameters are obtained for several CMC (carboximetilcelullose) concentrations and rotation speeds. Optical monitoring thus precisely indicates applicability of the model to power law fluids under spin coating.