RESUMEN
Chronic liver disease is closely linked to dietary intake factors, such as high consumption of simple carbohydrates including sucrose. In this study, the influence of sucrose on the development of hepatocellular carcinoma (HCC), the most common primary liver malignancy, was explored. Using the hepatocarcinogen diethylnitrosamine (DEN) to induce HCC in the rat, we co-administered sucrose with DEN. The co-administration significantly modified body, liver and pancreas weight, as well as, serum fatty acids and triglycerides. DEN caused liver structural alteration, fibrosis, and tumor formation; surprisingly, co-administration with sucrose restored hepatic lipids, improved liver architecture, and reduced fibrosis and tumor development. Sucrose intake negatively regulated tumor markers and cell proliferation, and reduced the expression of genes associated with lipid metabolism and oxidative stress response. These findings highlight a hepatoprotective effect of sucrose during DEN-induced hepatocarcinogenesis, underlining an intriguing role of high sucrose consumption during HCC development and providing new insights as well as possible pathways of cellular protection under sucrose intake on hepatocarcinogenesis.
Asunto(s)
Carcinoma Hepatocelular , Dietilnitrosamina , Neoplasias Hepáticas , Sacarosa , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/prevención & control , Sacarosa/efectos adversos , Sacarosa/farmacología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/prevención & control , Ratas , Masculino , Dietilnitrosamina/toxicidad , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Sustancias Protectoras/farmacologíaRESUMEN
Hepatocellular carcinoma (HCC) associated with viral or metabolic liver diseases is a growing cancer without effective therapy. AMPK is downregulated in HCC and its activation diminishes tumor growth. Alpha lipoic acid (ALA), an indirect AMPK activator that inhibits hepatic steatosis, shows antitumor effects in different cancers. We aimed to study its putative action in liver-cancer derived cell lines through AMPK signaling. We performed cytometric studies for apoptosis and cell cycle, and 2D and 3D migration analysis in HepG2/C3A and Hep3B cells. ALA led to significant inhibition of cell migration/invasion only in HepG2/C3A cells. We showed that these effects depended on AMPK, and ALA also increased the levels and nuclear compartmentalization of the AMPK target p53. The anti-invasive effect of ALA was abrogated in stable-silenced (shTP53) versus isogenic-TP53 HepG2/C3A cells. Furthermore, ALA inhibited epithelial-mesenchymal transition (EMT) in control HepG2/C3A but not in shTP53 nor in Hep3B cells. Besides, we spotted that in patients from the HCC-TCGA dataset some EMT genes showed different expression patterns or survival depending on TP53. ALA emerges as a potent activator of AMPK-p53 axis in HCC cells, and it decreases migration/invasion by reducing EMT which could mitigate the disease in wild-type TP53 patients.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Carcinoma Hepatocelular , Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , Ácido Tióctico , Proteína p53 Supresora de Tumor , Humanos , Ácido Tióctico/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Células Hep G2 , Proteínas Quinasas Activadas por AMP/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Invasividad Neoplásica , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacosRESUMEN
Liver cancers, including hepatocellular carcinoma (HCC), are the sixth most common cancer and the third leading cause of cancer-related death worldwide, representing a global public health problem. This study evaluated nine patients with HCC. Six of the cases involved hepatic explants, and three involved hepatic segmentectomy for tumor resection. Eight out of nine tumors were HCC, with one being a combined hepatocellular-cholangiocarcinoma tumor. Conventional markers of hepatocellular differentiation (Hep Par-1, arginase, pCEA, and glutamine synthetase) were positive in all patients, while markers of hepatic precursor cells (CK19, CK7, EpCAM, and CD56) were negative in most patients, and when positive, they were detected in small, isolated foci. Based on in silico analysis of HCC tumors from The Cancer Genome Atlas database, we found that Hedgehog (HH) pathway components (GLI1, GLI2, GLI3 and GAS1) have high connectivity values (module membership > 0.7) and are strongly correlated with each other and with other genes in biologically relevant modules for HCC. We further validated this finding by analyzing the gene expression of HH components (PTCH1, GLI1, GLI2 and GLI3) in our samples through qPCR, as well as by immunohistochemical analysis. Additionally, we conducted a chemosensitivity analysis using primary HCC cultures treated with a panel of 18 drugs that affect the HH pathway and/or HCC. Most HCC samples were sensitive to sunitinib. Our results offer a comprehensive view of the molecular landscape of HCC, highlighting the significance of the HH pathway and providing insight into focused treatments for HCC.
Asunto(s)
Carcinoma Hepatocelular , Proteínas Hedgehog , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Transducción de Señal , Sunitinib/farmacología , Sunitinib/uso terapéutico , Adulto , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genéticaRESUMEN
INTRODUCTION AND OBJECTIVES: Blood glucose fluctuates severely in the diabetes (DM) and tumor microenvironment. Our previous works have found Hepatitis B virus X protein (HBx) differentially regulated metastasis and apoptosis of hepatoma cells depending on glucose concentration. We here aimed to explore whether HBx played dual roles in the angiogenesis of hepatocellular carcinoma varying on different glucose levels. MATERIALS AND METHODS: We collected conditioned medium from HBx-overexpressing cells cultured with two solubilities of glucose, and then applied to EA.hy926 cells. Alternatively, a co-culture cell system was established with hepatoma cells and EA.hy926 cells. We analyzed the angiogenesis of EA.hy926 cells with CCK8, wound-healing, transwell-migartion and tube formation experiment. ELISA was conducted to detect the secretion levels of angiogenesis-related factors. siRNAs were used to detect the P53-VEGF axis. RESULTS: HBx expressed in hepatoma cells suppressed VEGF secretion, and subsequently inhibited the proliferation, migration and tube formation of EA.hy926 cells in a high glucose condition, while attenuating these in the lower glucose condition. Furthermore, the p53-VEGF axis was required for the dual role of HBx in angiogenesis. Additionally, HBx mainly regulated the nuclear p53. CONCLUSIONS: These data suggest that the dual roles of HBx confer hepatoma cells to remain in a glucose-rich environment and escape from the glucose-low milieu through tumor vessels, promoting liver tumor progression overall. We exclusively revealed the dual role of HBx on the angiogenesis of liver tumors, which may shed new light on the mechanism and management strategy of HBV- and DM-related hepatocellular carcinoma.
Asunto(s)
Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Glucosa , Neoplasias Hepáticas , Neovascularización Patológica , Transducción de Señal , Transactivadores , Proteína p53 Supresora de Tumor , Factor A de Crecimiento Endotelial Vascular , Proteínas Reguladoras y Accesorias Virales , Humanos , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Glucosa/metabolismo , Línea Celular Tumoral , Células Hep G2 , Técnicas de Cocultivo , Virus de la Hepatitis B/genética , Microambiente Tumoral , AngiogénesisRESUMEN
INTRODUCTION AND OBJECTIVES: Prostate apoptosis response protein-4 (PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma (HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS: TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS: Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase (JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS: PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.
Asunto(s)
Proteínas Reguladoras de la Apoptosis , Carcinoma Hepatocelular , Interleucina-6 , Neoplasias Hepáticas , Ratones Desnudos , Factor de Transcripción STAT3 , Transducción de Señal , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Factor de Transcripción STAT3/metabolismo , Interleucina-6/metabolismo , Humanos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Ratones , Masculino , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral , Apoptosis , Regulación Neoplásica de la Expresión Génica , FemeninoRESUMEN
INTRODUCTION AND OBJECTIVES: Radioresistance is a common problem in the treatment of many cancers, including hepatocellular carcinoma (HCC). Previous studies have shown that circROBO1 is highly expressed in HCC tissues and acts as a cancer promoter to accelerate the malignant progression of HCC. However, the role and mechanism of circROBO1 in HCC radioresistance remain unclear. MATERIALS AND METHODS: CircROBO1, microRNA (miR)-136-5p and RAD21 expression levels were analyzed by quantitative real-time PCR. Cell function and radioresistance were evaluated by colony formation assay, cell counting kit 8 assay, EdU assay and flow cytometry. Protein expression was determined using western blot analysis. RNA interaction was analyzed by dual-luciferase reporter assay and RNA pull-down assay. In vivo experiments were performed by constructing mice xenograft models. RESULTS: CircROBO1 was highly expressed in HCC, and its knockdown inhibited HCC cell proliferation and promoted apoptosis to enhance cell radiosensitivity. On the mechanism, circROBO1 could serve as miR-136-5p sponge to positively regulate RAD21. MiR-136-5p inhibitor or RAD21 overexpression reversed the regulation of circROBO1 knockdown on the radiosensitivity of HCC cells. Also, circROBO1 interference improved the radiosensitivity of HCC tumors in vivo. CONCLUSIONS: CircROBO1 might be a promising target for treating HCC radioresistance.
Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Proliferación Celular , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , ARN Circular , Tolerancia a Radiación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/radioterapia , Humanos , Tolerancia a Radiación/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , ARN Circular/genética , ARN Circular/metabolismo , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Apoptosis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Ratones Desnudos , Técnicas de Silenciamiento del Gen , Ensayos Antitumor por Modelo de Xenoinjerto , MasculinoRESUMEN
INTRODUCTION AND OBJECTIVES: The absence of melanoma 2 (AIM2) protein triggers the activation of the inflammasome cascade. It is unclear whether AIM2 plays a role in hepatocellular carcinoma (HCC) and radiofrequency ablation (RFA), which uses radiofrequency waves to treat tumors. In this study, we investigated if RFA could induce pyroptosis, also called cell inflammatory necrosis, in HCC through AIM2-inflammasome signaling in vivo and in vitro. MATERIALS AND METHODS: BALB/c nude mice were used to generate HepG2 or SMMC-7721 cell-derived tumor xenografts. HCC cells with knockdown or overexpression of AIM2 were created using short hairpin RNA (shRNA) and expression vector transfection, respectively, for functional and mechanistic studies. Downstream effects were examined using flow cytometry, qRT-PCR, ELISAs, and other molecular assays. RESULTS: RFA significantly suppressed tumor growth in HCC cell xenografts. Flow cytometry analysis revealed that RFA could induce pyroptosis. Furthermore, AIM2, NLRP3, caspase-1, γ-H2AX, and DNA-PKc had significantly greater expression levels in liver tissues from mice treated with RFA compared with those of the controls. Additionally, interleukin (IL)-1ß and IL-18 expression levels were significantly higher in the HCC cell-derived xenograft mice treated with RFA compared with those without RFA. Notably, a significantly greater effect was achieved in the RFA complete ablation group versus the partial ablation group. Knockdown or overexpression of AIM2 in HCC cells demonstrated that AIM2 exerted a role in RFA-induced pyroptosis. CONCLUSIONS: RFA can suppress HCC tumor growth by inducing pyroptosis via AIM2. Therefore, therapeutically intervening with AIM2-mediated inflammasome signaling may help improve RFA treatment outcomes for HCC patients.
Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión al ADN , Inflamasomas , Interleucina-1beta , Neoplasias Hepáticas , Piroptosis , Ablación por Radiofrecuencia , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/cirugía , Caspasa 1/metabolismo , Caspasa 1/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Células Hep G2 , Histonas/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-18/genética , Interleucina-1beta/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/cirugía , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Transducción de Señal , Carga TumoralRESUMEN
Extracellular vesicles (EVs) represent an attractive source of biomarkers due to their biomolecular cargo. The aim of this study was to identify candidate protein biomarkers from plasma-derived EVs of patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Plasma-derived EVs from healthy participants (HP), LC, and HCC patients (eight samples each) were subjected to label-free quantitative proteomic analysis using LC-MS/MS. A total of 248 proteins were identified, and differentially expressed proteins (DEPs) were obtained after pairwise comparison. We found that DEPs mainly involve complement cascade activation, coagulation pathways, cholesterol metabolism, and extracellular matrix components. By choosing a panel of up- and down-regulated proteins involved in cirrhotic and carcinogenesis processes, TGFBI, LGALS3BP, C7, SERPIND1, and APOC3 were found to be relevant for LC patients, while LRG1, TUBA1C, TUBB2B, ACTG1, C9, HP, FGA, FGG, FN1, PLG, APOB and ITIH2 were associated with HCC patients, which could discriminate both diseases. In addition, we identified the top shared proteins in both diseases, which included LCAT, SERPINF2, A2M, CRP, and VWF. Thus, our exploratory proteomic study revealed that these proteins might play an important role in the disease progression and represent a panel of candidate biomarkers for the prognosis and diagnosis of LC and HCC.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Vesículas Extracelulares , Cirrosis Hepática , Neoplasias Hepáticas , Proteómica , Humanos , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/metabolismo , Cirrosis Hepática/sangre , Cirrosis Hepática/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/sangre , Masculino , Femenino , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Proteoma/metabolismo , Cromatografía Liquida , Biomarcadores/sangreRESUMEN
Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, ß-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.
Asunto(s)
Carcinoma Hepatocelular , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Antígeno Nuclear de Célula en Proliferación , Piridonas , Animales , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Piridonas/farmacología , Ratas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Células Hep G2 , Antígeno Nuclear de Célula en Proliferación/metabolismo , Masculino , Ratas Endogámicas F344 , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Dietilnitrosamina , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/genéticaRESUMEN
BACKGROUND: Deregulating cellular metabolism is one of the prominent hallmarks of malignancy, with a critical role in tumor survival and growth. However, the role of reprogramming aspartate metabolism in hepatocellular carcinoma (HCC) are largely unknown. METHODS: The multi-omics data of HCC patients were downloaded from public databases. Univariate and multivariate stepwise Cox regression were used to establish an aspartate metabolism-related gene signature (AMGS) in HCC. The Kaplan-Meier and receiver operating characteristic curve analyses were performed to evaluate the predictive ability for overall survival (OS) in HCC patients. Gene set enrichment analysis and immune infiltration analysis were operated to determine the potential mechanisms underlying the AMGS. Single-cell RNA sequencing (scRNA-seq) data of liver cancer stem cells were visualized by t-SNE algorithm. In vivo and in vitro experiments were implemented to investigate the biological function of CAD in HCC. In addition, a nomogram based on the AMGS and clinicopathologic characteristics was constructed by univariate and multivariate Cox regression analyses. RESULTS: Patients in the high-AMGS subgroup exerted advanced tumor status and poor prognosis. Mechanistically, the high-AMGS subgroup patients had significantly enhanced proliferation and stemness-related pathways, increased infiltration of regulatory T cells and upregulated expression levels of suppressive immune checkpoints in the tumor immune microenvironment. Notably, scRNA-seq data revealed CAD, one of the aspartate metabolism-related gene, is significantly upregulated in liver cancer stem cells. Silencing CAD inhibited proliferative capacity and stemness properties of HCC cells in vitro and in vivo. Finally, a novel nomogram based on the AMGS showed an accurate prediction in HCC patients. CONCLUSIONS: The AMGS represents a promising prognostic value for HCC patients, providing a perspective for finding novel biomarkers and therapeutic targets for HCC.
Asunto(s)
Ácido Aspártico , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ácido Aspártico/metabolismo , Pronóstico , Femenino , Nomogramas , Masculino , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Estimación de Kaplan-Meier , Curva ROC , Animales , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Ratones , Regulación Neoplásica de la Expresión GénicaRESUMEN
Hepatocellular carcinoma (HCC) is among the main causes of death by cancer worldwide, representing about 80-90% of all liver cancers. Treatments available for advanced HCC include atezolizumab, bevacizumab, sorafenib, among others. Atezolizumab and bevacizumab are immunological options recently incorporated into first-line treatments, along with sorafenib, for which great treatment achievements have been reached. However, sorafenib resistance is developed in most patients, and therapeutical combinations targeting cancer hallmark mechanisms and intracellular signaling have been proposed. In this review, we compiled evidence of the mechanisms of cell death caused by sorafenib administered alone or in combination with valproic acid and metformin and discussed them from a molecular perspective.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Humanos , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/metabolismo , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Bevacizumab , Metformina/farmacología , Metformina/uso terapéutico , Muerte CelularRESUMEN
Introduction: There is a need to better understand the etiotypes of chronic obstructive pulmonary disease (COPD) beyond the tobacco-smoke (TS-COPD). Wood smoke COPD (WS-COPD) is characterized by greater airway compromise, milder emphysema, and slower rate of lung function decline than TS-COPD. However, it is unclear if these two etiotypes of COPD have differences in sputum biomarker concentrations. Objective was to compare sputum levels of selected sputum biomarkers between WS-COPD and TS-COPD, and healthy controls. Methods: Eighty-eight women (69±12 years) were recruited and classified into: WS-COPD (n=31), TS-COPD (n=29) and controls (n=28). Using ELISA, we determined induced sputum levels of metalloproteinase 9 (MMP-9), chemokine ligand 5 (CCL5), interleukin-8 (IL-8), chemokine ligand 16 (CCL16/HCC-4) and vascular endothelial growth factor (VEGF-1). Differences were analyzed by Kruskal-Wallis and Mann-Whitney-U tests and correlation between airflow limitation and biomarkers by Spearman's test. Results: At similar degree of airflow obstruction, anthropometrics and medications use, the level of sputum CCL5 was higher in TS-COPD than WS-COPD (p=0.03) without differences in MMP-9, IL-8, CCL16/HCC-4, and VEGF-1. Women with WS-COPD and TS-COPD showed significantly higher sputum levels of MMP-9, IL-8 and CCL5 compared with controls (p<0.001). FEV1% predicted correlated negatively with levels of MMP-9 (rho:-0.26; P=0.016), CCL5 (rho:-0.37; P=0.001), IL-8 (rho:-0.42; P<0.001) and VEGF (rho:-0.22; P=0.04). Conclusion: While sputum concentrations of MMP-9, IL-8, and CCL5 were higher in COPD women compared with controls, women with TS-COPD had higher levels of CCL5 compared with those with WS-COPD. Whether this finding relates to differences in pathobiological pathways remains to be determined.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Humo de Tabaco , Humanos , Femenino , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Interleucina-8/metabolismo , Esputo/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Madera , Metaloproteinasa 9 de la Matriz/metabolismo , Carcinoma Hepatocelular/metabolismo , Ligandos , Neoplasias Hepáticas/metabolismo , Humo/efectos adversos , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Productos de TabacoRESUMEN
Hepatocellular carcinoma (HCC) is a type of liver cancer, in which CD44 isoforms have been proposed as markers to identify cancer stem cells (CSCs). However, it is unclear what characteristics are associated with CSCs that exclusively express CD44 isoforms. The objective of the present study was to determine the expression of CD44 isoforms and their properties in CSCs. Analysis of transcriptomic data from HCC patient samples identified CD44v8-10 as a potential marker in HCC. In SNU-423 cells, CD44 expression was detected in over 99% of cells, and two CD44 isoforms, namely, CD44std and CD44v9, were identified in this cell line. CD44 subpopulations, including both CD44v9+ (CD44v9) and CD44v9- (CD44std) cells, were obtained by purification using a magnetic cell separation kit for human CD44v9+ cancer stem cells. CD44v9 cells showed greater potential for colony and spheroid formation, whereas CD44std cells demonstrated significant migration and invasion capabilities. These findings suggested that CD44std and CD44v9 may be used to identify features in CSC populations and provide insights into their roles in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Biomarcadores de Tumor/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Línea Celular Tumoral , Isoformas de Proteínas/metabolismoRESUMEN
Regular exercise reduces the risk of malignancy and decreases the recurrence of cancer. However, the mechanisms behind this protection remain to be elucidated. Natural killer (NK) cells are lymphocytes of the innate immune system, which play essential roles in immune defense and effectively prevent cancer metastasis. Physical exercise can increase the activity of NK cells. Interleukin-15 (IL-15) is the best-studied cytokine activator of NK cells, and it was shown to have many positive functional effects on NK cells to improve antitumor responses. The aim of this study was to clarify the possible important mechanisms behind endurance exercise-induced changes in NK cell function, which may be highly correlated with IL-15. An animal model was used to study IL-15 expression level, tumor volume, cancer cell apoptosis, and NK cell infiltration after treadmill exercise. Although IL-15 was highly expressed in skeletal muscle, treadmill exercise further elevated IL-15 levels in plasma and muscle (P<0.05). In addition, tumor weight and volume of tumor-bearing mice were decreased (P<0.05), and liver tumor cell apoptosis was increased after 12 weeks of treadmill exercise (P<0.05). NK cell infiltration was upregulated in tumors from treadmill exercise mice, and the level of interferon-gamma (IFN-γ) and IL-15 were higher than in sedentary mice (P<0.05). The study indicated that regular endurance training can reduce cancer risk, which was related to increased IL-15 expression, activation of the immune killing effect of NK cells, and promotion of tumor cell apoptosis, which can ultimately control tumor growth.
Asunto(s)
Carcinoma Hepatocelular , Entrenamiento Aeróbico , Interleucina-15 , Células Asesinas Naturales , Neoplasias Hepáticas , Condicionamiento Físico Animal , Animales , Ratones , Apoptosis , Carcinoma Hepatocelular/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/metabolismo , Neoplasias Hepáticas/metabolismo , Regulación hacia ArribaRESUMEN
Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Carcinoma Hepatocelular/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatocitos , Termogénesis/genética , Tejido Adiposo Blanco/metabolismoRESUMEN
Sorafenib, an oral multi-kinase inhibitor, used to treat hepatocellular carcinoma (HCC). However, drug resistance is still common in several HCC patients. This complex mechanism is not yet fully elucidated, driving the search for new therapeutic targets to potentiate the antitumoral effect of sorafenib. Recent findings have linked the expression of Two-Pore Channels (TPCs) receptors with the development and progression of cancer. TPCs receptors are stimulated by NAADP, a Ca2+ messenger, and inhibited by their antagonists Ned-19 and tetrandrine. Here, we investigate the participation of TPCs inhibition in cell death and autophagy in sorafenib-treated HCC cells. Here, we show that the association of sorafenib with tetrandrine increased sorafenib-induced cell death accompanied by increased lysotracker fluorescence intensity. In contrast, these effects were not observed after treating these cells with Ned-19. The pharmacological TPC antagonists by Ned-19 and tetrandrine or siRNA-mediated TPC1/2 inhibition decreased sorafenib-induced Ca2+ release, reinforcing the participation of TPCs in sorafenib HCC responses. Furthermore, the association tetrandrine and sorafenib blocked autophagy through ERK1/2 pathway inhibition, which represents a putative target for potentiating HCC cell death. Therefore, our study proposes the use of tetrandrine analogs with the aim of improving sorafenib therapy. Also, our data also allow us to suggest that TPCs may be a new target in anticancer therapies.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , AutofagiaRESUMEN
5-aminolevulinic acid (5-ALA) is the first precursor of the heme biosynthesis pathway, accumulated in acute intermittent porphyria (AIP), an inherited metabolic disease characterized by porphobilinogen deaminase deficiency. An increased incidence of hepatocellular carcinoma (HCC) has been reported as a long-term manifestation in symptomatic AIP patients. 5-ALA is an α-aminoketone prone to oxidation, yielding reactive oxygen species and 4,5-dioxovaleric acid. A high concentration of 5-ALA presents deleterious pro-oxidant potential. It can induce apoptosis, DNA damage, mitochondrial dysfunction, and altered expression of carcinogenesis-related proteins. Several hypotheses of the increased risk of HCC rely on the harmful effect of elevated 5-ALA in the liver of AIP patients, which could promote a pro-carcinogenic environment. We investigated the global transcriptional changes and perturbed molecular pathways in HepG2 cells following exposure to 5-ALA 25 mM for 2 h and 24 h using DNA microarray. Distinct transcriptome profiles were observed. 5-ALA '25 mM-2h' upregulated 10 genes associated with oxidative stress response and carcinogenesis. Enrichment analysis of differentially expressed genes by KEGG, Reactome, MetaCore™, and Gene Ontology, showed that 5-ALA '25 mM-24h' enriched pathways involved in drug detoxification, oxidative stress, DNA damage, cell death/survival, cell cycle, and mitochondria dysfunction corroborating the pro-oxidant properties of 5-ALA. Furthermore, our results disclosed other possible processes such as senescence, immune responses, endoplasmic reticulum stress, and also some putative effectors, such as sequestosome, osteopontin, and lon peptidase 1. This study provided additional knowledge about molecular mechanisms of 5-ALA toxicity which is essential to a deeper understanding of AIP and HCC pathophysiology. Furthermore, our findings can contribute to improving the efficacy of current therapies and the development of novel biomarkers and targets for diagnosis, prognosis, and therapeutic strategies for AHP/AIP and associated HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Porfiria Intermitente Aguda , Humanos , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/genética , Transcriptoma , Porfiria Intermitente Aguda/complicaciones , Porfiria Intermitente Aguda/genética , Porfiria Intermitente Aguda/metabolismo , CarcinogénesisRESUMEN
PURPOSE: The interaction between tumor cells and immune system in hepatocellular carcinoma (HCC) remains unclear. Great clinical achievements have progressed in HCC patients treated with immune checkpoint inhibitors (ICIs) for programmed death-1 and its ligands. However, response efficacy for these therapies is limited, thereby requiring alternative ICI candidates for HCC treatment. B7 homolog 3 protein (B7-H3), an immunoregulatory protein, plays a significant role in tumor immunity and disease progression. In this study, we evaluated the correlation between B7-H3 expression and prognosis of HCC patients, and investigated the therapeutic potential of B7-H3 targeting in HCC. METHODS: B7-H3 expression was analyzed immunohistochemically in HCC patients, and its relationship with tumor-infiltrating lymphocyte infiltration was assessed. The anti-tumor efficacy of anti-B7-H3 antibody therapy was determined using an in vitro co-culture system and a subcutaneous HCC-bearing murine model. RESULTS: We found that B7-H3 overexpressed in tumor cells and positively correlated with poor prognosis in HCC patients. B7-H3 inhibited the infiltration of CD8+ T cells in tumors. Furthermore, co-culture experiment indicated that inhibiting B7-H3 in tumor cells significantly increased T cells-mediated immune activities and tumor cell killing. Consistently, anti-B7-H3 antibody-treated HCC murine model showed decreased tumor size and enhanced anti-tumor immunity mediated by CD8+ T cells. CONCLUSION: Altogether, our findings suggest that B7-H3 inhibition in tumor cells restores the immune cytotoxicity of T cells, which in turn promotes apoptosis of target cells. Therefore, B7-H3 serves as a key negative regulator in tumor immunity and the promising clinical utility of B7-H3-based immunotherapies for HCC treatment could be developed.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Linfocitos T CD8-positivos , Neoplasias Hepáticas/metabolismo , Modelos Animales de Enfermedad , Antígenos B7/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Involved in triglyceride (TG) and glycerophospholipid metabolism, the liver plays a crucial physiological role in the human body both as a major metabolic integrator and a central hub for lipid and energy homeostasis. Metabolic disorders can be caused by various factors that promote abnormal lipid accumulation in storage organelles called lipid droplets (LDs), as in hepatic steatosis, a metabolic syndrome manifestation that can progress to a hepatocellular carcinoma, the most common primary liver malignancy worldwide. Modern life involves conditions that disrupt the biological clock, causing metabolic disorders and higher cancer risk. A circadian clock is present in the liver and in immortalized cell lines and temporally regulates physiological processes by driving transcriptional and metabolic rhythms. Here we investigated metabolic rhythms in HepG2 cells, a human hepatocellular carcinoma-derived cell line, and the link between these rhythms and the circadian clock in control (Bmal1-wildtype) and Bmal1-disrupted (B-D) cells having their molecular clock impaired. Rhythms in the expression of lipid-synthesizing enzymes ChoKα, Pcyt2, and Lipin1, in the metabolism of particular glycerophospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine, and in the phosphatidylcholine/phosphatidylethanolamine ratio and TG and LD content were observed in Bmal1-wildtype cells. By contrast, in the B-D model, the whole hepatic metabolism was severely altered with a significant reduction in the TG and LD content as well as in ChoKα and other related lipid enzymes. Together, our results suggest a very strong crosstalk between the molecular clock and lipid metabolism, which exhibits an exacerbated pathological condition in B-D cells.
Asunto(s)
Carcinoma Hepatocelular , Relojes Circadianos , Neoplasias Hepáticas , Humanos , Metabolismo de los Lípidos/fisiología , Factores de Transcripción ARNTL/metabolismo , Fosfatidiletanolaminas/metabolismo , Carcinoma Hepatocelular/metabolismo , Ritmo Circadiano , Neoplasias Hepáticas/metabolismo , Relojes Circadianos/fisiología , Hígado/metabolismo , Triglicéridos/metabolismo , Fosfatidilcolinas/metabolismo , Línea CelularRESUMEN
Quantitative real-time polymerase chain reaction (qRT-PCR) flexibility, robustness and reproducibility have rapidly extended the scope of the method. Cancer stem cells are gaining increasing importance since their role in cancer initiation, treatment resistance and recurrence give rise to a wide range of potential diagnostic and therapeutic applications. The expression of several characteristic markers is proven a reliable method to assess stem-like-phenotype of cancer cells. Here, we provided a thorough protocol for the study of cancer stem cells in hepatocellular carcinoma mouse models and cell cultures using qRT-PCR.