Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Biol ; 83: e268941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37042854

RESUMEN

Capsaicin (CAP) is the main compound responsible for the spicy flavor of Capsicum plants. However, its application can be inhibited due to its pungency and toxicity. This study aimed to evaluate and compare the cytotoxic effect of CAP and its analogs N-benzylbutanamide (AN1), N-(3-methoxybenzyl) butanamide (AN2), N-(4-hydroxy-3-methoxybenzyl) butanamide (AN3), N-(4-hydroxy-3-methoxybenzyl) hexanamide (AN4) and N-(4-hydroxy-3-methoxybenzyl) tetradecanamide (AN5) on the hepatoma cells of Rattus norvegicus using the MTT test. The results showed cytotoxicity of CAP at concentrations of 100, 150, 175, and 200 µM (24 hours), AN1 at 150 and 175 µM (48 hours), AN2 at 50 µM (24 hours) and 10, 25, 50, and 75 µM (48 hours), AN4 at 175 µM (24 hours), and AN5 at 50 µM (48 hours). Removing the hydroxyl radical from the vanillyl group of capsaicin, together with reducing the acyl chain to 3 carbons, which is the case of AN2, resulted in the best biological activity. Increasing the carbon chain in the acyl group of the capsaicin molecule, which is the case of AN5, also showed evident cytotoxic effects. The present study proves that the chemical modifications of capsaicin changed its biological activity.


Asunto(s)
Capsaicina , Capsicum , Animales , Ratas , Capsaicina/farmacología , Capsaicina/química , Plantas
2.
J Enzyme Inhib Med Chem ; 37(1): 2169-2178, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35975286

RESUMEN

The design of TRPV1 antagonists and agonists has reached a new era since TRPV1 structures at near-atomic resolution are available. Today, the ligand-binding forms of several classical antagonists and agonists are known; therefore, the specific role of key TRPV1's residues in binding of ligands can be elucidated. It is possible to place the well-defined pharmacophore of TRPV1 ligands, conformed by head, neck, and tail groups, in the right pocket regions of TRPV1. It will allow a more thorough use of molecular modelling methods to conduct more effective rational drug design protocols. In this work, important points about the interactions between TRPV1 and capsaicin-like compounds are spelled out, based on the known pharmacophore of the ligands and the already available TRPV1 structures. These points must be addressed to generate reliable poses of novel candidates and should be considered during the design of novel TRPV1 antagonists and agonists.


Asunto(s)
Capsaicina , Canales Catiónicos TRPV , Capsaicina/química , Capsaicina/metabolismo , Capsaicina/farmacología , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo
3.
Molecules ; 26(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802144

RESUMEN

Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Capsicum/metabolismo , Pimenta/metabolismo , Piper/metabolismo , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Capsaicina/química , Capsaicina/farmacología , Capsicum/química , Capsicum/efectos de los fármacos , Humanos , Pimenta/química , Pimenta/efectos de los fármacos , Piper/química , Piper/efectos de los fármacos , Verduras/química
4.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785200

RESUMEN

Acidic environments, such as in inflamed tissues, favor the charged form of local anesthetics (LA). Hence, these drugs show less cell permeation and diminished potency. Since the analgesic capsaicin (CAP) triggers opening of the TRPV1 receptor pore, its combination with LAs could result in better uptake and improved anesthesia. We tested the above hypothesis and report here for the first time the analgesia effect of a two-drug combination (LA and CAP) on an inflamed tissue. First, CAP solubility increased up to 20 times with hydroxypropyl-beta-cyclodextrin (HP-ß-CD), as shown by the phase solubility study. The resulting complex (HP-ß-CD-CAP) showed 1:1 stoichiometry and high association constant, according to phase-solubility diagrams and isothermal titration calorimetry data. The inclusion complex formation was also confirmed and characterized by differential scanning calorimetry (DSC), X-ray diffraction, and 1H-NMR. The freeze-dried complex showed physicochemical stability for at least 12 months. To test in vivo performance, we used a pain model based on mouse paw edema. Results showed that 2% mepivacaine injection failed to anesthetize mice inflamed paw, but its combination with complexed CAP resulted in pain control up to 45 min. These promising results encourages deeper research of CAP as an adjuvant for anesthesia in inflamed tissues and cyclodextrin as a solubilizing agent for targeting molecules in drug delivery.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Anestesia Local/métodos , Anestésicos Locales/uso terapéutico , Capsaicina/uso terapéutico , Composición de Medicamentos/métodos , Excipientes/química , Hiperalgesia/tratamiento farmacológico , Mepivacaína/uso terapéutico , Dolor/tratamiento farmacológico , Animales , Rastreo Diferencial de Calorimetría , Capsaicina/química , Carragenina/efectos adversos , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Quimioterapia Combinada , Hiperalgesia/inducido químicamente , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Microscopía Electrónica de Rastreo , Manejo del Dolor/métodos , Solubilidad , Difracción de Rayos X
5.
Molecules ; 24(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374810

RESUMEN

Capsaicin is a chemical compound found in pungent chili peppers (Capsicum spp.). In biotechnology, capsaicin has been proposed as a pathogen control; however, its low solubility in water and high instability limits its uses. The aim of this work was to study the effect of high concentrations of capsaicin on the synthesis of nanoparticles and to evaluate their inhibitory effect on the growth of Rhodotorula mucilaginosa yeast. Bovine serum albumin (BSA)-capsaicin nanoparticles were formulated at 0, 16.2, 32.5, 48.7 and 65.0 µg of capsaicin per mg of BSA. Nanoparticle properties were evaluated and they were added to cultures of R. mucilaginosa to quantify their effect on cell viability. We found that increased capsaicin levels caused several changes to the physicochemical parameters, probably due to changes in the hydrophobicity sites of the albumin during the nanostructuration. The administration of nanoparticles to cultures of R. mucilaginosa produced a maximal viability with nanoparticles at 16.2 µg/mg; on the contrary, nanoparticles at 65.0 µg/mg caused maximal cell death. R. mucilaginosa cells displayed a hormesis effect in response to the nanoparticle dose concentration. The nanoparticles showed different responses during the uptake process, probably as a consequence of the nanostructural properties of capsaicin in the BSA molecules.


Asunto(s)
Capsaicina/química , Nanopartículas/química , Rhodotorula/efectos de los fármacos , Capsaicina/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Hormesis , Humanos , Rhodotorula/patogenicidad , Albúmina Sérica Bovina/química
6.
Plant Cell Rep ; 38(9): 1017-1030, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30941502

RESUMEN

The most widely known characteristic of chili pepper fruits is their capacity to produce capsaicinoids, which are responsible for the pungent sensation. The capsaicinoids have several uses in different areas, such as the pharmaceutical, cosmetic and agronomic industries, among others. They are synthesized by the condensation of vanillylamine (derived from phenylalanine) with a branched-chain fatty acid (from valine or leucine precursors), and they generally accumulate in the placental tissue of the chili pepper fruits. The pungency grade depends on the genotype of the plant but is also affected by external stimuli. In recent years, new structural and regulatory genes have been hypothesized to participate in the capsaicinoid biosynthetic pathway. Moreover, the role of some of these genes has been investigated. Substantial progress has been made in discerning the molecular biology of this pathway; however, many questions remain unsolved. We previously reviewed some aspects of the biochemistry and molecular biology of capsaicinoid biosynthesis (Aza-González et al. Plant Cell Rep 30:695-706. Aza-González et al., Plant Cell Rep 30:695-706, 2011), and in this review, we describe advances made by different researchers since our previous review, including the contribution of omics to the knowledge of this pathway.


Asunto(s)
Vías Biosintéticas , Capsaicina/metabolismo , Capsicum/genética , Genómica , Capsaicina/química , Capsicum/química , Capsicum/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Biología Molecular
7.
Rapid Commun Mass Spectrom ; 33(7): 635-640, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668887

RESUMEN

RATIONALE: Capsaicinoids are prevalent secondary metabolites in many natural and synthetic pharmacological compounds. To date, several soft ionization studies related to capsaicinoids have been reported; they all proposed a common fragmentation pattern based on a rearrangement of the aromatic double bonds and the fragmentation of the various positional acyl chains. However, the mechanism has never been validated by high-resolution analyses. Consequently, in this work, a validated fragmentation mechanism of the main capsaicinoids, capsaicin (1) and dihydrocapsaicin (2), is offered. METHODS: In order to propose and validate a common electron ionization (EI) fragmentation mechanism for the target analytes, the following mass spectrometric methods were employed: collision-induced dissociation (CID) by means of linked scans (LS), reinforcing the methodology by high-resolution mass spectrometry (HRMS), in addition to appropriate deuterium-labeled experiments performed using gas chromatography/mass spectrometry (GC/MS) and direct analysis in real time (DART). RESULTS: In a first stage, a common EI fragmentation pattern comprising two pathways was proposed for compounds 1 and 2; then, the suggested mechanism was validated by CID-LS together with HRMS complemented by DART-deuterium-labeling studies. The obtained results are indicative that the corresponding molecular ions were conveniently observed, m/z 305 and m/z 307; it is worth noting that the common base peak is in correspondence with a tropylium ion derivative (m/z 137), as a consequence of a McLafferty rearrangement. In addition to these highlighted fragments, other common ions, m/z 122 and m/z 94, and their corresponding trajectory, were confirmed using the same approach. Finally, the proposed mechanism was complementarily validated by deuterium-labeling studies, taking into account the two exchangeable hydrogens present in the phenolic and the amidic moieties. CONCLUSIONS: A common validated EI fragmentation pattern for both capsaicin and dihydrocapsaicin was established using appropriated mass spectrometric methods together with convenient hydrogen/deuterium labeling. This study provides a new alternative to validate mechanisms of fragmentation of important natural products.


Asunto(s)
Capsaicina/análogos & derivados , Capsaicina/química , Espectrometría de Masas/métodos , Capsaicina/análisis , Capsicum/química , Medición de Intercambio de Deuterio , Cromatografía de Gases y Espectrometría de Masas/métodos , Iones/análisis , Iones/química , Reproducibilidad de los Resultados
8.
Biomolecules ; 8(3)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30142945

RESUMEN

The interaction between the main carrier of endogenous and exogenous compounds in the human bloodstream (human serum albumin, HSA) and a potential anticancer compound (the capsaicin analogue RPF101) was investigated by spectroscopic techniques (circular dichroism, steady-state, time-resolved, and synchronous fluorescence), zeta potential, and computational method (molecular docking). Steady-state and time-resolved fluorescence experiments indicated an association in the ground state between HSA:RPF101. The interaction is moderate, spontaneous (ΔG° < 0), and entropically driven (ΔS° = 0.573 ± 0.069 kJ/molK). This association does not perturb significantly the potential surface of the protein, as well as the secondary structure of the albumin and the microenvironment around tyrosine and tryptophan residues. Competitive binding studies indicated Sudlow's site I as the main protein pocket and molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces.


Asunto(s)
Capsaicina/química , Capsaicina/metabolismo , Simulación del Acoplamiento Molecular , Albúmina Sérica Humana/metabolismo , Unión Competitiva , Humanos , Unión Proteica , Conformación Proteica , Albúmina Sérica Humana/química , Análisis Espectral
9.
J Biosci ; 42(2): 245-250, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28569248

RESUMEN

Capsinoids are non-pungent analogues of capsaicinoids in pepper (Capsicum spp). The absence of pungency, in addition to their biological activities similar to that of capsaicinoids such as anti-inflammatory, antimicrobial, and antioxidant properties, makes capsinoids an excellent option for increasing use in human and animal nutrition, as well as health and pharmaceutical industries. There are only few sources of pepper producing capsinoids, and one of them (accession 509-45-1), Capsicum annuum L., is a potential source for increasing capsinoids content using strategies as controlled elicitation during plant production in the greenhouse. In this research we evaluated the effect of weekly and one-day-before-harvest foliar applications of hydrogen peroxide, salicylic acid and a xyloglucan oligosaccharide on the concentration of capsiate in fruits of this pepper accession, as well as the gene expression of phenylalanine ammonia-lyase (pal), putative aminotransferase (pamt), capsaicin synthase (at3) and ß-keto acyl synthase (kas). Results showed that the two tested concentrations of H2O2 significantly increased capsiate content and gene expression associated with capsaicinoids (pamt, at3 and kas) and the phenylpropanoids (pal) pathways. Plant yield was not affected using this induction strategy. Our results indicated that the pre-harvest and weekly application of hydrogen peroxide and xyloglucan oligosaccharide improved production of capsiate in C. annuum L.


Asunto(s)
Capsaicina/análogos & derivados , Capsicum/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Oligosacáridos/farmacología , Hojas de la Planta/efectos de los fármacos , Ácido Salicílico/farmacología , Antiinfecciosos/administración & dosificación , Antiinfecciosos/farmacología , Capsaicina/química , Capsaicina/metabolismo , Capsicum/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/administración & dosificación , Oligosacáridos/administración & dosificación , Oligosacáridos/química , Oxidantes/administración & dosificación , Oxidantes/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/administración & dosificación
10.
Adv Exp Med Biol ; 929: 91-125, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27771922

RESUMEN

A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.


Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Capsaicina/uso terapéutico , Enfermedad Crónica/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Analgésicos/efectos adversos , Analgésicos/química , Animales , Antiinflamatorios/efectos adversos , Antiinflamatorios/química , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/química , Capsaicina/efectos adversos , Capsaicina/química , Relación Dosis-Respuesta a Droga , Humanos , Fitoterapia , Plantas Medicinales , Transducción de Señal/efectos de los fármacos
11.
Molecules ; 21(8)2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27472308

RESUMEN

Capsaicinoids are plant secondary metabolites, capsaicin being the principal responsible for the pungency of chili peppers. It is biosynthesized through two pathways involved in phenylpropanoid and fatty acid metabolism. Plant capsaicin concentration is mainly affected by genetic, environmental and crop management factors. However, its synthesis can be enhanced by the use of elicitors. Capsaicin is employed as food additive and in pharmaceutical applications. Additionally, it has been found that capsaicin can act as a cancer preventive agent and shows wide applications against various types of cancer. This review is an approach in contextualizing the use of controlled stress on the plant to increase the content of capsaicin, highlighting its synthesis and its potential use as anticancer agent.


Asunto(s)
Antineoplásicos Fitogénicos/metabolismo , Capsaicina/metabolismo , Capsicum/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Vías Biosintéticas , Capsaicina/administración & dosificación , Capsaicina/química , Capsaicina/farmacología , Capsicum/metabolismo , Línea Celular Tumoral , Aditivos Alimentarios/química , Aditivos Alimentarios/metabolismo , Humanos , Estructura Molecular
12.
Molecules ; 21(7)2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27367653

RESUMEN

In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.


Asunto(s)
Capsaicina/farmacología , Capsaicina/uso terapéutico , Dolor/tratamiento farmacológico , Analgésicos/química , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Capsaicina/química , Capsaicina/aislamiento & purificación , Capsicum/química , Estudios Clínicos como Asunto , Composición de Medicamentos , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Dolor/etiología , Dolor/metabolismo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
13.
Magn Reson Chem ; 54(4): 268-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26626418

RESUMEN

Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Capsaicina/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética
14.
Tumour Biol ; 36(9): 7251-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25894379

RESUMEN

Capsaicin, the primary pungent component of the chili pepper, has antitumor activity. Herein, we describe the activity of RPF151, an alkyl sulfonamide analogue of capsaicin, against MDA-MB-231 breast cancer cells. RPF151 was synthetized, and molecular modeling was used to compare capsaicin and RPF151. Cytotoxicity of RPF151 on MDA-MB-231 was also evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis, by flow cytometry, and Western blot analysis of cycle-related proteins were used to evaluate the antiproliferative mechanisms. Apoptosis was evaluated by phosphatidyl-serine externalization, cleavage of Ac-YVAD-AMC, and Bcl-2 expression. The production of reactive oxygen species was evaluated by flow cytometry. RPF151 in vivo antitumor effects were investigated in murine MDA-MB-231 model. This study shows that RPF151 downregulated p21 and cyclins A, D1, and D3, leading to S-phase arrest and apoptosis. Although RPF151 has induced the activation of TRPV-1 and TRAIL-R1/DR4 and TRAIL-2/DR5 on the surface of MDA-MB-231 cells, its in vivo antitumor activity was TRPV-1-independent, thus suggesting that RPF151 should not have the same pungency-based limitation of capsaicin. In silico analysis corroborated the biological findings, showing that RPF151 has physicochemical improvements over capsaicin. Overall, the activity of RPF151 against MDA-MB-231 and its lower pungency suggest that it may have a relevant role in cancer therapy.


Asunto(s)
Neoplasias de la Mama/genética , Capsaicina/administración & dosificación , Proliferación Celular/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Capsaicina/análogos & derivados , Capsaicina/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Proteínas de Neoplasias/genética , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Food Chem ; 181: 325-32, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25794757

RESUMEN

To date, there is no information in the literature regarding the bioaccessibility of capsaicinoids from natural sources. The effect of ripening and heat-processing on the in vitro bioaccessibility of capsaicin and dihydrocapsaicin was studied in the absence and presence of two dietary fat types. The capsaicinoid bioaccessibility was also studied during the frozen storage of peppers for 6 months. Fresh green peppers showed the highest capsaicinoid bioaccessibility, as compared with that of other experimental groups. The bioaccessibility of capsaicinoids from green peppers decreased as the intensity of heat treatment increased. The dietary fat increased the bioaccessibility of capsaicin and dihydrocapsaicin in digestions with red peppers, especially that of dihydrocapsaicin. The bioaccessibility of capsaicinoids was altered by frozen storage. The Caco-2 cells incorporated capsaicin and dihydrocapsaicin (8.4% and 10.9%, respectively) but they were probably metabolized by cells.


Asunto(s)
Capsaicina/análogos & derivados , Capsaicina/farmacocinética , Capsicum/química , Disponibilidad Biológica , Células CACO-2 , Capsaicina/química , Grasas de la Dieta/análisis , Grasas de la Dieta/farmacocinética , Manipulación de Alimentos , Almacenamiento de Alimentos , Congelación , Calor , Humanos
16.
Mater Sci Eng C Mater Biol Appl ; 40: 345-56, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24857502

RESUMEN

Capsaicinoids show several pharmacological effects including weight loss. However, their pungency limits the long-term use through the gastrointestinal tract. In that sense, the goal of this study was to prepare capsaicinoids-loaded poly(ε-caprolactone) microparticles as an oral carrier in order to improve their gastric tolerability and to make feasible the long-term treatment of obesity. Formulations containing 3, 5 and 10% capsaicinoids were successfully obtained by simple emulsion/solvent evaporation method. Values of encapsulation efficiency above 90% were achieved. Microparticles showed spherical shape and smooth surface. The particle size was suitable for oral use in order to provide an extended release through the gastrointestinal tract. No chemical bond was observed between drug and polymer. Microencapsulation led to drug amorphization. Formulations prolonged the release of capsaicinoids without changing the release kinetic (biexponential model). Microencapsulation increased the gastric tolerability of capsaicinoids because it prevented inflammatory processes in the stomach of rats. Microparticles containing 5% capsaicinoids demonstrated a statistically significant reduction of Lee index, mesenteric and retroperitoneal fat pads of rats with obesity induced by hypothalamic lesion using monosodium l-glutamate. In summary, capsaicinoids-loaded poly(ε-caprolactone) microparticles are low-irritative oral controlled-release carriers for a long-term use in obesity.


Asunto(s)
Capsaicina/farmacología , Portadores de Fármacos/química , Microesferas , Poliésteres/química , Estómago/efectos de los fármacos , Administración Oral , Animales , Capsaicina/administración & dosificación , Capsaicina/química , Obesidad/tratamiento farmacológico , Tamaño de la Partícula , Ratas , Ratas Wistar , Estómago/patología , Temperatura
17.
PLoS One ; 8(11): e79013, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24236083

RESUMEN

The genus Capsicum is New World in origin and represents a complex of a wide variety of both wild and domesticated taxa. Peppers or fruits of Capsicum species rarely have been identified in the paleoethnobotanical record in either Meso- or South America. We report here confirmation of Capsicum sp. residues from pottery samples excavated at Chiapa de Corzo in southern Mexico dated from Middle to Late Preclassic periods (400 BCE to 300 CE). Residues from 13 different pottery types were collected and extracted using standard techniques. Presence of Capsicum was confirmed by ultra-performance liquid chromatography (UPLC)/MS-MS Analysis. Five pottery types exhibited chemical peaks for Capsicum when compared to the standard (dihydrocapsaicin). No peaks were observed in the remaining eight samples. Results of the chemical extractions provide conclusive evidence for Capsicum use at Chiapas de Corzo during a 700 year period (400 BCE-300 CE). Presence of Capsicum in different types of culinary-associated pottery raises questions how chili pepper could have been used during this early time period. As Pre-Columbian cacao products sometimes were flavored using Capsicum, the same pottery sample set was tested for evidence of cacao using a theobromine marker: these results were negative. As each vessel that tested positive for Capsicum had a culinary use we suggest here the possibility that chili residues from the Chiapas de Corzo pottery samples reflect either paste or beverage preparations for religious, festival, or every day culinary use. Alternatively, some vessels that tested positive merely could have been used to store peppers. Most interesting from an archaeological context was the presence of Capsicum residue obtained from a spouted jar, a pottery type previously thought only to be used for pouring liquids.


Asunto(s)
Capsicum/química , Indígenas Norteamericanos , Capsaicina/química , Culinaria/historia , Utensilios de Comida y Culinaria , Historia Antigua , Humanos , México , Espectrometría de Masas en Tándem
18.
Molecules ; 18(11): 13471-86, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24184818

RESUMEN

The chili pepper is a very important plant used worldwide as a vegetable, as a spice, and as an external medicine. In this work, eight different varieties of Capsicum annuum L. have been characterized by their capsaicinoids content. The chili pepper fruits were cultivated in the Comarca Lagunera region in North of Mexico. The qualitative and quantitative determination of the major and minor capsaicinoids; alkaloids responsible for the pungency level, has been performed by a validated chromatographic procedure (HPLC-DAD) after a preliminary drying step and an opportune extraction procedure. Concentrations of total capsaicinoids varied from a not detectable value for Bell pepper to 31.84 mg g(-1) dried weight for Chiltepín. Samples were obtained from plants grown in experimental field and in greenhouse without temperature control, in order to evaluate temperature effect. Analysis of the two principal capsaicinoids in fruits showed that the amount of dihydrocapsaicin was always higher than capsaicin. In addition, our results showed that the content of total capsaicinoids for the varieties Serrano, Puya, Ancho, Guajillo and Bell pepper were increased with high temperature, while the content of total capsaicinoids and Scoville heat units (SHU) for the varieties De árbol and Jalapeño decreased. However, the pungency values found in this study were higher for all varieties analyzed than in other studies.


Asunto(s)
Capsicum/química , Cromatografía Líquida de Alta Presión/métodos , Capsaicina/análogos & derivados , Capsaicina/química , Estructura Molecular , Temperatura
19.
Toxicol Appl Pharmacol ; 266(3): 385-98, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23238560

RESUMEN

Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Capsaicina/análogos & derivados , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis/fisiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Capsaicina/síntesis química , Capsaicina/química , Capsaicina/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Fragmentación del ADN , Femenino , Citometría de Flujo , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Células MCF-7 , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Microscopía Confocal , Microtúbulos/metabolismo , Modelos Moleculares
20.
J Food Sci ; 77(3): S135-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22384966

RESUMEN

Absolute threshold and just noticeable difference (JND) were determined for the perception of pungency using chili pepper in aqueous solutions. Absolute threshold and JND were determined using 2 alternative forced-choice sensory tests tests. High-performance liquid chromatography technique was used to determine capsaicinoids concentration in samples used for sensory analysis. Sensory absolute threshold was 0.050 mg capsaicinoids/kg sample. Five JND values were determined using 5 reference solutions with different capsaicinoids concentration. JND values changed proportionally as capsaicinoids concentration of the reference sample solutions changed. Weber fraction remained stable for the first 4 reference capsaicinoid solutions (0.05, 0.11, 0.13, and 0.17 mg/kg) but changed when the most concentrated reference capsaicinoids solution was used (0.23 mg/kg). Quantification limit for instrumental analysis was 1.512 mg/kg capsaicinoids. Sensory methods employed in this study proved to be more sensitive than instrumental methods. Practical Application: A better understanding of the process involved in the sensory perception of pungency is currently required because "hot" foods are becoming more popular in western cuisine. Absolute thresholds and differential thresholds are useful tools in the formulation and development of new food products. These parameters may help in defining how much chili pepper is required in a formulated product to ensure a perceptible level of pungency, as well as in deciding how much more chili pepper is required in a product to produce a perceptible increase in its pungency.


Asunto(s)
Capsaicina/análisis , Capsicum/química , Sensación/fisiología , Percepción del Gusto , Adolescente , Adulto , Capsaicina/química , Cromatografía Líquida de Alta Presión , Umbral Diferencial , Femenino , Frutas/química , Humanos , Límite de Detección , Persona de Mediana Edad , Umbral Sensorial , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA