Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 360: 124693, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39122173

RESUMEN

Plastic additives, such as phthalates, are ubiquitous contaminants that can have detrimental impacts on marine organisms and overall ecosystems' health. Valuable information about the status and resilience of marine ecosystems can be obtained through the monitoring of key indicator species, such as cetaceans. In this study, fatty acid profiles and phthalates were examined in blubber biopsies of free-ranging individuals from two delphinid species (short-finned pilot whale - Globicephala macrorhynchus, n = 45; common bottlenose dolphin - Tursiops truncatus, n = 39) off Madeira Island (NE Atlantic). This investigation aimed to explore the relations between trophic niches (epipelagic vs. mesopelagic), contamination levels, and the health status of individuals within different ecological and biological groups (defined by species, residency patterns and sex). Multivariate analysis of selected dietary fatty acids revealed a clear niche segregation between the two species. Di-n-butylphthalate (DBP), diethyl phthalate (DEP), and bis(2-ethylhexyl) phthalate (DEHP) were the most prevalent among the seven studied phthalates, with the highest concentration reached by DEHP in a bottlenose dolphin (4697.34 ± 113.45 ng/g). Phthalates esters (PAEs) concentration were higher in bottlenose dolphins (Mean ∑ PAEs: 947.56 ± 1558.34 ng/g) compared to pilot whales (Mean ∑ PAEs: 229.98 ± 158.86 ng/g). In bottlenose dolphins, DEHP was the predominant phthalate, whereas in pilot whales, DEP and DBP were more prevalent. Health markers suggested pilot whales might suffer from poorer physiological conditions than bottlenose dolphins, although high metabolic differences were seen between the two species. Phthalate levels showed no differences by ecological or biological groups, seasons, or years. This study is the first to assess the extent of plastic additive contamination in free-ranging cetaceans from a remote oceanic island system, underscoring the intricate relationship between ecological niches and contaminant exposure. Monitoring these chemicals and their potential impacts is vital to assess wild population health, inform conservation strategies, and protect critical species and habitats.


Asunto(s)
Delfín Mular , Monitoreo del Ambiente , Ácidos Grasos , Ácidos Ftálicos , Contaminantes Químicos del Agua , Calderón , Animales , Ácidos Ftálicos/metabolismo , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Ácidos Grasos/metabolismo , Calderón/metabolismo , Masculino , Delfín Mular/metabolismo , Femenino , Ecosistema , Biomarcadores/metabolismo , Dietilhexil Ftalato/metabolismo
2.
Sci Total Environ ; 946: 173816, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852872

RESUMEN

Arsenic-containing hydrocarbons (AsHC), a subclass of arsenolipids (AsL), have been proven to exert neuro- and cytotoxic effects in in-vitro and in-vivo studies and were shown to pass through biological barriers like the blood-brain barrier. However, there has been no connection as to the environmental relevance of these findings, meaning there is no study based on samples from free living animals that are exposed to these compounds. Here, we report the identification of two AsHC as well as 3 arsenosugar phospholipids (AsPL) in the brains of a pod of stranded long-finned pilot whales (Globicephala melas) as well as the absence of arsenobetaine (AsB) which is often found to be a dominant As species in fish. We show data which suggests that there is an age-dependent accumulation of AsL in the brains of the animals. The results show that, in contrast to other organs, total arsenic as well as arsenolipids accumulate in an asymptotic pattern in the brains of the animals. Total As concentrations were found to range from 87 to 260 µg As/kg wet weight and between 0.6 and 27.6 µg As/kg was present in the form of AsPL958 in the brains of stranded pilot whales which was the most dominant lipophilic species present. The asymptotic relationship between total As, as well as AsPL, concentration in the brain and whale age may suggest that the accumulation of these species takes place prior to the full development of the blood-brain barrier in young whales. Finally, comparison between the organs of local squid, a common source of food for pilot whales, highlighted a comparable AsL profile which indicates a likely bioaccumulation pathway through the food chain.


Asunto(s)
Encéfalo , Contaminantes Químicos del Agua , Calderón , Animales , Calderón/metabolismo , Encéfalo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Arsénico/metabolismo , Bioacumulación , Arsenicales/metabolismo , Monitoreo del Ambiente
3.
Environ Pollut ; 356: 124243, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38821343

RESUMEN

Mercury (Hg) is a naturally occurring heavy metal, but human activities and natural processes have led to increased pollution with Hg in the environment. Organic mercury, such as methyl mercury (MeHg), is considered more toxic than most inorganic mercury compounds. MeHg is rapidly taken up by aquatic organisms and bioaccumulates through the aquatic food web. The bioaccumulation causes high levels of MeHg in apex predators, such as pilot whales. Pilot whale meat is a traditional food source on the Faroe Islands; thus the consumption of pilot whale meat can lead to high Hg exposures in humans. The majority of the total Hg in pilot whale and fish is generally assumed to be MeHg. However, the relative amount of MeHg to total Hg can be highly variable. For risk assessment, it is relevant to know both the MeHg and the total Hg content. This study summarizes the knowledge of muscle MeHg concentrations relative to total Hg concentrations in pilot whales in the Faroe Islands. The pilot whale tissue was sampled during 1977-78, 1986-87, 2009-2010, and 2015. The 2015 samples included two pairs of fetuses/mothers. The results showed that the 1977-78 pilot whale muscle samples had lower relative concentrations of MeHg to total Hg compared to samples from the subsequent years. This discrepancy between early and later years could not solely be explained by increased demethylation related to concentration differences. Instead, the difference is more likely explained by variations in relative amounts of MeHg in prey of the pilot whales. In the fetuses the total Hg concentration was 20% of the Hg concentration in the mother. The relative MeHg concentrations in the fetuses were also lower (∼20%-30%) than in the mother. However, the MeHg to total Hg fraction in the fetus was similar or higher than in the mother.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Calderón , Animales , Calderón/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/metabolismo , Mercurio/metabolismo , Mercurio/análisis , Dinamarca , Femenino , Cadena Alimentaria
4.
Mar Pollut Bull ; 189: 114795, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36898275

RESUMEN

Globicephala melas has been harvested in the Faroe Islands for centuries. Given the distances travelled by this species, tissue/body fluid samples represent unique matrices to be considered as an integration of environmental condition and pollution status of their prey. For the first time, bile samples were analysed for presence of polycyclic aromatic hydrocarbon (PAH) metabolites and protein content. Concentrations of 2- and 3-ring PAH metabolites ranged from 11 to 25 µg mL-1 pyrene fluorescence equivalents. In total, 658 proteins were identified and 61,5 % were common amongst all individuals. Identified proteins were integrated into in silico software and determined that the top predicted disease and functions were neurological diseases, inflammation, and immunological disorders. The metabolism of reactive oxygen species (ROS) was predicted to be dysregulated, which can have consequences to both the protection against ROS produced during dives and contaminant exposures. The obtained data is valuable for understanding metabolism and physiology of G. melas.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Calderón , Animales , Calderón/metabolismo , Bilis , Especies Reactivas de Oxígeno/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Océanos y Mares
5.
Physiol Biochem Zool ; 94(4): 228-240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010119

RESUMEN

AbstractFat-level measurements used to indicate individual body condition and fitness are useful only when taken at a region along the body where fat responds to variations in caloric intake. Investigations to identify appropriate species-specific regions are limited, especially for cetaceans that have a specialized fat (blubber) that serves as an energy reserve and provides insulation. Over 18 mo, body mass of six pilot whales varied (range: 50-172 kg), and although caloric intake increased when water temperatures were lower, generally the best-fitting state-space model for length-adjusted mass was based on a single factor, caloric intake. After correcting for body length (range: 330-447 cm), the slope for blubber thickness and "blubber ring" thickness (average blubber thickness along a girth) in relation to body mass was positive and had a P value of <0.10 at six of 16 blubber measurement sites and one of five girth measurement sites, respectively. The slope for body girth (a reflection of changes in underlying blubber thickness) in relation to body mass was positive and had a lower P value ([Formula: see text]) at three of five girth measurement sites. Results indicate that blubber from the anterior insertion of the pectoral fins to the posterior insertion of the dorsal fin is the most metabolically active region. This region includes the midflank site, a location where blubber thickness measurements have historically been taken to monitor cetacean body condition. Conversely, blubber in the peduncle region was comparatively inert. These findings must be considered when measuring blubber thickness and body width (i.e., photogrammetry) to monitor the condition of free-ranging cetaceans.


Asunto(s)
Tejido Adiposo/metabolismo , Peso Corporal/fisiología , Calderón/metabolismo , Envejecimiento , Animales , Femenino , Masculino
6.
Chemosphere ; 237: 124448, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31398606

RESUMEN

The Mediterranean Sea remains a complex system for mercury (Hg) cycling and accumulation in marine vertebrates. The extremely high levels these animals present demand for an urgent understanding of such processes and the development of new analytical techniques that go beyond the simple contamination monitoring. It was often proposed that prey selection or habitat use may affect Hg contamination in animals; however, it was never possible to measure which factor influences more rates and pathways of contamination. In this paper, we directly integrate toxicological information (Hg levels) and ecological tracers (stable isotopes of C, N and S) into a common data analysis framework (isotopic niches), with the aim of quantifying the influence of species' trophic behaviour on Hg contamination. The analysis was conducted on skin biopsies of fin whales Balaenoptera physalus, long-finned pilot whales Globicephala melas and sperm whales Physeter microcephalus. Their different trophic modes and residency in the area make them model species for the analysis of Hg accumulation along NWMS food webs. We measured Total Hg (T-Hg) concentrations through absorbance spectrometry with the DMA80 Milestone. Carbon, nitrogen and sulphur isotope compositions were measured via mass spectrometry in an IRMS coupled to an Elemental Analyser (EA) Isoprime. Comparison of ecological and contamination niches allowed to explain Hg accumulation in Mediterranean marine predators. Factors such as food web complexity, trophic position, hunting distribution or habitat use (e.g., foraging depth) did not influence Hg exposure. It is rather the selection of prey type, which determines the range of potential Hg sources and as a consequence the rates of accumulation in whales' tissues. A generalist piscivorous species such as the pilot whales will bioaccumulate more Hg than specialised sperm whales feeding mostly on cephalopods.


Asunto(s)
Ecología , Monitoreo del Ambiente , Cadena Alimentaria , Isótopos/análisis , Ballenas/metabolismo , Animales , Isótopos de Carbono/análisis , Ballena de Aleta/metabolismo , Mar Mediterráneo , Isótopos de Mercurio/análisis , Isótopos de Nitrógeno/análisis , Cachalote/metabolismo , Isótopos de Azufre/análisis , Contaminantes Químicos del Agua/análisis , Calderón/metabolismo
7.
Sci Rep ; 9(1): 7262, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086275

RESUMEN

Whales accumulate mercury (Hg), but do not seem to show immediate evidence of toxic effects. Analysis of different tissues (liver, kidney, muscle) and biofluids (blood, milk) from a pod of stranded long-finned pilot whales (Globicephala melas) showed accumulation of Hg as a function of age, with a significant decrease in the MeHg fraction. Isotopic analysis revealed remarkable differences between juvenile and adult whales. During the first period of life, Hg in the liver became isotopically lighter (δ202Hg decreased) with a strongly decreasing methylmercury (MeHg) fraction. We suggest this is due to preferential demethylation of MeHg with the lighter Hg isotopes and transport of MeHg to less sensitive organs, such as the muscles. Also changes in diet, with high MeHg intake in utero and during lactation, followed by increasing consumption of solid food contribute to this behavior. Interestingly, this trend in δ202Hg is reversed for livers of adult whales (increasing δ202Hg value), accompanied by a progressive decrease of δ202Hg in muscle at older ages. These total Hg (THg) isotopic trends suggest changes in the Hg metabolism of the long-finned pilot whales, development of (a) detoxification mechanism(s) (e.g., though the formation of HgSe particles), and Hg redistribution across the different organs.


Asunto(s)
Compuestos de Mercurio/metabolismo , Calderón/metabolismo , Factores de Edad , Animales , Femenino , Riñón/química , Hígado/química , Masculino , Espectrometría de Masas , Compuestos de Mercurio/análisis , Compuestos de Mercurio/sangre , Radioisótopos de Mercurio/análisis , Radioisótopos de Mercurio/metabolismo , Leche/química , Músculo Esquelético/química
8.
Toxicol Appl Pharmacol ; 376: 58-69, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31078588

RESUMEN

Marine metal pollution is an emerging concern for human, animal, and ecosystem health. We considered metal pollution in the Sea of Cortez, which is a relatively isolated sea rich in biodiversity. Here there are potentially significant anthropogenic inputs of pollution from agriculture and metal mining. We considered the levels of 23 heavy metals and selenium in seven distinct cetacean species found in the area. Our efforts considered two different periods of time: 1999 and 2016/17. We considered the metal levels in relation to (1) all species together across years, (2) differences between suborders Odontoceti and Mysticeti, (3) each species individually across years, and (4) gender differences for each of these comparisons. We further compared metal levels found in sperm whale skin samples collected during these voyages to a previous voyage in 1999, to assess changes in metal levels over a longer timescale. The metals Mg, Fe, Al, and Zn were found at the highest concentrations across all species and all years. For sperm whales, we observed decreased metal levels from 1999 to 2016/2017, except for iron (Fe), nickel (Ni), and chromium (Cr), which either increased or did not change during this time period. These results indicate a recent change in the metal input to the Sea of Cortez, which may indicate a decreased concern for human, animal, and ecosystem health for some metals, but raises concern for the genotoxic metals Cr and Ni. This work was supported by NIEHS grant ES016893 (J.P.W.) and numerous donors to the Wise Laboratory.


Asunto(s)
Cetáceos/metabolismo , Salud Ambiental/métodos , Metales Pesados/análisis , Contaminación Química del Agua/análisis , Animales , Balaenoptera/metabolismo , Femenino , Yubarta/metabolismo , Masculino , Metales Pesados/toxicidad , Océano Pacífico , Selenio/análisis , Selenio/toxicidad , Factores Sexuales , Piel/química , Especificidad de la Especie , Cachalote/metabolismo , Factores de Tiempo , Contaminantes Químicos del Agua , Contaminación Química del Agua/efectos adversos , Calderón/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-29277452

RESUMEN

In response to the explosion of the Deepwater Horizon and the massive release of oil that followed, we conducted three annual research voyages to investigate how the oil spill would impact the marine offshore environment. Most investigations into the ecological and toxicological impacts of the Deepwater Horizon Oil crisis have mainly focused on the fate of the oil and dispersants, but few have considered the release of metals into the environment. From studies of previous oil spills, other marine oil industries, and analyses of oil compositions, it is evident that metals are frequently encountered. Several metals have been reported in the MC252 oil from the Deepwater Horizon oil spill, including the nonessential metals aluminum, arsenic, chromium, nickel, and lead; genotoxic metals, such as these are able to damage DNA and can bioaccumulate in organisms resulting in persistent exposure. In the Gulf of Mexico, whales are the apex species; hence we collected skin biopsies from sperm whales (Physeter macrocephalus), short-finned pilot whales (Globicephala macrorhynchus), and Bryde's whales (Balaenoptera edeni). The results from our three-year study of monitoring metal levels in whale skin show (1) genotoxic metals at concentrations higher than global averages previously reported and (2) patterns for MC252-relevant metal concentrations decreasing with time from the oil spill.


Asunto(s)
Balaenoptera/metabolismo , Metales/metabolismo , Mutágenos/metabolismo , Contaminación por Petróleo , Piel/metabolismo , Cachalote/metabolismo , Calderón/metabolismo , Animales , Dorso , Balaenoptera/crecimiento & desarrollo , Biopsia/veterinaria , Cromo/metabolismo , Cromo/toxicidad , Monitoreo del Ambiente , Femenino , Golfo de México , Masculino , Metales/toxicidad , Mutágenos/toxicidad , Níquel/metabolismo , Níquel/toxicidad , Reproducibilidad de los Resultados , Caracteres Sexuales , Piel/efectos de los fármacos , Espectrofotometría Atómica , Cachalote/crecimiento & desarrollo , Distribución Tisular , Toxicocinética , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Calderón/crecimiento & desarrollo
10.
Chemosphere ; 195: 11-20, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29248748

RESUMEN

Blubber from Faroese pilot whales (Globicephala melas) was analysed for brominated dioxins PBDD/Fs, with a subset also analysed for chlorinated dioxins, PCDD/Fs. The studied individuals were restricted to juvenile male whales sampled in the Faroe Islands during the period 1997-2013. Among the PBDD/Fs, the furans were predominant, although the relative abundance of various congeners differed between samples. Furans accounted for, on average, 79% of the ∑PBDD/Fs in the samples, with 1,2,3,4,6,7,8-HpBDF the most abundant congener, found in half of the analysed pilot whales. The concentration range for ∑PBDD/Fs among the samples was 0.080-71 pg/g l.w. (lipid weight), and the sum of toxic equivalents ranged from 0.0039 to 4.7 pg TEQ/g l.w. No relationship was found between PBDD/Fs and PCDD/Fs. In addition, 20 pilot whale samples from the period 2010-2013 were analysed for PBDEs. Several PBDE congeners were found in all of the sampled pilot whales, and at noticeably higher levels than PBDD/Fs and PCDD/Fs. The ∑PBDEs ranged from 140 to 1900 ng/g l.w., with BDE #47 the most abundant congener detected in the samples. Results from the present study were then compared with data from previous studies on pilot wales to investigate temporal trends between 1986 and 2013. The comparison indicated that PBDE concentrations in juvenile males have decreased from 1996 to the latest observations in 2013. No relationship between the concentration levels of PBDD/Fs and PBDEs in the sampled pilot whales could be identified, which indicates possible differences in the metabolism of, or exposure to, PBDEs and PBDD/Fs.


Asunto(s)
Dibenzofuranos/análisis , Dioxinas/análisis , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/análisis , Calderón/metabolismo , Animales , Benzofuranos/análisis , Dinamarca , Furanos/análisis , Masculino , Gales
11.
Environ Res ; 159: 613-621, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28918287

RESUMEN

Persistent organic pollutants (POPs) are known to have endocrine disruptive effects, interfering with endogenous steroid hormones. The present study examined nine steroid hormones and their relationships with the concentrations of selected POPs in pilot whales (Globicephala melas) from the Faroe Islands, NE Atlantic. The different steroids were detected in 15 to all of the 26 individuals. High concentrations of progesterone (83.3-211.7pmol/g) and pregnenolone (PRE; 4.68-5.69pmol/g) were found in three adult females indicating that they were pregnant or ovulating. High androgen concentrations in two of the males reflected that one was adult and that one (possibly) had reached puberty. In males a significant positive and strong correlation between body length and testosterone (TS) levels was identified. Furthermore, positive and significant correlations were found between 4-OH-CB107/4'-OH-CB108 and 17ß-estradiol in males. In adult females significant positive correlations were identified between PRE and CB149 and t-nonachlor, between estrone and CB138, -149, -187 and p,p'-DDE, between androstenedione and CB187, and between TS and CB-99 and -153. Although relationships between the POPs and the steroid hormones reported herein are not evidence of cause-effect relationships, the positive correlations between steroids and POPs, particularly in females, suggest that POPs may have some endocrine disrupting effects on the steroid homeostasis in this species.


Asunto(s)
Hormonas Esteroides Gonadales/sangre , Contaminantes Químicos del Agua/sangre , Calderón/metabolismo , Animales , Dinamarca , Femenino , Masculino
12.
Sci Total Environ ; 545-546: 407-13, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26748005

RESUMEN

The bioaccumulation of metals was investigated by analysis of liver, kidney, muscle and brain tissue of a pod of 21 long-finned pilot whales (Globicephala melas) of all ages stranded in Scotland, UK. The results are the first to report cadmium (Cd) passage through the blood-brain barrier of pilot whales and provide a comprehensive study of the long-term (up to 35 years) mammalian exposure to the environmental pollutants. Additionally, linear accumulation of mercury (Hg) was observed in all studied tissues, whereas for Cd this was only observed in the liver. Total Hg concentration above the upper neurochemical threshold was found in the sub-adult and adult brains and methylmercury (MeHg) of 2.2mg/kg was found in the brain of one individual. Inter-elemental analysis showed significant positive correlations of Hg with selenium (Se) and Cd with Se in all studied tissues. Furthermore, differences in the elemental concentrations in the liver and brain tissues were found between juvenile, sub-adult and adult groups. The highest concentrations of manganese, iron, zinc, Se, Hg and MeHg were noted in the livers, whereas Cd predominantly accumulated in the kidneys. High concentrations of Hg and Cd in the tissues of pilot whales presented in this study reflect ever increasing toxic stress on marine mammals.


Asunto(s)
Encéfalo/metabolismo , Cadmio/metabolismo , Monitoreo del Ambiente , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Calderón/metabolismo , Animales , Escocia
13.
Sci Total Environ ; 520: 270-85, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25817764

RESUMEN

Concentrations of PCBs, organochlorine pesticides (OCPs), brominated flame retardants and a suite of relevant metabolites of these POPs, in all 175 different compounds, were determined in liver and plasma of traditionally hunted pilot whales (n=14 males and n=13 females of different age groups) from the Faroe Islands. The main objectives of this study were to determine differences in the presence and concentrations of the compounds in the liver and plasma, how they depend on developmental stage (calves, sub adults, and adult females), and to assess maternal transfer of the compounds to suckling calves. Generally, the lipid weight (lw) concentrations of quantified POPs in the liver and plasma of pilot whales were positively correlated, and lw concentrations of most POPs did not differ between these matrices. However, concentrations of some individual POPs differed significantly (p<0.05) between plasma and liver; CB-153 (p=0.044), CB-174 (p=0.027) and BDE-47 (p=0.017) were higher in plasma than in liver, whereas p,p'-DDE (p=0.004) and HCB (p<0.001) were higher in liver than in plasma. POP concentrations differed between age/gender groups with lower levels in adult females than in juveniles. The relative distribution of compounds also differed between the age groups, due to the influence of the maternal transfer of the compounds. The results indicated that larger, more hydrophobic POPs were transferred to the offspring less efficiently than smaller or less lipid soluble compounds. Very low levels of both OH- and/or MeSO2-PCB and PBDE metabolites were found in all age groups, with no significant (p>0.05) differences between the groups, strongly suggesting a very low metabolic capacity for their formation in pilot whales. The lack of difference in the metabolite concentrations between the age groups also indicates less maternal transfer of these contaminant groups compared to the precursor compounds.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua/metabolismo , Calderón/metabolismo , Animales , Dinamarca , Diclorodifenil Dicloroetileno/metabolismo , Femenino , Retardadores de Llama/metabolismo , Éteres Difenilos Halogenados/metabolismo , Hidrocarburos Clorados/metabolismo , Hígado/metabolismo , Masculino , Plaguicidas/metabolismo , Bifenilos Policlorados/metabolismo
14.
Chemosphere ; 94: 91-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24080004

RESUMEN

Physiologically based pharmacokinetic (PBPK) models for wild animal populations such as marine mammals typically have a high degree of model uncertainty and variability due to the scarcity of information and the embryonic nature of this field. Parameters values used in marine mammals models are usually taken from other mammalian species (e.g. rats or mice) and might not be entirely suitable to properly explain the kinetics of pollutants in marine mammals. Therefore, several parameters for a PBPK model for the bioaccumulation and pharmacokinetics of PCB 153 in long-finned pilot whales were estimated in the present study using the Bayesian approach executed with Markov chain Monte Carlo (MCMC) simulations. This method uses 'prior' information of the parameters, either from the literature or from previous model runs. The advantage is that this method uses such 'prior' parameters to calculate probability distributions to determine 'posterior' values that best explain the field observations. Those field observations or datasets were PCB 153 concentrations in blubber of long-finned pilot whales from Sandy Cape and Stanley, Tasmania, Australia. The model predictions showed an overall decrease in PCB 153 levels in blubber over the lifetime of the pilot whales. All parameters from the Sandy Cape model were updated using the Stanley dataset, except for the concentration of PCB 153 in the milk. The model presented here is a promising and preliminary start to PBPK modeling in long-finned pilot whales that would provide a basis for non-invasive studies in these protected marine mammals.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Bifenilos Policlorados/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminación Química del Agua/estadística & datos numéricos , Calderón/metabolismo , Animales , Australia , Teorema de Bayes , Exposición a Riesgos Ambientales/análisis , Masculino , Cadenas de Markov , Modelos Químicos , Método de Montecarlo , Incertidumbre
15.
Sci Total Environ ; 461-462: 117-25, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23714247

RESUMEN

Pollution is a threat to the health of marine mammals worldwide. Mass-strandings are poorly understood, but often involve pilot whales. However, there is limited information regarding pollution in long-finned pilot whales from Australia. Consequently, the profiles and levels of several pollutant classes were investigated in blubber of Tasmanian long-finned pilot whales. DDX levels were highest in all groups, followed by PCBs or MeO-PBDEs and lowest for PBDEs. The concentrations of all pollutants decreased with age in males. This is at least partly due to the growth dilution effect although it might also be caused by decreasing levels of PCBs, PBDEs, DDXs, HCB and CHLs in the environment. Fetus/mother ratios of higher chlorinated PCBs increased with the duration of pregnancy suggesting a preference for offloading via gestation rather than through lactation. Overall, the highest pollutant levels were found in the youngest animals.


Asunto(s)
Tejido Adiposo/metabolismo , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Contaminantes Ambientales/análisis , Hidrocarburos Halogenados/análisis , Calderón/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Cadáver , Contaminantes Ambientales/farmacocinética , Femenino , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Halogenados/farmacocinética , Masculino , Embarazo , Tasmania
16.
Sci Total Environ ; 416: 482-9, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22225820

RESUMEN

A selection of MeO-BDE and BDE congeners were analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography. The analysis was performed using both low resolution and high resolution GC-MS. MeO-PBDE concentrations relative to total PBDE concentrations varied greatly between sampling periods and species. The highest MeO-PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, often exceeding the concentration of the most abundant PBDE, BDE-47. The lowest MeO-PBDE levels were found in fin whales and ringed seals. The main MeO-BDE congeners were 6-MeO-BDE47 and 2'-MeO-BDE68. A weak correlation only between BDE47 and its methoxylated analog 6-MeO-BDE47 was found and is indicative of a natural source for MeO-PBDEs.


Asunto(s)
Organismos Acuáticos/metabolismo , Éteres Difenilos Halogenados/análisis , Hidrocarburos Bromados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Regiones Árticas , Carga Corporal (Radioterapia) , Delfines/metabolismo , Ballena de Aleta/metabolismo , Ballena Minke/metabolismo , Phoca/metabolismo , Phocoena/metabolismo , Ballenas/metabolismo , Calderón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA