Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Nat Commun ; 15(1): 7415, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198439

RESUMEN

Modern birds possess highly encephalized brains that evolved from non-avian dinosaurs. Evolutionary shifts in developmental timing, namely juvenilization of adult phenotypes, have been proposed as a driver of head evolution along the dinosaur-bird transition, including brain morphology. Testing this hypothesis requires a sufficient developmental sampling of brain morphology in non-avian dinosaurs. In this study, we harness brain endocasts of a postnatal growth series of the ornithischian dinosaur Psittacosaurus and several other immature and mature non-avian dinosaurs to investigate how evolutionary changes to brain development are implicated in the origin of the avian brain. Using three-dimensional characterization of neuroanatomical shape across archosaurian reptiles, we demonstrate that (i) the brain of non-avian dinosaurs underwent a distinct developmental trajectory compared to alligators and crown birds; (ii) ornithischian and non-avialan theropod dinosaurs shared a similar developmental trajectory, suggesting that their derived trajectory evolved in their common ancestor; and (iii) the evolutionary shift in developmental trajectories is partly consistent with paedomorphosis underlying overall brain shape evolution along the dinosaur-bird transition; however, the heterochronic signal is not uniform across time and neuroanatomical region suggesting a highly mosaic acquisition of the avian brain form.


Asunto(s)
Evolución Biológica , Aves , Encéfalo , Dinosaurios , Fósiles , Cráneo , Animales , Dinosaurios/anatomía & histología , Dinosaurios/crecimiento & desarrollo , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Aves/anatomía & histología , Aves/crecimiento & desarrollo , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Filogenia , Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/crecimiento & desarrollo
2.
Proc Biol Sci ; 291(2029): 20240720, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163982

RESUMEN

Extant crocodilian jaws are subject to functional demands induced by feeding and hydrodynamics. However, the morphological and ecological diversity of extinct crocodile-line archosaurs is far greater than that of living crocodilians, featuring repeated convergence towards disparate ecologies including armoured herbivores, terrestrial macropredators and fully marine forms. Crocodile-line archosaurs, therefore, present a fascinating case study for morphological and functional divergence and convergence within a clade across a wide range of ecological scenarios. Here, we build performance landscapes of two-dimensional theoretical jaw shapes to investigate the influence of strength, speed and hydrodynamics in the morphological evolution of crocodile-line archosaur jaws, and test whether ecologically convergent lineages evolved similarly optimal jaw function. Most of the 243 sampled jaw morphologies occupy optimized regions of theoretical morphospace for either rotational efficiency, resistance to Von Mises stress, hydrodynamic efficiency or a trade-off between multiple functions, though some seemingly viable shapes remain unrealized. Jaw speed is optimized only in a narrow region of morphospace whereas many shapes possess optimal jaw strength, which may act as a minimum boundary rather than a strong driver for most taxa. This study highlights the usefulness of theoretical morphology in assessing functional optimality, and for investigating form-function relationships in diverse clades.


Asunto(s)
Caimanes y Cocodrilos , Evolución Biológica , Maxilares , Animales , Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Maxilares/anatomía & histología , Maxilares/fisiología , Fenómenos Biomecánicos , Fósiles/anatomía & histología , Hidrodinámica , Mandíbula/anatomía & histología , Mandíbula/fisiología
3.
An Acad Bras Cienc ; 96(3): e20230753, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985031

RESUMEN

The larynx is in the lower respiratory tract and has the function of protecting the airways, controlling, and modulating breathing, assisting the circulatory system, and vocalizing. This study aims to describe the anatomy and histology of the skeleton of the larynx and trachea of the species Chelonia mydas, Caiman yacare and Caiman latirostris. The study was conducted at the Federal University of Espírito Santo (UFES), using nine specimens of Ch. mydas, 20 of Ca. yacare and four of Ca. latirostris. Samples of the larynx and trachea were collected, fixed, and sent for dissection of the structures and subsequent macroscopic analysis. For histology, samples were processed by the routine paraffin embedding method and stained with hematoxylin-eosin and Verhoeff. For the three species, two arytenoid cartilages, a cricoid cartilage, a hyoid apparatus composed of a base and two horns were found. In Ch. mydas, two structures called thyroid wings were observed, not found in crocodilians. The trachea of crocodilians presented incomplete tracheal rings and musculature, while the trachea of Ch. mydas presented complete tracheal rings. Histologically, the entire cartilaginous skeleton of the larynx of the three species, as well as the tracheal rings, are constituted by hyaline cartilage.


Asunto(s)
Caimanes y Cocodrilos , Laringe , Tráquea , Tortugas , Animales , Tráquea/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Laringe/anatomía & histología , Tortugas/anatomía & histología
4.
J Comp Neurol ; 532(7): e25659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039687

RESUMEN

The telencephalon of reptiles has been suggested to be the key to understanding the evolution of the forebrain. Nevertheless, a meaningful framework to organize the telencephalon in any reptile has, with rare exception, yet to be presented. To address this gap in knowledge, the telencephalon was investigated in two species of crocodiles. A variety of morphological stains were used to examine tissue in transverse, horizontal, and sagittal planes of sections. Besides providing a description of individual nuclei, brain parts were organized based on two features. One was related to two fixed, internal structures: the lateral ventricle and the dorsal medullary lamina. The other was the alignment of neurons into either layers, cortex, or not, nucleus. Viewed from this perspective, all structures, with limited exceptions, could be accurately placed within the telencephalon regardless of the plane of section. Furthermore, this framework can be applied to other reptiles. A further extension of this scheme suggests that all structures in the telencephalon could be grouped into one of two categories: pallial or basal.


Asunto(s)
Caimanes y Cocodrilos , Telencéfalo , Animales , Telencéfalo/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Vías Nerviosas/anatomía & histología , Reptiles/anatomía & histología , Neuronas/citología
5.
Biol Lett ; 20(5): 20230448, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38716586

RESUMEN

Recent molecular taxonomic advancements have expanded our understanding of crocodylian diversity, revealing the existence of previously overlooked species, including the Congo dwarf crocodile (Osteolaemus osborni) in the central Congo Basin rainforests. This study explores the genomic divergence between O. osborni and its better-known relative, the true dwarf crocodile (Osteolaemus tetraspis), shedding light on their evolutionary history. Field research conducted in the northwestern Republic of the Congo uncovered a locality where both species coexist in sympatry/syntopy. Genomic analysis of sympatric individuals reveals a level of divergence comparable to that between ecologically similar South American dwarf caimans (Paleosuchus palpebrosus and Paleosuchus trigonatus), suggesting parallel speciation in the Afrotropics and Neotropics during the Middle to Late Miocene, 10-12 Ma. Comparison of the sympatric and allopatric dwarf crocodiles indicates no gene flow between the analysed sympatric individuals of O. osborni and O. tetraspis. However, a larger sample will be required to answer the question of whether or to what extent these species hybridize. This study emphasizes the need for further research on the biology and conservation status of the Congo dwarf crocodile, highlighting its significance in the unique biodiversity of the Congolian rainforests and thus its potential as a flagship species.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/clasificación , Congo , Simpatría , América del Sur , Filogenia , Especiación Genética
6.
Anat Rec (Hoboken) ; 307(9): 2953-2965, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38323749

RESUMEN

The epidural space of the American alligator (Alligator mississippiensis) is largely filled by a continuous venous sinus. This venous sinus extends throughout the trunk and tail of the alligator, and is continuous with the dural sinuses surrounding the brain. Segmental spinal veins (sl) link the spinal venous sinus (vs) to the somatic and visceral venous drainage. Some of these sl, like the caudal head vein along the occipital plate of the skull, are enlarged, suggesting more functional linkage. No evidence of venous valves or external venous sphincters was found associated with the vs; the relative scarcity of smooth muscle in the venous wall of the sinus suggests limited physiological regulation. The proatlas (pr), which develops between the occipital plate and C1 in crocodylians, is shaped like a neural arch and is fused to the dorsal surface of the vs. The present study suggests that the pr may function to propel venous blood around the brain and spinal cord. The vs effectively encloses the spinal dura, creating a tube-within-a-tube system with the (smaller volume) spinal cerebrospinal fluid (CSF). Changes in venous blood pressure, as are likely during locomotion, would impact dural compliance and CSF pressure waves propagating along the spinal cord.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/anatomía & histología , Médula Espinal/irrigación sanguínea , Espacio Epidural/irrigación sanguínea , Senos Craneales/anatomía & histología , Venas/anatomía & histología
7.
J Anat ; 244(6): 943-958, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38242862

RESUMEN

The evolution of archosaurs provides an important context for understanding the mechanisms behind major functional transformations in vertebrates, such as shifts from sprawling to erect limb posture and the acquisition of powered flight. While comparative anatomy and ichnology of extinct archosaurs have offered insights into musculoskeletal and gait changes associated with locomotor transitions, reconstructing the evolution of motor control requires data from extant species. However, the scarcity of electromyography (EMG) data from the forelimb, especially of crocodylians, has hindered understanding of neuromuscular evolution in archosaurs. Here, we present EMG data for nine forelimb muscles from American alligators during terrestrial locomotion. Our aim was to investigate the modulation of motor control across different limb postures and examine variations in motor control across phylogeny and locomotor modes. Among the nine muscles examined, m. pectoralis, the largest forelimb muscle and primary shoulder adductor, exhibited significantly smaller mean EMG amplitudes for steps in which the shoulder was more adducted (i.e., upright). This suggests that using a more adducted limb posture helps to reduce forelimb muscle force and work during stance. As larger alligators use a more adducted shoulder and hip posture, the sprawling to erect postural transition that occurred in the Triassic could be either the cause or consequence of the evolution of larger body size in archosaurs. Comparisons of EMG burst phases among tetrapods revealed that a bird and turtle, which have experienced major musculoskeletal transformations, displayed distinctive burst phases in comparison to those from an alligator and lizard. These results support the notion that major shifts in body plan and locomotor modes among sauropsid lineages were associated with significant changes in muscle activation patterns.


Asunto(s)
Caimanes y Cocodrilos , Evolución Biológica , Electromiografía , Miembro Anterior , Músculo Esquelético , Postura , Animales , Caimanes y Cocodrilos/fisiología , Caimanes y Cocodrilos/anatomía & histología , Miembro Anterior/fisiología , Miembro Anterior/anatomía & histología , Músculo Esquelético/fisiología , Músculo Esquelético/anatomía & histología , Postura/fisiología , Locomoción/fisiología , Filogenia , Vuelo Animal/fisiología
8.
Anat Rec (Hoboken) ; 307(8): 2749-2786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38116895

RESUMEN

Voay robustus, the extinct Malagasy "horned" crocodile, was originally considered to be the only crocodylian representative in Madagascar during most part of the Holocene. However, Malagasy crocodylian remains have had confused taxonomic attributions and recent studies have underlined that Crocodylus and Voay populations coexisted on the island for at least 7500 years. Here, we describe the inner braincase anatomy of Voay robustus using x-ray computed tomography on four specimens, to provide new anatomical information that distinguishes Voay from Crocodylus, especially features of the brain endocast and the paratympanic sinuses. Geometric morphometric analyses are performed on 3D models of the internal organs to compare statistically Voay with a subset of extant Crocodylidae. Following these comparisons, we build an endocranial morphological matrix to discuss the proposed phylogenetic affinities of Voay with Osteolaeminae from an endocranial point of view. Additionally, we discuss the use of internal characters in systematic studies and find that they can have a major impact on morphological analyses. Finally, new radiocarbon data on Voay and subfossil Crocodylus specimens are recovered between 2010 and 2750 cal BP, which confirm the cohabitation of the two species in the same area for a long period of time. We thus assess several extinction scenarios, and propose a slightly different ecology of Voay compared to Crocodylus, which could have allowed habitat partitioning on the island. Our approach complements information obtained from previous molecular and morphological phylogenies, as well as previous radiocarbon dating, together revealing past diversity and faunal turnovers in Madagascar.


Asunto(s)
Caimanes y Cocodrilos , Fósiles , Filogenia , Cráneo , Animales , Caimanes y Cocodrilos/anatomía & histología , Cráneo/anatomía & histología , Fósiles/anatomía & histología , Extinción Biológica , Madagascar , Encéfalo/anatomía & histología , Evolución Biológica , Tomografía Computarizada por Rayos X
9.
J Anat ; 244(5): 749-791, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38104997

RESUMEN

The anatomy of the archosaurian pelvis and hindlimb has adopted a diversity of successful configurations allowing a wide range of postures during the evolution of the group (e.g., erect, sprawling). For this reason, thorough studies of the structure and function of the pelvic and hindlimb musculature of crocodylians are required and provide the possibility to expand their implications for the evolution of archosaurian locomotion, as well as to identify potential new characters based on muscles and their bony correlates. In this study, we give a detailed description of the pelvic and hindlimb musculature of the South American alligator Caiman yacare, providing comprehensive novel information regarding lower limb and autopodial muscles. Particularly for the pedal muscles, we propose a new classification for the dorsal and ventral muscles of the autopodium based on the organisation of these muscles in successive layers. We have studied the myology in a global background in which we have compared the Caiman yacare musculature with other crocodylians. In this sense, differences in the arrangement of m. flexor tibialis internus 1, m. flexor tibialis externus, m. iliofibularis, mm. puboischiofemorales internii 1 and 2, between Ca. yacare and other crocodylians were found. We also discuss the muscle attachments that have different bony correlates among the crocodylian species and their morphological variation. Most of the correlates did not exhibit great variation among the species compared. The majority of the recognised correlates were identified in the pelvic girdle; additionally, some bony correlates associated with the pedal muscles are highlighted here for the first time. This research provides a wide framework for future studies on comparative anatomy and functional morphology, which could contribute to improving the character definition used in phylogenetic analyses and to understand the patterns of musculoskeletal hindlimb evolution.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/anatomía & histología , Filogenia , Músculo Esquelético/anatomía & histología , Extremidad Inferior , Miembro Posterior/anatomía & histología , Pelvis/anatomía & histología
10.
Curr Biol ; 33(19): 4261-4268.e3, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37714148

RESUMEN

Crocodilians grow slowly and have low metabolic rates similar to other living reptiles, but palaeohistology indicates that they evolved from an ancestor with higher growth rates.1,2,3,4,5 It remains unclear when slow growth appeared in the clade due to the sparse data on key divergences among early Mesozoic members of their stem lineage. We present new osteohistological data from a broad sample of early crocodylomorphs, evaluated in a phylogenetic context alongside other pseudosuchians. We find that the transition to slow-growing bone types during mid-late ontogeny occurred around the origin of Crocodylomorpha during the Late Triassic. Earlier-diverging pseudosuchians had high maximum growth rates, as indicated by the presence of woven bone during middle and (sometimes) late ontogeny.6,7,8,9 Large-bodied pseudosuchians in particular exhibit some of the fastest-growing bone types, giving evidence for prolonged, rapid growth. By contrast, early-branching crocodylomorphs, including a new large-bodied taxon, had slow maximum rates of bone deposition, as evidenced by the presence of predominantly parallel-fibered or lamellar bone tissue during middle-late ontogeny. Late Triassic crocodylomorphs show skeletal anatomy consistent with "active" terrestrial habits,10,11,12 and their slow growth rates reject hypotheses linking this transition with sedentary, semiaquatic lifestyles or sprawling posture. Faster-growing pseudosuchian lineages go extinct in the Triassic, whereas slow-growing crocodylomorphs do not. This contrasts with the Jurassic radiation of fast-growing dinosaurs on the bird-stem lineage,13 suggesting that the End-Triassic mass extinction initiated a divergent distribution of growth strategies that persist in present-day archosaurs.


Asunto(s)
Caimanes y Cocodrilos , Dinosaurios , Animales , Filogenia , Caimanes y Cocodrilos/anatomía & histología , Fósiles , Dinosaurios/anatomía & histología , Extinción Biológica , Evolución Biológica
11.
J Anat ; 243(3): 374-393, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37309776

RESUMEN

We describe the endocranial structures of Hamadasuchus, a peirosaurid crocodylomorph from the late Albian-Cenomanian Kem Kem group of Morocco. The cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization, as well as the bones of the braincase of a new specimen, are reconstructed and compared with extant and fossil crocodylomorphs, which represent different lifestyles. Cranial bones of this specimen are identified as belonging to Hamadasuchus, with close affinities with Rukwasuchus yajabalijekundu, another peirosaurid from the 'middle' Cretaceous of Tanzania. The endocranial structures are comparable to those of R. yajabalijekundu but also to baurusuchids and sebecids (sebecosuchians). Paleobiological traits of Hamadasuchus, such as alert head posture, ecology, and behavior are explored for the first time, using quantitative metrics. The expanded but narrow semi-circular canals and enlarged pneumatization of the skull of Hamadasuchus are linked to a terrestrial lifestyle. Continuing work on the neuroanatomy of supposedly terrestrial crocodylomorphs needs to be broadened to other groups and will allow to characterize whether some internal structures are affected by the lifestyle of these organisms.


Asunto(s)
Caimanes y Cocodrilos , Neuroanatomía , Cráneo , Evolución Biológica , Fósiles , Cabeza/anatomía & histología , Marruecos , Cráneo/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología
12.
PLoS One ; 18(3): e0283581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36976814

RESUMEN

Isolated teeth, previously referred to Aves, are more common than other bird fossils from the Late Cretaceous of Alberta. However, there are no known morphological synapomorphies that distinguish isolated bird teeth, and features of these teeth are generally shared with those of non-avian theropods and crocodilians. Here, specimens ranging from Late Santonian to Late Maastrichtian in age are described and qualitatively categorized into morphotypes, most of which strongly resemble teeth of extant juvenile and some fossil crocodilians. Variation within this sample of teeth may therefore reflect the heterodont dentition of crocodilians, rather than avian species diversity. Quantitative analysis Principal Component Analysis was mostly uninformative, with limited overlap between putative avian teeth and those of known Cretaceous birds, crocodilians, and non-avian theropods. The reassignment of these putative avian teeth to Crocodylia has important ramifications for our understanding of the evolutionary history of Cretaceous birds.


Asunto(s)
Caimanes y Cocodrilos , Dinosaurios , Animales , Caimanes y Cocodrilos/anatomía & histología , Alberta , Aves/anatomía & histología , Evolución Biológica , Fósiles , Filogenia , Dinosaurios/anatomía & histología
13.
J Anat ; 243(1): 1-22, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929596

RESUMEN

The interrelationships of the extant crocodylians Gavialis gangeticus and Tomistoma schlegelii have been historically disputed. Whereas molecular analyses indicate a sister taxon relationship between these two gavialoid species, morphological datasets typically place Gavialis as the outgroup to all other extant crocodylians. Recent morphological-based phylogenetic analyses have begun to resolve this discrepancy, recovering Gavialis as the closest living relative of Tomistoma; however, several stratigraphically early fossil taxa are recovered as closer to Gavialis than Tomistoma, resulting in anomalously early divergence timings. As such, additional morphological data might be required to resolve these remaining discrepancies. 'Tomistoma' dowsoni is an extinct species of gavialoid from the Miocene of North Africa. Utilising CT scans of a near-complete, referred skull, we reconstruct the neuroanatomy and neurosensory apparatus of 'Tomistoma' dowsoni. Based on qualitative and quantitative morphometric comparisons with other crocodyliforms, the neuroanatomy of 'Tomistoma' dowsoni is characterised by an intermediate morphology between the two extant gavialoids, more closely resembling Gavialis. This mirrors the results of recent studies based on the external anatomy of these three species and other fossil gavialoids. Several neuroanatomical features of these species appear to reflect ecological and/or phylogenetic signals. For example, the 'simple' morphology of their neurosensory apparatus is broadly similar to that of other long and narrow-snouted (longirostrine), aquatic crocodyliforms. A dorsoventrally short, anteroposteriorly long endosseous labyrinth is also associated with longirostry. These features indicate that snout and skull morphology, which are themselves partly constrained by ecology, exert an influence on neuroanatomical morphology, as has also been recognised in birds and turtles. Conversely, the presence of a pterygoid bulla in Gavialis and several extinct gavialoids, and its absence in Tomistoma schlegelii, could be interpreted as a phylogenetic signal of crocodylians more closely related to Gavialis than to Tomistoma. Evaluation of additional fossil gavialoids will be needed to further test whether these and other neuroanatomical features primarily reflect a phylogenetic or ecological signal. By incorporating such previously inaccessible information of extinct and extant gavialoids into phylogenetic and macroecological studies, we can potentially further constrain the clade's interrelationships, as well as evaluate the timing and ecological association of the evolution of these neuroanatomical features. Finally, our study supports recent phylogenetic analyses that place 'Tomistoma' dowsoni as being phylogenetically closer to Gavialis gangeticus than to Tomistoma schlegelii, indicating the necessity of a taxonomic revision of this fossil species.


Asunto(s)
Caimanes y Cocodrilos , Neuroanatomía , Animales , Filogenia , Caimanes y Cocodrilos/anatomía & histología , Cráneo/anatomía & histología , Fósiles , África del Norte
14.
Int. j. morphol ; 41(1): 324-330, feb. 2023. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1430512

RESUMEN

SUMMARY: The Chinese alligator (Alligator sinensis) belongs to the genus Alligator, which is a unique crocodile in China. In order to study the macroscopic structure of the heart of Chinese alligator, we performed detailed cardiac anatomy on five specimens. The heart is in the cranial mediastinum. It is caudally involved by the liver cranial margins, and ventrally by the ribs, intercostal muscles, and sternum and dorsally by the lungs. The wild Chinese alligator heart is a typical four-chamber heart, with two (right and left) atria and ventricles, left and right aorta, pulmonary artery and subclavian artery branch from the aorta. Morphology measures the circumference (129.36 mm), weight (44.14 g), and length of the heart from apex to bottom (52.50 mm). Studies have shown that the shape of the wild Chinese alligator's heart is consistent with the anatomy of other crocodiles.


El caimán chino (Alligator sinensis) pertenece al género Alligator, que es un cocodrilo único en China. Para estudiar la estructura macroscópica del corazón del caimán chino, revisamos detalladamente la anatomía cardíaca de cinco especímenes. El corazón está en el mediastino craneal. Está limitado caudalmente por los márgenes craneales del hígado, y ventralmente por las costillas, los músculos intercostales y el esternón, y dorsalmente por los pulmones. El corazón de cocodrilo chino salvaje es un corazón típico de cuatro cámaras, con dos atrios y dos ventrículos (derecho e izquierdo), aortas izquierda y derecha, arteria pulmonar y rama de la arteria subclavia de la aorta. La morfología mide la circunferencia (129,36 mm), el peso (44,14 g) y la longitud del corazón desde el ápice hasta la base (52,50 mm). Los estudios han demostrado que la forma del corazón del caimán chino salvaje es consistente con la anatomía de otros cocodrilos.


Asunto(s)
Animales , Caimanes y Cocodrilos/anatomía & histología , Corazón/anatomía & histología
15.
Anat Rec (Hoboken) ; 306(7): 1618-1630, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35670675

RESUMEN

Distinctive anatomical features of bones can influence not only how these structures perform in living animals but also the tendency of elements to be transported by flowing water after death. Such transport can be critical in the concentration of fossils from animals that live near freshwater habitats, providing important context for interpreting the composition of paleocommunities. Measurements of the tendency of flowing water to disperse skeletal elements have been collected for diverse taxa, including mammals, turtles, and birds. However, these extant models may not be entirely appropriate for many morphologically distinct extinct lineages, such as non-avian dinosaurs. To expand the range of models available for evaluating the influence of hydrodynamic transport on the assembly of fossil deposits, we used a flow tank to measure the water speeds that disperse bones from a subadult American alligator (Alligator mississippiensis), with the skull and mandible tested in multiple starting orientations. Alligator bones are sorted into three main dispersal groups: early (vertebrae, most girdle elements), intermediate (ribs, most limb bones), and late (pubis, femur), with the skull and mandible varying between intermediate and late depending on orientation. Late dispersing elements tended to be heavy or very flat. These results can refine interpretations of the taphonomic context for deposits of fossil crocodylians and morphologically similar taxa (e.g., choristoderes, phytosaurs) and provide an additional comparative model for deposits of non-avian dinosaurs. Moreover, variation in hydrodynamic sorting across lineages highlights how distinctive anatomical features can influence the concentration of fossils, shaping understanding of assemblage composition and paleofaunal evolution.


Asunto(s)
Caimanes y Cocodrilos , Dinosaurios , Animales , Fósiles , Dinosaurios/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Hidrodinámica , Geología , Cráneo/anatomía & histología , Aves/anatomía & histología , Evolución Biológica , Mamíferos
16.
J Morphol ; 284(1): e21542, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36533737

RESUMEN

Osteoderms of eight extant and extinct species of crocodylomorphs are studied histologically and morphologically. Most osteoderms display the typical "crocodilian" structure with a woven-fibered matrix surrounded by an upper and a lower parallel fibered matrix. The dorsal ornamentation of those specimens consists of a pit-and-ridge structure, with corresponding remodeling mechanisms. However, an osteoderm of Iberosuchus, studied here for the first time, differs in being nearly devoid of ornamentation; moreover, it shows strong bundles of straight Sharpey's fibers perpendicular to the surface in its lateral and dorsal walls, along with a rough plywood-like structure in its basal plate. This suggests that this osteoderm was more deeply anchored within the dermis than the other osteoderms studied hitherto. This peculiar structure might have been linked to a terrestrial ecology and a specific thermoregulation strategy. Some other notosuchians in our sample do not exhibit ornamentation on their osteoderms, as opposed to neosuchians. Considering current interpretations of osteoderm function(s) in crocodilians, our observations are discussed in reference to possible ecophysiological peculiarities of Notosuchia in general, and Iberosuchus in particular.


Asunto(s)
Caimanes y Cocodrilos , Huesos , Animales , Caimanes y Cocodrilos/anatomía & histología , Huesos/anatomía & histología , Fósiles
17.
J Anat ; 242(4): 592-606, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36484567

RESUMEN

Major transformations in the locomotor system of archosaurs (a major clade of reptiles including birds, crocodiles, dinosaurs, and pterosaurs) were accompanied by significant modifications to ankle anatomy. How the evolution of such a complex multi-joint structure is related to shifts in ankle function and locomotor diversity across this clade remains unclear and weakly grounded in extant experimental data. Here, we used X-ray Reconstruction of Moving Morphology to reconstruct skeletal motion and quantify the sources of three-dimensional ankle mobility in the American alligator, a species that retains the ancestral archosaur ankle structure. We then applied the observed relationships between joint excursion and locomotor behaviors to predict ankle function in extinct archosaurs. High-resolution reconstructions of Alligator skeletal movement revealed previously unseen regionalized coordination among joints responsible for overall ankle rotation. Differences in joint contributions between maneuvers and steady walking parallel transitions in mobility inferred from the ankle structure of fossil taxa in lineages with more erect hind limb postures. Key ankle structures related to ankle mobility were identified in the alligator, which permitted the characterization of ancestral archosaur ankle function. Modifications of these structures provide morphological evidence for functional convergence among sublineages of bird-line and crocodylian-line archosaurs. Using the dynamic insight into the internal sources of Alligator ankle mobility and trends among locomotor modes, we trace anatomical shifts and propose a mechanistic hypothesis for the evolution of ankle structure and function across Archosauria.


Asunto(s)
Caimanes y Cocodrilos , Dinosaurios , Animales , Caimanes y Cocodrilos/anatomía & histología , Tobillo , Extremidad Inferior , Caminata , Dinosaurios/anatomía & histología , Aves/anatomía & histología , Evolución Biológica
18.
J Anat ; 241(4): 981-1013, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037801

RESUMEN

Although our knowledge on crocodylomorph palaeoneurology has experienced considerable growth in recent years, the neuroanatomy of many crocodylomorph taxa has yet to be studied. This is true for Australian taxa, where thus far only two crocodylian crocodylomorphs have had aspects of their neuroanatomy explored. Here, the neuroanatomy of the Australian mekosuchine crocodylian Trilophosuchus rackhami is described for the first time, which significantly increases our understanding on the palaeoneurology of Australian crocodylians. The palaeoneurological description is based on the taxon's holotype specimen (QMF16856), which was subjected to a µCT scan. Because of the exceptional preservation of QMF16856, most neuroanatomical elements could be digitally reconstructed and described in detail. Therefore, the palaeoneurological assessment presented here is hitherto the most in-depth study of this kind for an extinct Australian crocodylomorph. Trilophosuchus rackhami has a brain endocast with a distinctive morphology that is characterized by an acute dural peak over the hindbrain region. While the overall morphology of the brain endocast is unique to T. rackhami, it does share certain similarities with the notosuchian crocodyliforms Araripesuchus wegeneri and Sebecus icaeorhinus. The endosseous labyrinth displays a morphology that is typical for crocodylians, although a stand-out feature is the unusually tall common crus. Indeed, the common crus of T. rackhami has one of the greatest height ratios among crocodylomorphs with currently known endosseous labyrinths. The paratympanic pneumatic system of T. rackhami is greatly developed and most similar to those of the extant crocodylians Osteolaemus tetraspis and Paleosuchus palpebrosus. The observations on the neuroanatomy of T. rackhami are also discussed in the context of Crocodylomorpha. The comparative palaeoneurology reinforces previous evaluations that the neuroanatomy of crocodylomorphs is complex and diverse among species, and T. rackhami has a peculiar neuromorphology, particularly among eusuchian crocodyliforms.


Asunto(s)
Caimanes y Cocodrilos , Fósiles , Caimanes y Cocodrilos/anatomía & histología , Animales , Australia , Evolución Biológica , Neuroanatomía , Cráneo/anatomía & histología
19.
Anat Rec (Hoboken) ; 305(10): 2343-2352, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35912969

RESUMEN

Crocodilians inspire researchers and the public alike with their explosive hunting methodologies, distinct craniofacial and dental morphology, and resplendent fossil record. This special issue highlights recent advances in the biology and paleontology of this fascinating lineage of vertebrates. The authors in this volume bring crocodylians and their extinct ancestors to life using a variety of approaches including fieldwork, imaging, 3D modeling, developmental biology, physiological monitoring, dissection, and a host of other comparative methods. Our journey begins with early crocodylomorphs from the Triassic, carries us through the radiation of crocodyliforms during the rest of the Mesozoic Era, and finally celebrates the diversification development and biology of extant crocodylians. Crocodyliform science has grown appreciably the past few decades. New fossil species and genetic evidence continue to keep phylogenies and our understanding of relationships wavering in key places of the tree such as the relationships of the extinct marine thalattosuchians as well as still living species like gharials. The application of imaging approaches and 3D modeling to both preserved tissues as well as living specimens is now revealing patterns in brain and lung evolution and function, growth strategies, and feeding and locomotor behaviors across the lineage. Comparative anatomical studies are offering new data on genitals, cephalic venous drainage and thoracoabdominal pressures. The new discoveries found here only reveal there is far more work to be done to understand the biology and behavior responsible for the great radiation extinct suchians and their crocodylian descendants experienced during their conquest of Mesozoic and Tertiary ecosystems.


Asunto(s)
Caimanes y Cocodrilos , Caimanes y Cocodrilos/anatomía & histología , Animales , Evolución Biológica , Ecosistema , Fósiles , Paleontología , Filogenia
20.
Sci Rep ; 12(1): 9362, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672433

RESUMEN

Pathologic eggs have been documented in the amniote eggs of birds, turtles, and dinosaurs. These eggs occur either in the form of one egg within another egg, a condition known as ovum-in-ovo or multi-shelled eggs showing additional pathological eggshell layer/s besides the primary shell layer. Though multi-shelled eggs and eggshells were previously recorded only  in reptiles and ovum-in-ovo eggs in birds, now it has been shown that multi-shelled egg pathology occurs in birds as well. However, no ovum-in-ovo egg has been reported  in dinosaurs or for that matter  in other reptiles. Here we describe an ovum-in-ovo pathological egg from a titanosaurid dinosaur nest from the Upper Cretaceous Lameta Formation of western Central India which makes it the first report of this pathology in dinosaurs. Birds possess a specialized uterus while other amniotes have a generalized uterus. However, alligators and crocodiles retain a specialized uterus like birds along with a reptilian mode of egg-laying. The discovery of ovum-in-ovo egg from a titanosaurid dinosaur nest suggests that their oviduct morphology was similar to that of birds opening up the possibility for sequential laying of eggs in this group of sauropod dinosaurs. This new find underscores that the ovum-in-ovo pathology is not unique to birds and sauropods share a reproductive behavior very similar to that of other archosaurs.


Asunto(s)
Caimanes y Cocodrilos , Dinosaurios , Caimanes y Cocodrilos/anatomía & histología , Animales , Evolución Biológica , Biología , Aves , Dinosaurios/anatomía & histología , Cáscara de Huevo/anatomía & histología , Femenino , Fósiles , Óvulo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA