Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.670
Filtrar
1.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250533

RESUMEN

The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.


Asunto(s)
Janus Quinasa 2 , Glicoproteínas de Membrana , Ratones Noqueados , Células-Madre Neurales , Neurogénesis , Neuronas , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Janus Quinasa 2/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/citología , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Proliferación Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/embriología , Diferenciación Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas del Tejido Nervioso
2.
Development ; 151(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39284714

RESUMEN

The number of neural stem cells reflects the total number of neurons in the mature brain. As neural stem cells arise from neuroepithelial cells, the neuroepithelial cell population must be expanded to secure a sufficient number of neural stem cells. However, molecular mechanisms that regulate timely differentiation from neuroepithelial to neural stem cells are largely unclear. Here, we show that TCF4/Daughterless is a key factor that determines the timing of the differentiation in Drosophila. The neuroepithelial cells initiated but never completed the differentiation in the absence of TCF4/Daughterless. We also found that TCF4/Daughterless binds to the Notch locus, suggesting that Notch is one of its downstream candidate genes. Consistently, Notch expression was ectopically induced in the absence of TCF4/Daughterless. Furthermore, ectopic activation of Notch signaling phenocopied loss of TCF4/Daughterless. Our findings demonstrate that TCF4/Daughterless directly inactivates Notch signaling pathway, resulting in completion of the differentiation from neuroepithelial cells into neural stem cells with optimal timing. Thus, the present results suggest that TCF4/Daughterless is essential for determining whether to move to the next state or stay in the current state in differentiating neuroepithelial cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Proteínas de Drosophila , Células-Madre Neurales , Células Neuroepiteliales , Receptores Notch , Transducción de Señal , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Neuroepiteliales/metabolismo , Células Neuroepiteliales/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/citología , Factores de Tiempo , Drosophila/metabolismo
3.
Stem Cell Res Ther ; 15(1): 275, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227892

RESUMEN

BACKGROUND: Reduction of adult hippocampal neurogenesis is an early critical event in Alzheimer's disease (AD), contributing to progressive memory loss and cognitive decline. Reduced levels of the nucleoporin 153 (Nup153), a key epigenetic regulator of NSC stemness, characterize the neural stem cells isolated from a mouse model of AD (3×Tg) (AD-NSCs) and determine their altered plasticity and gene expression. METHODS: Nup153-regulated mechanisms contributing to NSC function were investigated: (1) in cultured NSCs isolated from AD and wild type (WT) mice by proteomics; (2) in vivo by lentiviral-mediated delivery of Nup153 or GFP in the hippocampus of AD and control mice analyzing neurogenesis and cognitive function; (3) in human iPSC-derived brain organoids obtained from AD patients and control subjects as a model of neurodevelopment. RESULTS: Proteomic approach identified Nup153 interactors in WT- and AD-NSCs potentially implicated in neurogenesis regulation. Gene ontology (GO) analysis showed that Nup153-bound proteins in WT-NSCs were involved in RNA metabolism, nuclear import and epigenetic mechanisms. Nup153-bound proteins in AD-NSCs were involved in pathways of neurodegeneration, mitochondrial dysfunction, proteasomal processing and RNA degradation. Furthermore, recovery of Nup153 levels in AD-NSCs reduced the levels of oxidative stress markers and recovered proteasomal activity. Lentiviral-mediated delivery of Nup153 in the hippocampal niche of AD mice increased the proliferation of early progenitors, marked by BrdU/DCX and BrdU/PSANCAM positivity and, later, the integration of differentiating neurons in the cell granule layer (BrdU/NeuN+ cells) compared with GFP-injected AD mice. Consistently, Nup153-injected AD mice showed an improvement of cognitive performance in comparison to AD-GFP mice at 1 month after virus delivery assessed by Morris Water Maze. To validate the role of Nup153 in neurogenesis we took advantage of brain organoids derived from AD-iPSCs characterized by fewer neuroepithelial progenitor loops and reduced differentiation areas. The upregulation of Nup153 in AD organoids recovered the formation of neural-like tubes and differentiation. CONCLUSIONS: Our data suggest that the positive effect of Nup153 on neurogenesis is based on a complex regulatory network orchestrated by Nup153 and that this protein is a valuable disease target.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Células-Madre Neurales , Neurogénesis , Proteínas de Complejo Poro Nuclear , Animales , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Hipocampo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteómica
4.
Sci Rep ; 14(1): 21163, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256511

RESUMEN

The generation of new neurons at the hippocampal neurogenic niche, known as adult hippocampal neurogenesis (AHN), and its impairment, have been implicated in Alzheimer's disease (AD). MicroRNA-132 (miR-132), the most consistently downregulated microRNA (miRNA) in AD, was recently identified as a potent regulator of AHN, exerting multilayered proneurogenic effects in adult neural stem cells (NSCs) and their progeny. Supplementing miR-132 in AD mouse brain restores AHN and relevant memory deficits, yet the exact mechanisms involved are still unknown. Here, we identify NACC2 as a novel miR-132 target implicated in both AHN and AD. miR-132 deficiency in mouse hippocampus induces Nacc2 expression and inflammatory signaling in adult NSCs. We show that miR-132-dependent regulation of NACC2 is involved in the initial stages of human NSC differentiation towards astrocytes and neurons. Later, NACC2 function in astrocytic maturation becomes uncoupled from miR-132. We demonstrate that NACC2 is present in reactive astrocytes surrounding amyloid plaques in mouse and human AD hippocampus, and that there is an anticorrelation between miR-132 and NACC2 levels in AD and upon induction of inflammation. Unraveling the molecular mechanisms by which miR-132 regulates neurogenesis and cellular reactivity in AD, will provide valuable insights towards its possible application as a therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Hipocampo , MicroARNs , Células-Madre Neurales , Neurogénesis , MicroARNs/genética , MicroARNs/metabolismo , Neurogénesis/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Humanos , Células-Madre Neurales/metabolismo , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Astrocitos/metabolismo , Neuronas/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica
5.
Nat Commun ; 15(1): 8043, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271675

RESUMEN

The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neocórtex , Células-Madre Neurales , Neurogénesis , Factores del Dominio POU , Animales , Neocórtex/metabolismo , Neocórtex/embriología , Neocórtex/citología , Factores del Dominio POU/metabolismo , Factores del Dominio POU/genética , Neurogénesis/genética , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Hurones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Macaca , Proliferación Celular/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Masculino , Femenino
6.
PLoS Biol ; 22(9): e3002760, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226322

RESUMEN

53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids. Dynamic phosphorylation of 53BP1-serine 25 controls 53BP1 target genes governing neuronal differentiation and function, cellular response to stress, and apoptosis. Mechanistically, ATM and RNF168 govern 53BP1's binding to gene loci to directly affect gene regulation, especially at genes for neuronal differentiation and maturation. 53BP1 serine 25 phosphorylation effectively impedes its binding to bivalent or H3K27me3-occupied promoters, especially at genes regulating H3K4 methylation, neuronal functions, and cell proliferation. Beyond 53BP1, ATM-dependent phosphorylation displays wide-ranging effects, regulating factors in neuronal differentiation, cytoskeleton, p53 regulation, as well as key signaling pathways such as ATM, BDNF, and WNT during cortical organoid differentiation. Together, our data suggest that the interplay between 53BP1 and ATM orchestrates essential genetic programs for cell morphogenesis, tissue organization, and developmental pathways crucial for human cortical development.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Organoides , Proteína 1 de Unión al Supresor Tumoral P53 , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Organoides/metabolismo , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Fosforilación , Daño del ADN , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Células-Madre Neurales/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Reparación del ADN , Neurogénesis/genética , Neuronas/metabolismo , Transducción de Señal
7.
Nat Commun ; 15(1): 7931, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256363

RESUMEN

Polycomb repressive complex 1 (PRC1) modifies chromatin through catalysis of histone H2A lysine 119 monoubiquitination (H2AK119ub1). RING1 and RNF2 interchangeably serve as the catalytic subunit within PRC1. Pathogenic missense variants in PRC1 core components reveal functions of these proteins that are obscured in knockout models. While Ring1a knockout models remain healthy, the microcephaly and neuropsychiatric phenotypes associated with a pathogenic RING1 missense variant implicate unappreciated functions. Using an in vitro model of neurodevelopment, we observe that RING1 contributes to the broad placement of H2AK119ub1, and that its targets overlap with those of RNF2. PRC1 complexes harboring hypomorphic RING1 bind target loci but do not catalyze H2AK119ub1, reducing H2AK119ub1 by preventing catalytically active complexes from accessing the locus. This results in delayed DNA damage repair and cell cycle progression in neural progenitor cells (NPCs). Conversely, reduced H2AK119ub1 due to hypomorphic RING1 does not generate differential expression that impacts NPC differentiation. In contrast, hypomorphic RNF2 generates a greater reduction in H2AK119ub1 that results in both delayed DNA repair and widespread transcriptional changes. These findings suggest that the DNA damage response is more sensitive to H2AK119ub1 dosage change than is regulation of gene expression.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas , Mutación Missense , Células-Madre Neurales , Neurogénesis , Complejo Represivo Polycomb 1 , Ubiquitinación , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Histonas/metabolismo , Histonas/genética , Neurogénesis/genética , Animales , Humanos , Células-Madre Neurales/metabolismo , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Cromatina/metabolismo , Microcefalia/genética , Microcefalia/metabolismo
8.
Stem Cell Res Ther ; 15(1): 297, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256801

RESUMEN

BACKGROUND: Stem cell-based therapy is a promising strategy for treating Parkinson's disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. METHODS: DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. RESULTS: DREADD expressing iNSCs were constructed with normal neural stem cells characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. CONCLUSION: iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson's disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson's disease.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Células-Madre Neurales , Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas/metabolismo , Ratones , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Enfermedad de Parkinson/terapia , Clozapina/análogos & derivados , Clozapina/farmacología
9.
Stem Cell Res Ther ; 15(1): 285, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256856

RESUMEN

Accumulating evidence has shown that some hallucinogens, such as LSD, have fast and persistent effects on anxiety and depression. According to a proposed mechanism, LSD activates the TrkB and HTR2A signaling pathways, which enhance the density of neuronal dendritic spines and synaptic function, and thus promote brain function. Moreover, TrkB signaling is also known to be crucial for neural stem cell (NSC)-mediated neuroregeneration to repair dysfunctional neurons. However, the impact of LSD on neural stem cells remains to be elucidated. In this study, we observed that LSD and BDNF activated the TrkB pathway in human NSCs similarly to neurons. However, unlike BDNF, LSD did not promote NSC proliferation. These results suggest that LSD may activate an alternative mechanism to counteract the effects of BDNF-TrkB signaling on NSCs. Our findings shed light on the previously unrecognized cell type-specificity of LSD. This could be crucial for deepening our understanding of the mechanisms underlying the effects of LSD.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Alucinógenos , Dietilamida del Ácido Lisérgico , Células-Madre Neurales , Receptor trkB , Transducción de Señal , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Alucinógenos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor trkB/metabolismo , Dietilamida del Ácido Lisérgico/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/citología , Glicoproteínas de Membrana
10.
Elife ; 132024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255019

RESUMEN

Stem cell niche is critical for regulating the behavior of stem cells. Drosophila neural stem cells (Neuroblasts, NBs) are encased by glial niche cells closely, but it still remains unclear whether glial niche cells can regulate the self-renewal and differentiation of NBs. Here, we show that ferritin produced by glia, cooperates with Zip13 to transport iron into NBs for the energy production, which is essential to the self-renewal and proliferation of NBs. The knockdown of glial ferritin encoding genes causes energy shortage in NBs via downregulating aconitase activity and NAD+ level, which leads to the low proliferation and premature differentiation of NBs mediated by Prospero entering nuclei. More importantly, ferritin is a potential target for tumor suppression. In addition, the level of glial ferritin production is affected by the status of NBs, establishing a bicellular iron homeostasis. In this study, we demonstrate that glial cells are indispensable to maintain the self-renewal of NBs, unveiling a novel role of the NB glial niche during brain development.


Iron is an essential nutrient for almost all living organisms. For example, iron contributes to the replication of DNA, the generation of energy inside cells, and the transport of oxygen around the body. Iron deficiency is the most common of all nutrient deficiencies, affecting over 40% of children worldwide. This can lead to anemia and also impair how the brain and nervous system develop, potentially resulting in long-lasting cognitive damage, even after the deficiency has been treated. It is poorly understood how iron contributes to the development of the brain and nervous system. In particular, whether and how it supports nerve stem cells (or NSCs for short) which give rise to the various neural types in the mature brain. To investigate, Ma et al. experimentally reduced the levels of ferritin (a protein which stores iron) in the developing brains of fruit fly larvae. This reduction in ferritin led to lower numbers of NSCs and a smaller brain. Unexpectedly, this effect was largest when ferritin levels were reduced in glial cells which support and send signals to NSCs, rather than in the stem cells themselves. Ma et al. then used fluorescence microscopy to confirm that glial cells make and contain a lot of ferritin which can be transported to NSCs. Adding iron supplements to the diet of flies lacking ferritin did not lead to normal numbers of stem cells in the brains of the developing fruit flies, whereas adding compounds that reduce the amount of iron led to lower numbers of stem cells. Together, this suggests that ferritin transports iron from glial cells to the NSCs. Without ferritin and iron, the NSCs could not produce enough energy to divide and make new stem cells. This caused the NSCs to lose the characteristics of stem cells and prematurely turn into other types of neurons or glial cells. Together, these findings show that when iron cannot move from glial cells to NSCs this leads to defects in brain development. Future experiments will have to test whether a similar transport of iron from supporting cells to NSCs also occurs in the developing brains of mammals, and whether this mechanism applies to stem cells in other parts of the body.


Asunto(s)
Proteínas de Drosophila , Ferritinas , Hierro , Células-Madre Neurales , Neuroglía , Animales , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Hierro/metabolismo , Ferritinas/metabolismo , Ferritinas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila/metabolismo , Proliferación Celular , Diferenciación Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Autorrenovación de las Células
11.
Nat Commun ; 15(1): 7855, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245680

RESUMEN

Oxidative phosphorylation (OXPHOS) in the mitochondrial inner membrane is a therapeutic target in many diseases. Neural stem cells (NSCs) show progress in improving mitochondrial dysfunction in the central nervous system (CNS). However, translating neural stem cell-based therapies to the clinic is challenged by uncontrollable biological variability or heterogeneity, hindering uniform clinical safety and efficacy evaluations. We propose a systematic top-down design based on membrane self-assembly to develop neural stem cell-derived oxidative phosphorylating artificial organelles (SAOs) for targeting the central nervous system as an alternative to NSCs. We construct human conditionally immortal clone neural stem cells (iNSCs) as parent cells and use a streamlined closed operation system to prepare neural stem cell-derived highly homogenous oxidative phosphorylating artificial organelles. These artificial organelles act as biomimetic organelles to mimic respiration chain function and perform oxidative phosphorylation, thus improving ATP synthesis deficiency and rectifying excessive mitochondrial reactive oxygen species production. Conclusively, we provide a framework for a generalizable manufacturing procedure that opens promising prospects for disease treatment.


Asunto(s)
Mitocondrias , Células-Madre Neurales , Fosforilación Oxidativa , Especies Reactivas de Oxígeno , Humanos , Células-Madre Neurales/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Orgánulos/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular
12.
Neural Dev ; 19(1): 17, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267104

RESUMEN

The complex interplay between vascular signaling and neurogenesis in the adult brain remains a subject of intense research. By exploiting the unique advantages of the zebrafish model, in particular the persistent activity of neural stem cells (NSCs) and the remarkable ability to repair brain lesions, we investigated the links between NSCs and cerebral blood vessels. In this study, we first examined the gene expression profiles of vascular endothelial growth factors aa and bb (vegfaa and vegfbb), under physiological and regenerative conditions. Employing fluorescence in situ hybridization combined with immunostaining and histology techniques, we demonstrated the widespread expression of vegfaa and vegfbb across the brain, and showed their presence in neurons, microglia/immune cells, endothelial cells and NSCs. At 1 day post-lesion (dpl), both vegfaa and vegfbb were up-regulated in neurons and microglia/peripheral immune cells (macrophages). Analysis of vegf receptors (vegfr) revealed high expression throughout the brain under homeostatic conditions, with vegfr predominantly expressed in neurons and NSCs and to a lower extent in microglia/immune cells and endothelial cells. These findings were further validated by Vegfr3 and Vegfr4 immunostainings, which showed significant expression in neurogenic radial glial cells.Following brain lesion (1 dpl), while vegfr gene expression remained stable, vegfr transcripts were detected in proliferative cells within the injured parenchyma. Collectively, our results provide a first overview of Vegf/Vegfr signaling in the brain and suggest important roles for Vegf in neurogenesis and regenerative processes.


Asunto(s)
Encéfalo , Neurogénesis , Factor A de Crecimiento Endotelial Vascular , Proteínas de Pez Cebra , Pez Cebra , Animales , Neurogénesis/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Encéfalo/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células-Madre Neurales/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Regeneración Nerviosa/fisiología
13.
Stem Cell Res Ther ; 15(1): 299, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267160

RESUMEN

BACKGROUND: The established association between Alzheimer's disease (AD) and compromised neural regeneration is well-documented. In addition to the mitigation of apoptosis in neural stem cells (NSCs), the induction of neurogenesis has been proposed as a promising therapeutic strategy for AD. Our previous research has demonstrated the effective inhibition of NSC injury induced by microglial activation through the repression of oxidative stress and mitochondrial dysfunction by Sirtuin 3 (SIRT3). Nonetheless, the precise role of SIRT3 in neurogenesis remains incompletely understood. METHODS: In vivo, SIRT3 overexpression adenovirus was firstly injected by brain stereotaxic localization to affect the hippocampal SIRT3 expression in APP/PS1 mice, and then behavioral experiments were performed to investigate the cognitive improvement of SIRT3 in APP/PS1 mice, as well as neurogenic changes in hippocampal region by immunohistochemistry and immunofluorescence. In vitro, under the transwell co-culture condition of microglia and neural stem cells, the mechanism of SIRT3 improving neurogenesis of neural stem cells through DVL/GSK3/ISL1 axis was investigated by immunoblotting, immunofluorescence and other experimental methods. RESULTS: Our findings indicate that the overexpression of SIRT3 in APP/PS1 mice led to enhanced cognitive function and increased neurogenesis. Additionally, SIRT3 was observed to promote the differentiation of NSCs into neurons during retinoic acid (RA)-induced NSC differentiation in vitro, suggesting a potential role in neurogenesis. Furthermore, we observed the activation of the Wnt/ß-catenin signaling pathway during this process, with Glycogen Synthase Kinase-3a (GSK3a) primarily governing NSC proliferation and GSK3ß predominantly regulating NSC differentiation. Moreover, the outcomes of our study demonstrate that SIRT3 exerts a protective effect against microglia-induced apoptosis in neural stem cells through its interaction with DVLs. CONCLUSIONS: Our results show that SIRT3 overexpressing APP/PS1 mice have improved cognition and neurogenesis, as well as improved neurogenesis of NSC in microglia and NSC transwell co-culture conditions through the DVL/GSK3/ISL1 axis.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Neurogénesis , Transducción de Señal , Sirtuina 3 , Animales , Sirtuina 3/metabolismo , Sirtuina 3/genética , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Dishevelled/metabolismo , Proteínas Dishevelled/genética , Ratones Transgénicos , Microglía/metabolismo , Diferenciación Celular , Hipocampo/metabolismo
14.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273121

RESUMEN

Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins. Here, we used neural precursor cells (aldynoglia) as promoters of axonal growth and a fibrin hydrogel gelled under alkaline conditions to support and guide neuronal cell growth, respectively. We added Tol-51 sulfoglycolipid as a synthetic inhibitor of astrocyte and microglia in order to test its effect on the axonal growth-promoting function of aldynoglia precursor cells. We obtained an increase in GFAP expression corresponding to the expected glial phenotype for aldynoglia cells cultured in alkaline fibrin. In co-cultures of dorsal root ganglia (DRG) and aldynoglia, the axonal growth promotion of DRG neurons by aldynoglia was not affected. We observed that the neural precursor cells first clustered together and then formed niches from which aldynoglia cells grew and connected to groups of adjacent cells. We conclude that the combination of alkaline fibrin with synthetic sulfoglycolipid Tol-51 increased cell adhesion, cell migration, fasciculation, and axonal growth capacity, promoted by aldynoglia cells. There was no negative effect on the behavior of aldynoglia cells after the addition of sulfoglycolipid Tol-51, suggesting that a combination of aldynoglia plus alkaline fibrin and Tol-51 compound could be useful as a therapeutic strategy for tSCI repair.


Asunto(s)
Axones , Fibrina , Ganglios Espinales , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Axones/metabolismo , Axones/efectos de los fármacos , Fibrina/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Glucolípidos/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/citología , Movimiento Celular/efectos de los fármacos
15.
Toxicology ; 508: 153934, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39182714

RESUMEN

Neurotoxicity is characterized by the accumulation of harmful chemicals such as heavy metals and drugs in neural tissue, resulting in subsequent neuronal death. Among chemicals platinum-based cancer drugs are frequently used due to their antineoplastic effects, but this drug is also known to cause a wide range of toxicities, such as neurotoxicity. The nuclear-factor-erythroid 2-related factor-2 (NRF2) is crucial in combating oxidative stress and maintaining cellular homeostasis. This study thoroughly explores the protective effects of extracellular vesicles derived from NRF2 gene overexpressed neural progenitor cells (NEVs) on cisplatin-induced neurotoxicity. Therefore, extracellular vesicles derived from neural progenitor cells were isolated and characterized. The Cisplatin neurotoxicity dose was 75 µM in mature, post-mitotic neurons. 1.25 µM of tert-butyl hydroquinone that induces NRF2/ARE pathway was used as the positive control. The effects of extracellular vesicles (EVs) were investigated using functional and molecular assays such as PCR and protein-based assays. Here, we observed that NEVs dose-dependently protected post-mitotic neuron cells in response to cisplatin. The study also examined whether the effect was EV-induced by limiting EV biogenesis. The molecular basis of preventive treatment was established. When pre-administered, 1×108 particles/ml of NEVs maintained antioxidant and detoxifying gene and protein expression levels similar to control cell levels. Furthermore, NEVs reduced both cellular and mitochondrial ROS levels and preserved mitochondrial membrane potential. In addition, Catalase and SOD levels were found higher in NEV-treated cells compared to cisplatin control. The findings in NRF2-based protection of cisplatin-induced neurotoxicity may provide further evidence for the relationship between EVs and inhibition of neuronal stress through the NRF2/ARE pathway, increasing the understanding of neuroprotective responses and the development of gene-engineered EV therapy options for peripheral neuropathy or other neurodegenerative diseases. This is the first study in the literature to investigate the neutralizing potency of NRF2 overexpressed neural EVs against cisplatin-induced neurotoxicity.


Asunto(s)
Antineoplásicos , Cisplatino , Vesículas Extracelulares , Factor 2 Relacionado con NF-E2 , Células-Madre Neurales , Transducción de Señal , Cisplatino/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Animales , Antineoplásicos/toxicidad , Antineoplásicos/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/etiología , Elementos de Respuesta Antioxidante/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Células Cultivadas
16.
Nat Commun ; 15(1): 7534, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214989

RESUMEN

The human silencing hub (HUSH) complex binds to transcripts of LINE-1 retrotransposons (L1s) and other genomic repeats, recruiting MORC2 and other effectors to remodel chromatin. How HUSH and MORC2 operate alongside DNA methylation, a central epigenetic regulator of repeat transcription, remains largely unknown. Here we interrogate this relationship in human neural progenitor cells (hNPCs), a somatic model of brain development that tolerates removal of DNA methyltransferase DNMT1. Upon loss of MORC2 or HUSH subunit TASOR in hNPCs, L1s remain silenced by robust promoter methylation. However, genome demethylation and activation of evolutionarily-young L1s attracts MORC2 binding, and simultaneous depletion of DNMT1 and MORC2 causes massive accumulation of L1 transcripts. We identify the same mechanistic hierarchy at pericentromeric α-satellites and clustered protocadherin genes, repetitive elements important for chromosome structure and neurodevelopment respectively. Our data delineate the epigenetic control of repeats in somatic cells, with implications for understanding the vital functions of HUSH-MORC2 in hypomethylated contexts throughout human development.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Elementos de Nucleótido Esparcido Largo , Células-Madre Neurales , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Células-Madre Neurales/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Epigénesis Genética , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Silenciador del Gen , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas del Tejido Nervioso
17.
Cell Death Dis ; 15(8): 639, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217148

RESUMEN

Pre-clinical trials have demonstrated the neuroprotective effects of transplanted human neural stem cells (hNSCs) during the post-ischemic phase. However, the exact neuroprotective mechanism remains unclear. Tunneling nanotubes (TNTs) are long plasma membrane bridges that physically connect distant cells, enabling the intercellular transfer of mitochondria and contributing to post-ischemic repair processes. Whether hNSCs communicate through TNTs and their role in post-ischemic neuroprotection remains unknown. In this study, non-immortalized hNSC lines derived from fetal human brain tissues were examined to explore these possibilities and assess the post-ischemic neuroprotection potential of these hNSCs. Using Tau-STED super-resolution confocal microscopy, live cell time-lapse fluorescence microscopy, electron microscopy, and direct or non-contact homotypic co-cultures, we demonstrated that hNSCs generate nestin-positive TNTs in both 3D neurospheres and 2D cultures, through which they transfer functional mitochondria. Co-culturing hNSCs with differentiated SH-SY5Y (dSH-SY5Y) revealed heterotypic TNTs allowing mitochondrial transfer from hNSCs to dSH-SY5Y. To investigate the role of heterotypic TNTs in post-ischemic neuroprotection, dSH-SY5Y were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R) with or without hNSCs in direct or non-contact co-cultures. Compared to normoxia, OGD/R dSH-SY5Y became apoptotic with impaired electrical activity. When OGD/R dSH-SY5Y were co-cultured in direct contact with hNSCs, heterotypic TNTs enabled the transfer of functional mitochondria from hNSCs to OGD/R dSH-SY5Y, rescuing them from apoptosis and restoring the bioelectrical profile toward normoxic dSH-SY5Y. This complete neuroprotection did not occur in the non-contact co-culture. In summary, our data reveal the presence of a functional TNTs network containing nestin within hNSCs, demonstrate the involvement of TNTs in post-ischemic neuroprotection mediated by hNSCs, and highlight the strong efficacy of our hNSC lines in post-ischemic neuroprotection. Human neural stem cells (hNSCs) communicate with each other and rescue ischemic neurons through nestin-positive tunneling nanotubes (TNTs). A Functional mitochondria are exchanged via TNTs between hNSCs. B hNSCs transfer functional mitochondria to ischemic neurons through TNTs, rescuing neurons from ischemia/reperfusion ROS-dependent apoptosis.


Asunto(s)
Comunicación Celular , Técnicas de Cocultivo , Mitocondrias , Células-Madre Neurales , Neuronas , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neuronas/metabolismo , Mitocondrias/metabolismo , Encéfalo/metabolismo , Encéfalo/embriología , Diferenciación Celular , Nanotubos/química , Feto , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Estructuras de la Membrana Celular
18.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39201431

RESUMEN

Recent studies have highlighted the therapeutic potential of stem cells for various diseases. However, unlike other tissues, brain tissue has a specific structure, consisting of synapses. These synapses not only transmit but also process and refine information. Therefore, synaptic regeneration plays a key role in therapy of neurodegenerative disorders. Neurexins (NRXNs) and neuroligins (NLGNs) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses, mediate trans-synaptic signaling, and shape neural network properties by specifying synaptic functions. In this study, we investigated the synaptic regeneration effect of human neural stem cells (NSCs) overexpressing NRXNs (F3.NRXN) and NLGNs (F3.NLGN) in a spinal cord injury model. Overexpression of NRXNs and NLGNs in the neural stem cells upregulated the expression of synaptophysin, PSD95, VAMP2, and synapsin, which are synaptic markers. The BMS scores indicated that the transplantation of F3.NRXN and F3.NLGN enhanced the recovery of locomotor function in adult rodents following spinal cord injury. Transplanted F3.NRXN and F3.NLGN differentiated into neurons and formed a synapse with the host cells in the spinal cord injury mouse model. In addition, F3.NRXN and F3.NLGN cells restored growth factors (GFs) and neurotrophic factors (NFs) and induced the proliferation of host cells. This study suggested that NSCs overexpressing NRXNs and NLGNs could be candidates for cell therapy in spinal cord injuries by facilitating synaptic regeneration.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Modelos Animales de Enfermedad , Células-Madre Neurales , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/genética , Células-Madre Neurales/metabolismo , Animales , Humanos , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Ratones , Sinapsis/metabolismo , Trasplante de Células Madre/métodos , Diferenciación Celular , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Femenino , Neuroliginas
19.
Cells ; 13(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39195216

RESUMEN

Axons wrapped around the myelin sheath enable fast transmission of neuronal signals in the Central Nervous System (CNS). Unfortunately, myelin can be damaged by injury, viral infection, and inflammatory and neurodegenerative diseases. Remyelination is a spontaneous process that can restore nerve conductivity and thus movement and cognition after a demyelination event. Cumulative evidence indicates that remyelination can be pharmacologically stimulated, either by targeting natural inhibitors of Oligodendrocyte Precursor Cells (OPCs) differentiation or by reactivating quiescent Neural Stem Cells (qNSCs) proliferation and differentiation in myelinating Oligodendrocytes (OLs). Although promising results were obtained in animal models for demyelination diseases, none of the compounds identified have passed all the clinical stages. The significant number of patients who could benefit from remyelination therapies reinforces the urgent need to reassess drug selection approaches and develop strategies that effectively promote remyelination. Integrating Artificial Intelligence (AI)-driven technologies with patient-derived cell-based assays and organoid models is expected to lead to novel strategies and drug screening pipelines to achieve this goal. In this review, we explore the current literature on these technologies and their potential to enhance the identification of more effective drugs for clinical use in CNS remyelination therapies.


Asunto(s)
Evaluación Preclínica de Medicamentos , Remielinización , Humanos , Remielinización/efectos de los fármacos , Animales , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Diferenciación Celular/efectos de los fármacos
20.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125934

RESUMEN

The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules.


Asunto(s)
Antioxidantes , Curcumina , Modelos Animales de Enfermedad , Atrofia Muscular Espinal , Factor 2 Relacionado con NF-E2 , Células-Madre Neurales , Curcumina/farmacología , Antioxidantes/farmacología , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/efectos de los fármacos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratones , Estrés Oxidativo/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Humanos , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA