Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.035
Filtrar
1.
Methods Mol Biol ; 2848: 3-23, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240513

RESUMEN

The challenge of treating corneal scarring through keratoplasties lies in the limited availability of donor tissue. Various studies have shown the therapeutic use of cultivated corneal stromal stem cells (CSSCs) to mitigate tissue inflammation and suppress fibrosis and scar tissue formation in preclinical corneal wound models. To develop CSSC therapy for clinical trials on patients with corneal scarring, it is necessary to generate clinical-grade CSSCs in compliant to Good Manufacturing Practice (GMP) regulations. This chapter elucidates human CSSC isolation, culture, and cryopreservation under GMP-compliant conditions. It underscores quality assessment encompassing morphological traits, expression of stemness markers, anti-inflammatory activity, and keratocyte differentiation potency.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Sustancia Propia , Humanos , Técnicas de Cultivo de Célula/métodos , Sustancia Propia/citología , Separación Celular/métodos , Criopreservación/métodos , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Biomarcadores , Células del Estroma/citología
2.
Methods Mol Biol ; 2848: 59-71, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240516

RESUMEN

Glaucoma is one of the leading causes of irreversible blindness. Stem cell therapy has shown promise in the treatment of primary open-angle glaucoma in animal models. Stem cell-free therapy using stem cell-derived trophic factors might be in demand in patients with high-risk conditions or religious restrictions. In this chapter, we describe methods for trabecular meshwork stem cell (TMSC) cultivation, secretome harvesting, and protein isolation, as well as assays to ensure the health of TMSC post-secretome harvesting and for secretome periocular injection into mice for therapeutic purposes.


Asunto(s)
Células Madre , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/citología , Animales , Ratones , Humanos , Células Madre/citología , Células Madre/metabolismo , Regeneración , Glaucoma/terapia , Trasplante de Células Madre/métodos , Secretoma , Modelos Animales de Enfermedad , Glaucoma de Ángulo Abierto/terapia , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Técnicas de Cultivo de Célula/métodos
3.
Methods Mol Biol ; 2848: 217-247, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240526

RESUMEN

Various strategies for replacing retinal neurons lost in degenerative diseases are under investigation, including stimulating the endogenous regenerative capacity of Müller Glia (MG) as injury-inducible retinal stem cells. Inherently regenerative species, such as zebrafish, have provided key insights into mechanisms regulating MG dedifferentiation to a stem-like state and the proliferation of MG and MG-derived progenitor cells (MGPCs). Interestingly, promoting MG/MGPC proliferation is not sufficient for regeneration, yet mechanistic studies are often focused on this measure. To fully account for the regenerative process, and facilitate screens for factors regulating cell regeneration, an assay for quantifying cell replacement is required. Accordingly, we adapted an automated reporter-assisted phenotypic screening platform to quantify the pace of cellular regeneration kinetics following selective cell ablation in larval zebrafish. Here, we detail a method for using this approach to identify chemicals and genes that control the rate of retinal cell regeneration following selective retinal cell ablation.


Asunto(s)
Pez Cebra , Animales , Retina/citología , Retina/metabolismo , Fenotipo , Proliferación Celular , Regeneración , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Células Madre/citología , Células Madre/metabolismo , Cinética , Regeneración Nerviosa/fisiología
4.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254648

RESUMEN

During embryonic development, Wnt signaling influences both proliferation and sensory formation in the cochlea. How this dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt-regulated gene, Mybl2, which was already known to be important for proliferation, in determining the size and patterning of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function, we show that Mybl2 promoted proliferation in the inner sulcus domain but limited the size of the sensory domain by influencing their adjoining boundary position via Jag1 regulation during development. Mybl2 loss-of-function simultaneously decreased proliferation in the inner sulcus and increased the size of the sensory domain, resulting in a wider sensory epithelium with ectopic inner hair cell formation during late embryonic stages. These data suggest that progenitor cells in the inner sulcus determine boundary formation and pattern the sensory epithelium via MYBL2.


Asunto(s)
Proliferación Celular , Cóclea , Proteína Jagged-1 , Células Madre , Animales , Cóclea/embriología , Cóclea/citología , Cóclea/metabolismo , Ratones , Epitelio/embriología , Epitelio/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Regulación del Desarrollo de la Expresión Génica , Vía de Señalización Wnt , Tipificación del Cuerpo/genética , Transactivadores/metabolismo , Transactivadores/genética , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/citología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
5.
Arch Oral Biol ; 168: 106080, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39217919

RESUMEN

OBJECTIVE: Sox2 plays crucial roles in tissues homeostasis and regeneration. However, there are lack of a comprehensive examination of Sox2 expression and its functional role in submandibular gland regeneration. Therefore, we aimed to elucidate the impact of Sox2 on submandibular gland regeneration. MATERIALS AND METHODS: A Sprague-Dawley rat submandibular gland duct ligation/de-ligation regeneration model was conducted in this study. Sox2-shRNA vectors were retro-ductally administered into the submandibular gland to establish a stable Sox2 knockdown model. Conventional histopathological and molecular biological methods were used to investigate phenotypic changes. RESULTS: The submandibular gland normalized completely 28 days after ligature removal (following 7 days of duct ligation). AQP5 expression gradually increased after ligation removal until returning to normal levels. In submandibular gland regeneration, Sox2 re-expressed and co-expressed with AQP5+ acinar cells, and Sox2 expression peaked on day 14, recovered to normal on day 28, reproducing the developmental pattern. Sox2 knockdown hindered gland regeneration and induced irreversible fibrosis. The AQP5 expression was significantly lower than the contemporaneous solely ligated group, while the blue collagen deposition and the Vimentin expression increased prominently. The expression of CD68, IL-1ß, TNF-α and IL-17A increased significantly, and epithelial cells in the Sox2 knockdown group expressed higher levels of IL-17A. CONCLUSIONS: These findings highlight Sox2 as a crucial regulator of the acinar cell lineage. Sox2+ progenitor cells are pivotal for acinar cell maintenance, which is indispensable for submandibular gland regeneration. Collectively, our findings may help develop targeted interventions for enhancing tissue repair and preventing irreversible fibrosis in salivary gland disorders.


Asunto(s)
Acuaporina 5 , Ratas Sprague-Dawley , Regeneración , Factores de Transcripción SOXB1 , Células Madre , Glándula Submandibular , Animales , Glándula Submandibular/metabolismo , Ratas , Regeneración/fisiología , Acuaporina 5/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células Madre/metabolismo , Masculino , Ligadura , Células Acinares/metabolismo , Vimentina/metabolismo , ARN Interferente Pequeño , Molécula CD68
6.
Front Immunol ; 15: 1447536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224602

RESUMEN

Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.


Asunto(s)
Pulpa Dental , Vesículas Extracelulares , Inmunomodulación , Inflamación , FN-kappa B , Pulpa Dental/citología , Pulpa Dental/inmunología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Humanos , Animales , Inflamación/inmunología , Inflamación/metabolismo , FN-kappa B/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , MicroARNs/genética , Lipopolisacáridos/farmacología , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Células Cultivadas , Transducción de Señal , Células Madre/inmunología , Células Madre/metabolismo , Masculino
7.
Nat Commun ; 15(1): 7957, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261467

RESUMEN

Postprandial IL-1ß surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1ß in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1ß potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPß are rapidly upregulated by IL-1ß and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1ß is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1ß surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1ß levels in obesity blunts this physiological function.


Asunto(s)
Adipocitos , Adipogénesis , Tejido Adiposo Blanco , Proteína beta Potenciadora de Unión a CCAAT , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Interleucina-1beta/metabolismo , Humanos , Adipocitos/metabolismo , Adipocitos/citología , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Ratones , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Masculino , Ratones Noqueados , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Ratones Endogámicos C57BL , Diferenciación Celular/efectos de los fármacos
8.
BMC Oral Health ; 24(1): 1070, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261847

RESUMEN

BACKGROUND: Periodontitis is a dental disease characterized by inflammation of periodontal tissues and loss of the periodontal ligaments and alveolar bone. Exosomes are a class of extracellular vesicles that are involved in a variety of diseases by releasing active substances. In this study, we aimed to investigate the effect and mechanism of exosomes from M2 polarized macrophages (M2-exos) on osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). METHODS: M2-exos were isolated from IL-4-induced RAW264.7 cells (M2 macrophages) and then treated on hPDLSCs. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, measurement of osteogenic differentiation-related genes and proteins, and inflammation was evaluated by measuring the levels of inflammatory factors. The mechanism of M2-exo was confirmed through qPCR, western blot, ALP and ARS staining. RESULTS: Results suggested that M2-exo improved osteogenic differentiation and inhibited inflammation in LPS-induced hPDLSCs. CXCL12 expression was elevated in M2 macrophages, but decreased in LPS-induced hPDLSCs. Moreover, the effect of M2-exo on osteogenic differentiation and inflammation in LPS-induced hPDLSCs was reversed by CXCL12 knockdown. CONCLUSION: We demonstrated that M2-exo facilitated osteogenic differentiation and suppressed inflammation in LPS-induced hPDLSCs through promotion of CXCL12 expression. These results suggested the potential of M2-exo in the treatment of periodontitis, which may provide a new theoretical basis for M2-exo treatment of periodontitis.


Asunto(s)
Diferenciación Celular , Quimiocina CXCL12 , Exosomas , Inflamación , Macrófagos , Osteogénesis , Ligamento Periodontal , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Humanos , Exosomas/metabolismo , Macrófagos/metabolismo , Células Madre/metabolismo , Quimiocina CXCL12/metabolismo , Inflamación/metabolismo , Ratones , Animales , Células Cultivadas , Periodontitis/metabolismo , Células RAW 264.7
9.
Cells ; 13(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273035

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need. Under physiological conditions, Lgr5+ intestinal stem cells (ISCs) in the intestinal crypts replenish the epithelia every 3-5 days. Therefore, understanding the regulation of Lgr5+ ISCs is essential. Previous data suggest vitamin D signaling is essential to maintain normal Lgr5+ ISC function in vivo. Our recent data indicate that to execute its functions in the intestines optimally, 1,25(OH)2D requires high concentrations that, if present systemically, can cause hypercalcemia (i.e., blood calcium levels significantly higher than physiological levels), leading to severe consequences. Using 5-bromo-2'-deoxyuridine (BrdU) to label the actively proliferating ISCs, our previous data suggested that de novo synthesized locally high 1,25(OH)2D concentrations effectively enhanced the migration and differentiation of ISCs without causing hypercalcemia. However, although sparse in the crypts, other proliferating cells other than Lgr5+ ISCs could also be labeled with BrdU. This current study used high-purity Lgr5+ ISC lines and a mouse strain, in which Lgr5+ ISCs and their progeny could be specifically tracked, to investigate the effects of de novo synthesized locally high 1,25(OH)2D concentrations on Lgr5+ ISC function. Our data showed that 1,25(OH)2D at concentrations significantly higher than physiological levels augmented Lgr5+ ISC differentiation in vitro. In vivo, de novo synthesized locally high 1,25(OH)2D concentrations significantly elevated local 1α-hydroxylase expression, robustly suppressed experimental colitis, and promoted Lgr5+ ISC differentiation. For the first time, this study definitively demonstrated 1,25(OH)2D's role in Lgr5+ ISCs, underpinning 1,25(OH)2D's promise in IBD therapy.


Asunto(s)
Receptores Acoplados a Proteínas G , Células Madre , Vitamina D , Animales , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/citología , Vitamina D/farmacología , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Ratones , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Regeneración/efectos de los fármacos , Ratones Endogámicos C57BL , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Intestinos/efectos de los fármacos
10.
Stem Cell Res Ther ; 15(1): 305, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278919

RESUMEN

BACKGROUND: Fibrosis with unrelieved chronic inflammation is an important pathological change in keloids. Mitochondrial autophagy plays a crucial role in reducing inflammation and inhibiting fibrosis. Adipose stem cell-derived exosomes, a product of adipose stem cell paracrine secretion, have pharmacological effects, such as anti-inflammatory and antiapoptotic effects, and mediate autophagy. Therefore, this study aims to investigate the function and mechanism of adipose stem cell exosomes in the treatment of keloids. METHOD: We isolated adipose stem cell exosomes under normoxic and hypoxic condition to detect their effects on keloid fibroblast proliferation, migration, and collagen synthesis. Meanwhile, 740YPDGFR (PI3K/AKT activator) was applied to detect the changes in autophagic flow levels and mitochondrial morphology and function in keloid fibroblasts. We constructed a human keloid mouse model by transplanting human keloid tissues into six-week-old (20-22 g; female) BALB/c nude mice, meanwhile, we applied adipose stem cell exosomes to treat the mouse model and observed the retention and effect of ADSC exosomes in vivo. RESULTS: ADSC exosomes can inhibit the PI3K/AKT/mTOR signaling pathway. The exosomes of ADSCs decreased the inflammatory level of KFs, enhanced the interaction between P62 and LC3, and restored the mitochondrial membrane potential. In the human keloid mouse model, ADSC exosomes can exist stably, promote mitochondrial autophagy in keloid tissue, improve mitochondrial morphology, reduce inflammatory reaction and fibrosis. Meanwhile, At the same time, the exosomes derived from hypoxic adipose stem cells have played a more effective role in both in vitro and in vivo experiments. CONCLUSIONS: Adipose stem cell exosomes inhibited the PI3K/AKT/mTOR pathway, activated mitochondrial autophagy, and alleviated keloid scars.


Asunto(s)
Autofagia , Exosomas , Queloide , Mitocondrias , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Queloide/metabolismo , Queloide/terapia , Queloide/patología , Exosomas/metabolismo , Exosomas/trasplante , Animales , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Mitocondrias/metabolismo , Femenino , Ratones Endogámicos BALB C , Ratones Desnudos , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Células Madre/metabolismo , Células Madre/citología , Proliferación Celular , Fibroblastos/metabolismo
11.
Stem Cell Res Ther ; 15(1): 306, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285500

RESUMEN

BACKGROUND: Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis. METHODS: Co-culture of human DPSCs and human umbilical vein endothelial cells (HUVECs) was used to detect the angiogenesis ability. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS), and transplantation of HA/tricalcium phosphate with DPSCs were used to detect osteogenesis. RESULTS: NQO1 suppressed in vitro tubule formation, migration, chemotaxis, and in vivo angiogenesis, as evidenced by reduced CD31 expression. It also enhanced ALP activity, ARS, DSPP expression and osteogenesis and boosted mitochondrial function in DPSCs. CoQ10, an electron transport chain activator, counteracted the effects of NQO1 knockdown on these processes. Additionally, NQO1 downregulated MAPK signaling, which was reversed by CoQ10 supplementation in DPSCs-NQO1sh. CONCLUSIONS: NQO1 inhibited angiogenesis and promoted the osteogenesis of DPSCs by suppressing MAPK signaling pathways and enhancing mitochondrial respiration.


Asunto(s)
Pulpa Dental , Células Endoteliales de la Vena Umbilical Humana , Sistema de Señalización de MAP Quinasas , NAD(P)H Deshidrogenasa (Quinona) , Neovascularización Fisiológica , Osteogénesis , Humanos , Osteogénesis/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo , Técnicas de Cocultivo , Células Madre/metabolismo , Células Madre/citología , Células Cultivadas , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Animales , Diferenciación Celular , Angiogénesis
12.
Nat Commun ; 15(1): 7643, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223126

RESUMEN

Cell identities are defined by intrinsic transcriptional networks and spatio-temporal environmental factors. Here, we explored multiple factors that contribute to the identity of adipose stem cells, including anatomic location, microvascular neighborhood, and sex. Our data suggest that adipose stem cells serve a dual role as adipocyte precursors and fibroblast-like cells that shape the adipose tissue's extracellular matrix in an organotypic manner. We further find that adipose stem cells display sexual dimorphism regarding genes involved in estrogen signaling, homeobox transcription factor expression and the renin-angiotensin-aldosterone system. These differences could be attributed to sex hormone effects, developmental origin, or both. Finally, our data demonstrate that adipose stem cells are distinct from mural cells, and that the state of commitment to adipogenic differentiation is linked to their anatomic position in the microvascular niche. Our work supports the importance of sex and microvascular function in adipose tissue physiology.


Asunto(s)
Adipocitos , Tejido Adiposo , Fibroblastos , Caracteres Sexuales , Células Madre , Animales , Femenino , Adipocitos/citología , Adipocitos/metabolismo , Masculino , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citología , Células Madre/metabolismo , Células Madre/citología , Ratones , Diferenciación Celular , Adipogénesis/genética , Ratones Endogámicos C57BL , Matriz Extracelular/metabolismo , Humanos
13.
J Clin Invest ; 134(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225088

RESUMEN

The periosteum contains skeletal stem/progenitor cells that contribute to bone fracture healing. However, the in vivo identity of periosteal skeletal stem cells (P-SSCs) remains unclear, and membrane protein markers of P-SSCs that facilitate tissue engineering are needed. Here, we identified integral membrane protein 2A (Itm2a) enriched in SSCs using single-cell transcriptomics. Itm2a+ P-SSCs displayed clonal multipotency and self-renewal and sat at the apex of their differentiation hierarchy. Lineage-tracing experiments showed that Itm2a selectively labeled the periosteum and that Itm2a+ cells were preferentially located in the outer fibrous layer of the periosteum. The Itm2a+ cells rarely expressed CD34 or Osx, but expressed periosteal markers such as Ctsk, CD51, PDGFRA, Sca1, and Gli1. Itm2a+ P-SSCs contributed to osteoblasts, chondrocytes, and marrow stromal cells upon injury. Genetic lineage tracing using dual recombinases showed that Itm2a and Prrx1 lineage cells generated spatially separated subsets of chondrocytes and osteoblasts during fracture healing. Bone morphogenetic protein 2 (Bmp2) deficiency or ablation of Itm2a+ P-SSCs resulted in defects in fracture healing. ITM2A+ P-SSCs were also present in the human periosteum. Thus, our study identified a membrane protein marker that labels P-SSCs, providing an attractive target for drug and cellular therapy for skeletal disorders.


Asunto(s)
Curación de Fractura , Proteínas de la Membrana , Periostio , Animales , Periostio/metabolismo , Periostio/citología , Ratones , Curación de Fractura/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Células Madre/metabolismo , Células Madre/citología , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Fracturas Óseas/patología , Fracturas Óseas/metabolismo , Fracturas Óseas/terapia , Fracturas Óseas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Diferenciación Celular , Condrocitos/metabolismo , Condrocitos/citología , Masculino , Linaje de la Célula
14.
Stem Cell Res Ther ; 15(1): 279, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227906

RESUMEN

Diabetic foot ulcers (DFUs) are chronic wounds and one of the most common complications of diabetes, imposing significant physical and mental burdens on patients due to their poor prognosis and treatment efficacy. Adipose-derived stem cells (ADSCs) have been proven to promote wound healing, with studies increasingly attributing these beneficial effects to their paracrine actions. Consequently, research on ADSC secretome as a novel and promising alternative for DFU treatment has been extensively conducted. This article provides a comprehensive review of the mechanisms underlying refractory DFU wounds, the secretome of ADSCs, and its role in promoting wound healing in diabetes foot ulcers. And the review aims to provide reliable evidence for the clinical application of ADSC secretome in the treatment of refractory DFU wounds.


Asunto(s)
Tejido Adiposo , Pie Diabético , Secretoma , Cicatrización de Heridas , Humanos , Pie Diabético/terapia , Pie Diabético/metabolismo , Pie Diabético/patología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Secretoma/metabolismo , Células Madre/metabolismo , Células Madre/citología , Animales
15.
Cell Biochem Funct ; 42(7): e4118, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267363

RESUMEN

Low back pain significantly impacts individuals' quality of life, with intervertebral disc degeneration (IDD) being a primary contributor to this condition. Currently, IDD treatment primarily focuses on symptom management and does not achieve a definitive cure. The cartilage endplate (CEP), a crucial nutrient-supplying tissue of the intervertebral disc, plays a pivotal role in disc degeneration. This review examines the mechanisms underlying CEP degeneration, summarizing recent advancements in understanding the structure and function of CEP, the involvement of various signaling pathways, and the roles of cartilage endplate stem cells (CESCs) and exosomes (Exos) in this process. The aim of this review is to provide a comprehensive reference for future research on CEP. Despite progress in understanding the role of CEP in IDD, the mechanisms underlying CEP degeneration remain incompletely elucidated. Future research poses significant challenges, necessitating further investigations to elucidate the complexities of CEP.


Asunto(s)
Cartílago , Degeneración del Disco Intervertebral , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Humanos , Cartílago/metabolismo , Cartílago/patología , Animales , Disco Intervertebral/patología , Disco Intervertebral/metabolismo , Exosomas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Madre/patología , Transducción de Señal
16.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273510

RESUMEN

A limited understanding of tendon cell biology in healthy and pathological conditions has impeded the development of effective treatments, necessitating in vitro biomimetic models for studying tendon events. We established a dynamic culture using fibrin scaffolds, bioengineered with tendon stem/progenitor cells (hTSPCs) from healthy or diseased human biopsies and perfused with 20 ng/mL of human transforming growth factor-ß1 for 21 days. Both cell types showed long-term viability and upregulated Scleraxis (SCX-A) and Tenomodulin (TNMD) gene expressions, indicating tenogenic activity. However, diseased hTSPCs underexpressed collagen type I and III (COL1A1 and COL3A1) genes and exhibited lower SCX-A and TNMD protein levels, but increased type I collagen production, with a type I/type III collagen ratio > 1.5 by day 14, matching healthy cells. Diseased hTSPCs also showed constant high levels of pro-inflammatory cytokines, such as IL-8 and IL-6. This biomimetic environment is a valuable tool for studying tenogenic and inflammatory events in healthy and diseased tendon cells and identifying new therapeutic targets.


Asunto(s)
Colágeno Tipo I , Fibrina , Células Madre , Tendones , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Humanos , Tendones/citología , Tendones/metabolismo , Andamios del Tejido/química , Células Madre/metabolismo , Células Madre/citología , Fibrina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tendinopatía/metabolismo , Tendinopatía/patología , Células Cultivadas , Colágeno Tipo III/metabolismo , Colágeno Tipo III/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Persona de Mediana Edad , Masculino , Supervivencia Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Proteínas de la Membrana
17.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273655

RESUMEN

Cellular senescence is a permanent condition of cell cycle arrest caused by a progressive shortening of telomeres defined as replicative senescence. Stem cells may also undergo an accelerated senescence response known as premature senescence, distinct from telomere shortening, as a response to different stress agents. Various treatment protocols have been developed based on epigenetic changes in cells throughout senescence, using different drugs and antioxidants, senolytic vaccines, or the reprogramming of somatic senescent cells using Yamanaka factors. Even with all the recent advancements, it is still unknown how different epigenetic modifications interact with genetic profiles and how other factors such as microbiota physiological conditions, psychological states, and diet influence the interaction between genetic and epigenetic pathways. The aim of this review is to highlight the new epigenetic modifications that are involved in stem cell senescence. Here, we review recent senescence-related epigenetic alterations such as DNA methylation, chromatin remodeling, histone modification, RNA modification, and non-coding RNA regulation outlining new possible targets for the therapy of aging-related diseases. The advantages and disadvantages of the animal models used in the study of cellular senescence are also briefly presented.


Asunto(s)
Senescencia Celular , Metilación de ADN , Epigénesis Genética , Células Madre , Senescencia Celular/genética , Humanos , Animales , Células Madre/metabolismo , Ensamble y Desensamble de Cromatina
18.
Chin J Dent Res ; 27(3): 203-213, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221981

RESUMEN

OBJECTIVE: To investigate the biological regulatory function of Gremlin1 (GREM1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH) in dental pulp stem cells (DPSCs), and determine the underlying molecular mechanism involved. METHODS: Alkaline phosphatase (ALP) activity, alizarin red staining, scratch migration assays and in vitro and in vivo osteo-/dentinogenic marker detection of bone-like tissue generation in nude mice were used to assess osteo-/dentinogenic differentiation. Coimmunoprecipitation and polypeptide microarray assays were employed to detect the molecular mechanisms involved. RESULTS: The data revealed that knockdown of GREM1 promoted ALP activity, mineralisation in vitro and the expression of osteo-/dentinogenic differentiation markers and enhanced osteo-/ dentinogenesis of DPSCs in vivo. GREM1 bound to YWHAH in DPSCs, and the binding site was also identified. Knockdown of YWHAH suppressed the osteo-/dentinogenesis of DPSCs in vitro, and overexpression of YWHAH promoted the osteo-/dentinogenesis of DPSCs in vitro and in vivo. CONCLUSION: Taken together, the findings highlight the critical roles of GREM1-YWHAH in the osteo-/dentinogenesis of DPSCs.


Asunto(s)
Diferenciación Celular , Pulpa Dental , Péptidos y Proteínas de Señalización Intercelular , Osteogénesis , Células Madre , Animales , Humanos , Ratones , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Células Cultivadas , Pulpa Dental/citología , Pulpa Dental/metabolismo , Dentinogénesis/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Desnudos , Osteogénesis/genética , Células Madre/metabolismo
19.
Stem Cell Res Ther ; 15(1): 292, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256792

RESUMEN

BACKGROUND: Hepatic progenitor cells serve not only as the origin of combined hepatocellular cholangiocarcinoma (cHCC-CCA) but are also responsible for malignancy recurrence after surgical resection. Nucleophosmin 1 (NPM1) has been implicated in cancer metastasis and poor prognosis. This study aimed to determine the expression of NPM1 by hepatic progenitor cells in cHCC-CCA and the effects of targeting NPM1 on hepatic progenitor cells and BEL-7402 cells with characteristics of both progenitor cells and cHCC-CCA. METHODS: First, NPM1 was detected by RT‒PCR, western blotting, and double-immunofluorescence staining in cHCC-CCA tissues. NPM1 expression was subsequently analysed in rat hepatic progenitor cells cultured in vitro and in interleukin 6 (IL6)-treated cells. The effects and mechanism of NPM1 on hepatic progenitor cells were determined by knocking down NPM1 and performing RNA sequencing analysis. Finally, NSC348884, a small-molecule inhibitor that disrupts NPM1 dimer formation, was used to confirm the function of NPM1 in BEL-7402 cells. RESULTS: Both human hepatic progenitor cells in cHCC-CCA tissues and rat in vitro cultured hepatic progenitor cells highly expressed NPM1. IL6, a cytokine involved in the malignant transformation of hepatic progenitor cells, dose-dependently increased NPM1 and PCNA expression. Knocking down NPM1 reduced IL6R transcription (P < 0.0001) and inhibited the proliferation (P = 0.0065) of hepatic progenitor cells by suppressing the mTOR signalling pathway and activating the apoptosis pathway. Furthermore, knocking down NPM1 in hepatic progenitor cells resulted in more apoptotic cells (7.33 ± 0.09% vs. 3.76 ± 0.13%, P < 0.0001) but fewer apoptotic cells in the presence of NSC348884 (47.57 ± 0.49% vs. 63.40 ± 0.05%, P = 0.0008) than in the control cells, suggesting that low-NPM1-expressing cells are more resistant to NSC348884. In addition, NSC348884 induced the apoptosis of BEL-7402 cells with an IC50 of 2.77 µmol/L via the downregulation of the IL-6R and mTOR signalling pathways and inhibited the growth of BEL-7402 cells in a subcutaneous xenograft tumour model (P = 0.0457). CONCLUSIONS: Targeting NPM1 inhibits proliferation and induces apoptosis in hepatic progenitor cells and BEL-7402 cells, thus serving as a potential therapy for cHCC-CCA.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas Nucleares , Nucleofosmina , Transducción de Señal , Células Madre , Serina-Treonina Quinasas TOR , Humanos , Apoptosis/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proliferación Celular/efectos de los fármacos , Animales , Transducción de Señal/efectos de los fármacos , Ratas , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Madre/metabolismo , Células Madre/citología , Masculino , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Ratones
20.
Stem Cell Res Ther ; 15(1): 293, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256850

RESUMEN

BACKGROUND: Understanding the role of cytokines in tooth development is critical for advancing dental tissue engineering. Fibroblast growth factor 9 (FGF9) is the only FGF consistently expressed throughout dental epithelial tissue, from the initiation of tooth bud formation to tooth maturation. However, mice lacking Fgf9 (Fgf9-/-) surprisingly show no obvious abnormalities in tooth development, suggesting potential compensation by other FGFs. Here we report findings from an Fgf9S99N mutation mouse model, a loss-of-function mutation with a dominant negative effect. Our study reveals that Fgf9 is crucial for dental epithelial stem cell (DESC) survival and enamel formation. METHODS: To dissect the role of Fgf9 in tooth development, we performed the micro-CT, histomorphological analysis and gene expression assay in mice and embryos with S99N mutation. In addition, we assessed the effect of FGF9 on the DESC survival and dental epithelial differentiation by DESC sphere formation assay and tooth explant culture. Cell/tissue culture methods, gene expression analysis, specific inhibitors, and antibody blockage analysis were employed to explore how Fgf9 regulates enamel differentiation and DESC survival through both direct and indirect mechanisms. RESULTS: The Fgf9S99N mutation in mice led to reduced ameloblasts, impaired enamel formation, and increased apoptosis in the cervical loop (CL). DESC sphere culture experiments revealed that FGF9 facilitated DESC survival via activating ERK/CREB signaling, without affecting cell proliferation. Furthermore, in vitro tissue culture experiments demonstrated that FGF9 promoted enamel formation in a manner dependent on the presence of mesenchyme. Interestingly, FGF9 stimulation inhibited enamel formation in isolated enamel epithelia and DESC spheres. Further investigation revealed that FGF9 supports DESC survival and promotes amelogenesis by stimulating the secretion of FGF3 and FGF10 in dental mesenchymal cells via the MAPK/ERK signaling pathway. CONCLUSIONS: Our study demonstrates that Fgf9 is essential for DESC survival and enamel formation. Fgf9 performs as a dual-directional regulator of the dental enamel epithelium, not only inhibiting DESC differentiation into ameloblasts to preserve the stemness of DESC, but also promoting ameloblast differentiation through epithelial-mesenchymal interactions.


Asunto(s)
Esmalte Dental , Células Epiteliales , Factor 9 de Crecimiento de Fibroblastos , Células Madre , Animales , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/genética , Ratones , Esmalte Dental/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Epiteliales/metabolismo , Incisivo/metabolismo , Supervivencia Celular , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA