RESUMEN
BACKGROUND: Although Echinodorus grandiflorus (Cham. & Schltr.) Michel are used in Brazilian folk medicine as a diuretic drug, to date, no study has evaluated the mechanisms involved in this activity after prolonged administration in rats. AIM OF THE STUDY: Evaluate the possible mechanisms involved in the prolonged diuretic activity of ethanol soluble fraction obtained from Echinodorus grandiflorus (ES-EG) and to assess its relationship with hypotensive and antihypertensive activity using normotensive rats and those with renovascular hypertension (2K1C). METHODS: The diuretic effects of ES-EG (30-300 mg/kg; p.o.) were compared with hydrochlorothiazide in a repeated-dose treatment for 7 days. The urinary volume and sodium, potassium, chloride, bicarbonate contents, conductivity, pH and density were estimated in sample collected in 24 h for 7 days. Plasma sodium, potassium, total protein, urea, creatinine, aldosterone, vasopressin, nitrite, acetylcholinesterase concentration and angiotensin converting enzyme (ACE) activity were measured in samples collected at the end of the experimental period (seventh day). Using pharmacological antagonists or inhibitors, the involvement of bradykinin, prostaglandin, acetylcholine and nitric oxide (NO) in ES-EG-induced diuresis was determined. In addition, activities of erythrocytary carbonic anhydrase and renal Na+/K+/ATPase were evaluated in vitro. RESULTS: ES-EG increased diuresis similarly to hydrochlorothiazide and also presented HCO3-sparing effects and increased serum nitrite levels. Moreover, the intraduodenal administration of ES-EG induces significant hypotensive and antihypertensive effects in 2K1C rats. Previous treatment with HOE-140, indometacin and atropine fully avoided the diuretic effect of ES-EG, and including L-NAME pre-administration, it prevented the hypotensive and hypertensive activity induced by ES-EG. In addition, the association between HOE-140 and atropine or indometacin and L-NAME fully inhibited the hypotensive and antihypertensive effects of ES-EG. The 7-day treatment with ES-EG resulted in increased plasma nitrite levels. All other parameters were not affected by treatment with ES-EG. CONCLUSIONS: Our results suggest that the mechanisms through which Echinodorus grandiflorus extracts induce prolonged diuresis and reduce blood pressure in normotensive and 2K1C rats are mainly related to activation of muscarinic and bradykinin receptors with direct effects on prostaglandins and nitric oxide pathways.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antihipertensivos/farmacología , Bradiquinina/farmacocinética , Diuréticos/farmacología , Hipertensión/tratamiento farmacológico , Antagonistas Muscarínicos/farmacología , Extractos Vegetales/farmacología , Alismataceae/química , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Bradiquinina/uso terapéutico , Brasil , Diuréticos/uso terapéutico , Masculino , Medicina Tradicional , Extractos Vegetales/uso terapéutico , RatasRESUMEN
BACKGROUND AND AIM: Bradykinin (BK) infused into the portal vein elicits a hypertensive response via the B2 receptor (B2R) and is efficiently hydrolyzed by the liver. Our purpose was to characterize the mechanism of interaction between BK and the liver. METHOD: BK, HOE-140 (a B2R antagonist), des-R(9)-BK (a B1R agonist) and enzyme inhibitors were used in monovascular or bivascular perfusions and in isolated liver cell assays. RESULTS: Des-R(9)-BK did not elicit a portal hypertensive response (PHR); BK infused into the hepatic artery elicited a calcium-dependent PHR and a calcium-independent arterial hypertensive response (HAHR), with the latter being almost abolished by naproxen. BK has a predominant distribution in the extracellular space and an average hepatic extraction of 8% in the steady state. Hydrolysis products of infused BK (R(1)-F(5) and R(1)-P(7)) did not elicit PHR. Angiotensin converting enzyme (ACE) is concentrated in the perivenous region and B2R in the periportal region. Microphysiometry showed that BK (and not a B1 agonist) interacts with stellate cells and the endothelial sinusoidal/Kupffer cell fraction. This effect was inhibited by the B2R antagonist. CONCLUSIONS: Events can be summarized as: the hypertensive action of BK on sinusoidal cells of the periportal region is followed by its hydrolysis by ACE which is primarily present in the perivenous region; there is no functional B1R in the normal liver; BK induces HAHR via eicosanoid release and PHR by a distinct pathway on the B2R. Our data suggest that BK may participate in the modulation of sinusoidal microvasculature tonus both in the portal and the arterial routes.