RESUMEN
NEW FINDINGS: What is the central question of this study? Does the parafacial respiratory group (pFRG), which mediates active expiration, recruit nasofacial and oral motoneurons to coordinate motor activities that engage muscles controlling airways in rats during active expiration. What is the main finding and its importance? Hypercapnia/acidosis or pFRG activation evoked active expiration and stimulated the motoneurons and nerves responsible for the control of nasofacial and oral airways patency simultaneously. Bilateral pFRG inhibition abolished active expiration and the simultaneous nasofacial and oral motor activities induced by hypercapnia/acidosis. The pFRG is more than a rhythmic oscillator for expiratory pump muscles: it also coordinates nasofacial and oral motor commands that engage muscles controlling airways. ABSTRACT: Active expiration is mediated by an expiratory oscillator located in the parafacial respiratory group (pFRG). Active expiration requires more than contracting expiratory muscles as multiple cranial nerves are recruited to stabilize the naso- and oropharyngeal airways. We tested the hypothesis that activation of the pFRG recruits facial and trigeminal motoneurons to coordinate nasofacial and oral motor activities that engage muscles controlling airways in rats during active expiration. Using a combination of electrophysiological and pharmacological approaches, we identified brainstem circuits that phase-lock active expiration, nasofacial and oral motor outputs in an in situ preparation of rat. We found that either high chemical drive (hypercapnia/acidosis) or unilateral excitation (glutamate microinjection) of the pFRG evoked active expiration and stimulated motoneurons (facial and trigeminal) and motor nerves responsible for the control of nasofacial (buccal and zygomatic branches of the facial nerve) and oral (mylohyoid nerve) motor outputs simultaneously. Bilateral pharmacological inhibition (GABAergic and glycinergic receptor activation) of the pFRG abolished active expiration and the simultaneous nasofacial and oral motor activities induced by hypercapnia/acidosis. We conclude that the pFRG provides the excitatory drive to phase-lock rhythmic nasofacial and oral motor circuits during active expiration in rats. Therefore, the pFRG is more than a rhythmic oscillator for expiratory pump muscles: it also coordinates nasofacial and oral motor commands that engage muscles controlling airways in rats during active expiration.
Asunto(s)
Espiración/fisiología , Músculos Faciales/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Cavidad Nasal/fisiología , Centro Respiratorio/fisiología , Animales , Músculos Faciales/inervación , Masculino , Boca/inervación , Boca/fisiología , Cavidad Nasal/inervación , Ratas , Ratas WistarRESUMEN
OBJECTIVE: The aims of the present study were to determine the normal values of TPD in the six trigeminal sites (the forehead, cheek, mentum, upper lip, lower lip, and the tongue tip) and to investigate the effect of the site, sex, and test modality on the TPD perception. MATERIAL AND METHODS: Forty healthy volunteers consisting of age-matched men (20) and women (20) with a mean age of 27.1 years were recruited. One examiner performed the TPD test using a simple hand-operated device, i.e., by drawing compass with a blunt or sharp-pointed tip. The static TPD with a blunt-pointed tip (STPDB), moving TPD with a blunt-pointed tip (MTPDB), and static TPD with a sharp-pointed tip (STPDS) were measured. The predictors were the site, sex, and test modality, and the outcome variable was the TPD value. Three-way ANOVA was used for statistics. RESULTS: The analysis showed a significant effect of the site, sex and test modality on the TPD values. Significant differences between the test sites were observed with the descending order from the forehead and cheek>mentum>upper lip and lower lip>tongue tip and index finger. Women showed lower TPD values than those of men. The STPDS measurements were consistently lower than those of the STPDB and MTPDB. CONCLUSIONS: The normal values of TPD in this study suggest that the cheek and forehead were less sensitive than other regions evaluated and women were more sensitive than men. The STPDS was the most sensitive test modality.
Asunto(s)
Cara/inervación , Boca/inervación , Examen Neurológico/métodos , Sensación/fisiología , Nervio Trigémino/fisiología , Adulto , Análisis de Varianza , Puntos Anatómicos de Referencia/fisiología , Femenino , Humanos , Masculino , Estándares de Referencia , Valores de Referencia , Factores Sexuales , Fenómenos Fisiológicos de la Piel , Estadísticas no Paramétricas , Adulto JovenRESUMEN
Abstract The two-point discrimination (TPD) test is one of the most commonly used neurosensory tests to assess mechanoperception in the clinical settings. While there have been numerous studies of functional sensibility of the hand using TPD test, there have been relatively not enough reports on TPD in the orofacial region. Objective The aims of the present study were to determine the normal values of TPD in the six trigeminal sites (the forehead, cheek, mentum, upper lip, lower lip, and the tongue tip) and to investigate the effect of the site, sex, and test modality on the TPD perception. Material and Methods Forty healthy volunteers consisting of age-matched men (20) and women (20) with a mean age of 27.1 years were recruited. One examiner performed the TPD test using a simple hand-operated device, i.e., by drawing compass with a blunt or sharp-pointed tip. The static TPD with a blunt-pointed tip (STPDB), moving TPD with a blunt-pointed tip (MTPDB), and static TPD with a sharp-pointed tip (STPDS) were measured. The predictors were the site, sex, and test modality, and the outcome variable was the TPD value. Three-way ANOVA was used for statistics. Results The analysis showed a significant effect of the site, sex and test modality on the TPD values. Significant differences between the test sites were observed with the descending order from the forehead and cheek>mentum>upper lip and lower lip>tongue tip and index finger. Women showed lower TPD values than those of men. The STPDS measurements were consistently lower than those of the STPDB and MTPDB. Conclusions The normal values of TPD in this study suggest that the cheek and forehead were less sensitive than other regions evaluated and women were more sensitive than men. The STPDS was the most sensitive test modality.
Asunto(s)
Humanos , Masculino , Femenino , Adulto , Adulto Joven , Sensación/fisiología , Nervio Trigémino/fisiología , Cara/inervación , Boca/inervación , Examen Neurológico/métodos , Estándares de Referencia , Valores de Referencia , Fenómenos Fisiológicos de la Piel , Factores Sexuales , Análisis de Varianza , Estadísticas no Paramétricas , Puntos Anatómicos de Referencia/fisiologíaRESUMEN
Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain â¼1,000, â¼3,000, â¼600, and â¼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons.
Asunto(s)
Cara/inervación , Núcleo Motor del Nervio Facial/citología , Bulbo Raquídeo/citología , Neuronas Motoras/citología , Boca/inervación , Núcleo Motor del Nervio Trigémino/citología , Animales , Recuento de Células , Núcleo Motor del Nervio Facial/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Nervio Hipogloso/citología , Nervio Hipogloso/metabolismo , Inmunohistoquímica , Masculino , Bulbo Raquídeo/metabolismo , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Inhibición Neural/fisiología , Tamaño de los Órganos , Núcleo Motor del Nervio Trigémino/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
La incorporación de implantes dentales al Sistema Estomatognático genera muchos cuestionamientos, entre ellos: ¿Cómo se explica que el paciente sienta a través de estos sistemas de anclaje?; ¿Por qué el paciente dice que mastica mejor que con las prótesis mucosoportadas?;¿Por qué a pesar de haber perdido dos componentes fisiológicos esenciales (dientes y periodonto) no se aprecian clínicamente importantes problemas dentro del sistema?; ¿Qué reordenamientos del sistema nervioso determinan la regulación motora luego de rehabilitado con estas técnicas? Es probable que las respuestas surjan a través del conocimiento de una nueva modalidad sensorial descriptacomo oseopercepción, la cual implica un reordenamiento de las áreas sensitivas y motoras de la corteza cerebral (neuroplasticidad).
Many questions arise from the introduction of dental implants into the stomatognathic system, for example: How can patients feel through these anchorage structures? Why does the patient feel that his mastication is improved with respect to the classic complete dentures? Why there are not remarkable alterations in the function of the stomatognathic system despite the loss of two essential componentsof this system? What rearrangements of the nervous system take place after the placement of dental implants that control the motor regulation of the stomatognathic system? Probably, the answer to these questions may come from the study of a new sensorymodality known as osseoperception, which involves a rearrangement of sensory and motor areas of the brain cortex (neuroplasticity).
Asunto(s)
Humanos , Boca/fisiología , Boca/inervación , Huesos/fisiología , Huesos/inervación , Mecanorreceptores/fisiología , Implantes Dentales , Percepción/fisiología , Sistema EstomatognáticoRESUMEN
The knowledge of the buccal nerve anatomy is of fundamental importance not only for the anesthesia but also for a safe intervention in the retromolar area. The aim of this work was to study its trajectory, in the area where it is related to the anterior margin of the ramus of the mandible, therefore providing important data for a safe intervention in the region. In this study we used 10 hemi-heads from male and female adults, from different ethnic groups. They were fixed in formol, and belong to the Anatomy Laboratory at the Faculty of Dentistry in Araraquara UNESP. These hemi-heads were dissected by lateral access, preserving the buccal nerve in its trajectory related to the anterior margin of the ramus of the mandible until its penetration in the buccinator muscle. Next, we desinserted the masseter muscle so that all the ramus of the mandible were exposed. Then, the following measurements were carried out: from the base of the mandible until the buccal nerve and from the base of the mandible until the apices of the mandibular coronoid process. These measurements were accomplished with a Mitutoyo CD-6'' CS digital paquimeter. The following average values were obtained: 32.26 mm (to the left side) and 32.04 mm (to the right side), from the base of the mandible until the buccal nerve and 59.09 mm (to the left side) and 58.95 mm (to the right side) from the base of the mandible until the apices of the coronoid process. We have concluded that normally, the buccal nerve crosses the anterior margin of the ramus of the mandible in an area which is above the superior half of the ramus of the mandible and also that the interventions in the retromolar region do not offer great risks of injury in the buccal nerve.
El conocimiento de la anatomía del nervio bucal es de importancia fundamental no sólo para la anestesia, sino también para una intervención segura en la zona retromolar. El objetivo de este trabajo fue estudiar la trayectoria del nervio bucal, en la zona en que se relaciona con el margen anterior de la rama de la mandíbula, proporcionando datos importantes para una intervención segura en la región. En este estudio fueron utilizadas 10 hemi-cabezas de hombres y mujeres adultos, de diferentes grupos étnicos. Las cabezas fueron fijadas en formol, y pertenecen al Laboratorio de Anatomía de la Facultad de Odontología de Araraquara UNESP. Las hemi-cabezas fueron disecadas por medio de un acceso lateral, preservando al nervio bucal en su trayectoria en relación con el margen anterior de la rama de la mandíbula hasta su penetración en el músculo buccinador. A continuación, el músculo masetero fue desinsertado de modo que toda la rama de la mandíbula fue expuesta. A continuación, se llevaron a cabo las siguientes mediciones: desde la base de la mandíbula hasta el nervio bucal y de la base de la mandíbula hasta los ápices de los procesos coronoides mandibular. Estas mediciones se realizaron con un caliper digital CD-6'' CS Mitutoyo. Los siguientes valores promedio fueron obtenidos: 32,26 mm (a la izquierda) y 32,04 mm (a la derecha) de la base de la mandíbula hasta el nervio bucal y 59,09 mm (a la izquierda) y 58,95 mm (a la derecha) de la base de la mandíbula hasta los ápices de los procesos coronoides. En conclusión, normalmente, el nervio bucal cruza el margen anterior de la rama de la mandíbula en una zona que está por encima de la media superior de la rama de la mandíbula, y también que las intervenciones en la región retromolar no ofrecen grandes riesgos de lesiones en el nervio bucal.
Asunto(s)
Humanos , Masculino , Adulto , Femenino , Boca/anatomía & histología , Boca/inervación , Nervio Facial/anatomía & histología , Red Nerviosa/anatomía & histología , Cabeza/anatomía & histología , Cabeza/inervación , Músculo Masetero/anatomía & histología , Músculo Masetero/inervación , Nervio Mandibular/anatomía & histología , Pesos y Medidas Corporales/métodosRESUMEN
One hunbred and fifty lepromatous patients of both sexes, with active lesions, were selected for this study through clinical, baclloscopic and histopathological examinations. Two kinds of lesions found: active and residual. Specific active lesions were described as maculas, inflitrations, papules, nodules and plaques, which were most frequently found, in decreasing order in uvula, soft and hard palate, and lips. Lesions presenting positive bacilloscopic, even with as apparenthy normal mucosa, were always considered as active. Residual lesions were destruction, atrophy and retraction of uvula, scars and nasopalatine perforation, more frequent in those patients with longer duration of the disease. According to bacilloscopy, oral lesions involute simultaneously with skin lesions. for this study, clinical, bacilloscopic and histopathological examinations were made, besides photographs of the most suggestive cases