Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.189
Filtrar
1.
Mol Cell ; 84(17): 3172-3174, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241751

RESUMEN

Deploying anti-CRISPR proteins is a potent strategy used by phages to inhibit bacterial CRISPR-Cas defense. In a new Nature paper, Trost et al.1 discover and characterize an exciting anti-CRISPR mechanism with possible implications beyond this microscopic arms race.


Asunto(s)
Bacterias , Bacteriófagos , Sistemas CRISPR-Cas , Bacteriófagos/genética , Bacterias/genética , Bacterias/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1442062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224703

RESUMEN

Background: Klebsiella pneumoniae is a major cause of hospital-acquired infections (HAIs), primarily spread through environmental contamination in hospitals. The effectiveness of current chemical disinfectants is waning due to emerging resistance, which poses environmental hazards and fosters new resistance in pathogens. Developing environmentally friendly and effective disinfectants against multidrug-resistant organisms is increasingly important. Methods: This study developed a bacteriophage cocktail targeting two common carbapenem-resistant Klebsiella pneumoniae (CRKP) strains, ST11 KL47 and ST11 KL64. The cocktail was used as an adjunctive disinfectant in a hospital's respiratory intensive care unit (RICU) via ultrasonic nebulization. Digital PCR was used to quantify CRKP levels post-intervention. The microbial community composition was analyzed via 16S rRNA sequencing to assess the intervention's impact on overall diversity. Results: The phage cocktail significantly reduced CRKP levels within the first 24 hours post-treatment. While a slight increase in pathogen levels was observed after 24 hours, they remained significantly lower than those treated with conventional disinfectants. 16S rRNA sequencing showed a decrease in the target pathogens' relative abundance, while overall species diversity remained stable, confirming that phages selectively target CRKP without disrupting ecological balance. Discussion: The findings highlight the efficacy and safety of phage-based biocleaners as a sustainable alternative to conventional disinfectants. Phages selectively reduce multidrug-resistant pathogens while preserving microbial diversity, making them a promising tool for infection control.


Asunto(s)
Bacteriófagos , Descontaminación , Unidades de Cuidados Intensivos , Klebsiella pneumoniae , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/genética , Descontaminación/métodos , Bacteriófagos/genética , Humanos , Reacción en Cadena de la Polimerasa/métodos , Infección Hospitalaria/prevención & control , Infección Hospitalaria/microbiología , Desinfectantes/farmacología , Infecciones por Klebsiella/prevención & control , Infecciones por Klebsiella/microbiología , Análisis de Secuencia de ADN
3.
Appl Microbiol Biotechnol ; 108(1): 466, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283515

RESUMEN

Cyanobacterial harmful algal blooms, particularly those dominated by Microcystis, pose significant ecological and health risks worldwide. This review provides an overview of the latest advances in biotechnological approaches for mitigating Microcystis blooms, focusing on cyanobactericidal bacteria, fungi, eukaryotic microalgae, zooplankton, aquatic plants, and cyanophages. Recently, promising results have been obtained using cyanobactericidal bacteria: not through the inoculation of cultured bacteria, but rather by nurturing those already present in the periphyton or biofilms of aquatic plants. Fungi and eukaryotic microalgae also exhibit algicidal properties; however, their practical applications still face challenges. Zooplankton grazing on Microcystis can improve water quality, but hurdles exist because of the colonial form and toxin production of Microcystis. Aquatic plants control blooms through allelopathy and nutrient absorption. Although cyanophages hold promise for Microcystis control, their strain-specificity hinders widespread use. Despite successful laboratory validation, field applications of biological methods are limited. Future research should leverage advanced molecular and bioinformatic techniques to understand microbial interactions during blooms and offer insights into innovative control strategies. Despite progress, the efficacy of biological methods under field conditions requires further verification, emphasizing the importance of integrating advanced multi-meta-omics techniques with practical applications to address the challenges posed by Microcystis blooms. KEY POINTS: • A diverse range of biotechnological methods is presented for suppressing Microcystis blooms. • Efficacy in laboratory experiments needs to be proved further in field applications. • Multi-meta-omics techniques offer novel insights into Microcystis dynamics and interactions.


Asunto(s)
Biotecnología , Floraciones de Algas Nocivas , Microalgas , Microcystis , Microcystis/crecimiento & desarrollo , Biotecnología/métodos , Microalgas/crecimiento & desarrollo , Hongos/fisiología , Zooplancton/fisiología , Animales , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Bacteriófagos/fisiología
4.
Front Cell Infect Microbiol ; 14: 1421724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268483

RESUMEN

The increase of antibiotic-resistant bacteria has become a global health emergency and the need to explore alternative therapeutic options arises. Phage therapy uses bacteriophages to target specific bacterial strains. Phages are highly specific and can target resistant bacteria. Currently, research in this regard is focused on ensuring reliability and safety to bring this tool into clinical practice. The first step is to conduct comprehensive preclinical research. In this work, we present two novel bacteriophages vB_Kpn_F13 and vB_Kpn_F14 isolated against clinical carbapenem-resistant Klebsiella pneumoniae strains obtained from hospital sewage. Multiple studies in vitro were conducted, such as sequencing, electron microscopy, stability, host range infectivity, planktonic effect and biofilm inhibition in order to discover their ability to be used against carbapenem-resistant K. pneumoniae pathogens causing difficult-to-treat infections.


Asunto(s)
Bacteriófagos , Biopelículas , Enterobacteriaceae Resistentes a los Carbapenémicos , Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Terapia de Fagos , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/efectos de los fármacos , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Bacteriófagos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/virología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/terapia , Carbapenémicos/farmacología , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Especificidad del Huésped , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Antibacterianos/farmacología , Genoma Viral , Pruebas de Sensibilidad Microbiana
5.
Front Cell Infect Microbiol ; 14: 1397675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268487

RESUMEN

Background: The infant gut microbiome's establishment is pivotal for health and immune development. Understanding it unveils insights into growth, development, and maternal microbial interactions. Research often emphasizes gut bacteria, neglecting the phageome. Methods: To investigate the influence of geographic or maternal factors (mode of delivery, mode of breastfeeding, gestational diabetes mellitus) on the gut microbiota and phages of newborns, we collected fecal samples from 34 pairs of mothers and their infants within 24 hours of delivery from three regions (9 pairs from Enshi, 7 pairs from Hohhot, and 18 pairs from Hulunbuir) using sterile containers. Gut microbiota analysis by Shotgun sequencing was subsequently performed. Results: Our results showed that geographic location affects maternal gut microbiology (P < 0.05), while the effect on infant gut microbiology was not significant (P = 0.184). Among the maternal factors, mode of delivery had a significant (P < 0.05) effect on the newborn. Specific bacteria (e.g., Bacteroides, Escherichia spp., Phocaeicola vulgatus, Escherichia coli, Staphylococcus hominis, Veillonella spp.), predicted active metabolites, and bacteriophage vOTUs varied with delivery mode. Phocaeicola vulgatus significantly correlated with some metabolites and bacteriophages in the early infant gut (P < 0.05). In the GD group, a strong negative correlation of phage diversity between mother and infants was observed (R = -0.58, P=0.04). Conclusion: In conclusion, neonatal early gut microbiome (including bacteria and bacteriophages) colonization is profoundly affected by the mode of delivery, and maternal gestational diabetes mellitus. The key bacteria may interact with bacteriophages to influence the levels of specific metabolites. Our study provides new evidence for the study of the infant microbiome, fills a gap in the analysis of the infant gut microbiota regarding the virome, and emphasizes the importance of maternal health for the infant initial gut virome.


Asunto(s)
Bacterias , Diabetes Gestacional , Heces , Microbioma Gastrointestinal , Humanos , Diabetes Gestacional/microbiología , Embarazo , Femenino , Recién Nacido , Heces/microbiología , Heces/virología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Adulto , Bacteriófagos/genética , Parto Obstétrico , Lactancia Materna
6.
F1000Res ; 13: 380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233781

RESUMEN

Bacteria of the genus Aeromonas, especially A. hydrophila and A. veronii are recognized as important fish pathogens that cause significant economic losses in aquaculture. Environmentally friendly bacteriophage-based solutions for the treatment of fish and for the reduction of colonization by pathogenic bacteria in production facilities are currently in high demand. The bacteriophage Gekk3-15 was isolated during a search for novel phage strains potentially suitable for Aeromonas biocontrol applications. Genome sequencing revealed that this virus is a relatively small myovirus with a 64847 bp long dsDNA genome, which is consistent with virion electron microscopy data. Bacteriophage Gekk3-15 is distinct in its nucleotide and encoded aa sequences from all other sequenced bacteriophage genomes, and may represent a new viral taxon at the genus or subfamily level.


Asunto(s)
Aeromonas , Bacteriófagos , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Aeromonas/virología , Aeromonas/genética , Secuenciación Completa del Genoma/métodos
7.
Sci Rep ; 14(1): 20481, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227688

RESUMEN

This study shows how bacterial viruses (bacteriophages, phages) interact with calcium carbonate during precipitation from aqueous solution. Using electron microscopy, epifluorescence microscopy, X-ray diffraction, and image analysis, we demonstrate that bacteriophages can strongly influence the formation of the vaterite phase. Importantly, bacteriophages may selectively bind both amorphous calcium carbonate (ACC) and vaterite, and indirectly affect the formation of structural defects in calcite crystallites. Consequently, the surface properties of calcium carbonate phases precipitating in the presence of viruses may exhibit different characteristics. These findings may have significant implications in determining the role of bacterial viruses in modern microbially-rich carbonate sedimentary environments, as well as in biomedical technologies. Finally, the phage-vaterite system, as a biocompatible material, may serve as a basis for the development of promising drug delivery carriers.


Asunto(s)
Bacteriófagos , Carbonato de Calcio , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Bacteriófagos/fisiología , Difracción de Rayos X
8.
Sci Adv ; 10(36): eadp5057, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39231230

RESUMEN

Despite extensive knowledge on phage resistance at bacterium level, the resistance of bacterial communities is still not well-understood. Given its ubiquity, it is essential to understand resistance at the community level. We performed quantitative investigations on the dynamics of phage infection in Klebsiella pneumoniae biofilms. We found that the biofilms quickly developed resistance and resumed growth. Instead of mutations, the resistance was caused by unassembled phage tail fibers released by the phage-lysed bacteria. The tail fibers degraded the bacterial capsule essential for infection and induced spreading of capsule loss in the biofilm, and tuning tail fiber and capsule levels altered the resistance. Latent infections sustained in the biofilm despite resistance, allowing stable phage-bacteria coexistence. Last, we showed that the resistance exposed vulnerabilities in the biofilm. Our findings indicate that phage lysate plays important roles in shaping phage-biofilm interactions and open more dimensions for the rational design of strategies to counter bacteria with phage.


Asunto(s)
Bacteriófagos , Biopelículas , Klebsiella pneumoniae , Biopelículas/crecimiento & desarrollo , Bacteriófagos/fisiología , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/fisiología , Cápsulas Bacterianas/metabolismo , Mutación
9.
PLoS Genet ; 20(9): e1011384, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39231196

RESUMEN

Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , ADN Viral , Epigenoma , ADN Viral/genética , Bacteriófagos/genética , Ingeniería Genética/métodos , Bacteriófago T4/genética , Mutagénesis Sitio-Dirigida/métodos , Escherichia coli/genética , Escherichia coli/virología , Genoma Viral
10.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273250

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is an infectious disease that seriously affects human life and health. Despite centuries of efforts to control it, in recent years, the emergence of multidrug-resistant bacterial pathogens of M. tuberculosis due to various factors has exacerbated the disease, posing a serious threat to global health. Therefore, a new method to control M. tuberculosis is urgently needed. Phages, viruses that specifically infect bacteria, have emerged as potential biocontrol agents for bacterial pathogens due to their host specificity. In this study, a mycobacterium phage, Henu3, was isolated from soil around a hospital. The particle morphology, biological characteristics, genomics and phylogeny of Henu3 were characterized. Additionally, to explore the balance between phage resistance and stress response, phage Henu3-resistant strains 0G10 and 2E1 were screened by sequence passage and bidirectional validation methods, which significantly improved the sensitivity of phage to antibiotics (cefotaxime and kanamycin). By whole-genome re-sequencing of strains 0G10 and 2E1, 12 genes involved in cell-wall synthesis, transporter-encoded genes, two-component regulatory proteins and transcriptional regulatory factor-encoded genes were found to have mutations. These results suggest that phage Henu3 has the potential to control M. tuberculosis pathogens, and phage Henu3 has the potential to be a new potential solution for the treatment of M. tuberculosis infection.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/virología , Mycobacterium tuberculosis/genética , Filogenia , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/fisiología , Humanos , Micobacteriófagos/genética , Micobacteriófagos/fisiología , Secuenciación Completa del Genoma , Aptitud Genética
11.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273419

RESUMEN

The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.


Asunto(s)
Antibacterianos , Bacteriófagos , Hidrogeles , Hidrogeles/química , Bacteriófagos/fisiología , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Bacterias/efectos de los fármacos , Bacterias/virología , Animales , Infecciones Bacterianas/terapia , Terapia de Fagos/métodos
12.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273543

RESUMEN

The rise of carbapenem-resistant Klebsiella pneumoniae (CRKP) presents a significant global challenge in clinical and healthcare settings, severely limiting treatment options. This study aimed to utilize a bacteriophage as an alternative therapy against carbapenem-resistant K. pneumoniae. A novel lytic N4-like Klebsiella phage, vB_kpnP_KPYAP-1 (KPYAP-1), was isolated from sewage. It demonstrated efficacy against the K62 serotype polysaccharide capsule of blaOXA-48-producing K. pneumoniae. KPYAP-1 forms small, clear plaques, has a latent period of 20 min, and reaches a growth plateau at 35 min, with a burst size of 473 plaque-forming units (PFUs) per infected cell. Phylogenetic analysis places KPYAP-1 in the Schitoviridae family, Enquatrovirinae subfamily, and Kaypoctavirus genus. KPYAP-1 employs an N4-like direct terminal repeat mechanism for genome packaging and encodes a large virion-encapsulated RNA polymerase. It lacks integrase or repressor genes, antibiotic resistance genes, bacterial virulence factors, and toxins, ensuring its safety for therapeutic use. Comparative genome analysis revealed that the KPYAP-1 genome is most similar to the KP8 genome, yet differs in tail fiber protein, indicating variations in host recognition. In a zebrafish infection model, KPYAP-1 significantly improved the survival rate of infected fish by 92% at a multiplicity of infection (MOI) of 10, demonstrating its potential for in vivo treatment. These results highlight KPYAP-1 as a promising candidate for developing phage-based therapies targeting carbapenemase-producing K. pneumoniae.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Klebsiella pneumoniae , Pez Cebra , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Animales , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Infecciones por Klebsiella/terapia , Infecciones por Klebsiella/microbiología , Filogenia , Genoma Viral , Carbapenémicos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Antibacterianos/farmacología , Terapia de Fagos
13.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274911

RESUMEN

The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.


Asunto(s)
Antibacterianos , Pared Celular , Bacterias Grampositivas , Pared Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Grampositivas/efectos de los fármacos , Humanos , Bacteriocinas/farmacología , Bacteriocinas/química , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Bacteriófagos
14.
BMC Microbiol ; 24(1): 338, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261757

RESUMEN

Currently, phage biocontrol is increasingly used as a green and natural technology for treating Salmonella and other infections, but phages exhibit instability and activity loss during storage. Therefore, in this study, the effects of lyophilization on the activity and stability of phage cocktails for the control of multidrug-resistant Salmonella in broiler chickens were determined. Eight serotypes of Salmonella were isolated and identified from broiler chicken farms, and bacteriophages against multidrug-resistant Salmonella enterica subsp. enterica serovar Kentucky, Salmonella enterica subsp. enterica serovar Typhimrium and Salmonella enterica subsp. enterica serovar Enteritidis were isolated. The bacteriophage cocktail was prepared and lyophilized, and it was subjected to in vitro and in vivo examinations. A reconstituted lyophilized bacteriophage cocktail was used for the oral treatment of chicks before and after challenge with multidrug-resistant S. Kentucky. The colonization of cecum by S. Kentucky was detected by using real-time PCR, and the serum levels of IgM, IgA and IL-4 and pathological changes in the different groups were detected. Three Caudovirales phages families were identified including Autographiviridae, Straboviridae and Drexlerviridae against multidrug-resistant S. Kentucky, S. Typhimrium and S. Enteritidis. The groups treated with the bacteriophage cocktail showed no clinical signs, no postmortem lesions, and a mortality rate of 0%, which improved the growth performance parameters. Additionally, the estimated serum levels of IgM, IgA and IL-4 were significantly greater in the bacteriophage cocktail-treated groups. Lyophilization effectively preserves the long-term storage stability of phages. Therefore, lyophilized bacteriophage cocktail therapy is a valuable approach for controlling multidrug-resistant Salmonella infections in broiler chickens.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana Múltiple , Liofilización , Enfermedades de las Aves de Corral , Salmonelosis Animal , Fagos de Salmonella , Salmonella , Animales , Pollos/microbiología , Liofilización/métodos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/terapia , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/microbiología , Salmonelosis Animal/terapia , Salmonella/virología , Fagos de Salmonella/fisiología , Ciego/microbiología , Ciego/virología , Terapia de Fagos/métodos , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación
15.
Nat Commun ; 15(1): 7814, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242585

RESUMEN

Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when E. coli growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.


Asunto(s)
Escherichia coli , Lisogenia , Escherichia coli/virología , Escherichia coli/crecimiento & desarrollo , Bacteriófagos/fisiología , Bacteriófago lambda/fisiología , Bacteriófago lambda/genética , Modelos Biológicos , Dinámica Poblacional , Antibacterianos/farmacología , Modelos Teóricos
16.
Biosens Bioelectron ; 266: 116727, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39232433

RESUMEN

The isolation and identification of pathogenic bacteria from a variety of samples are critical for controlling bacterial infection-related health problems. The conventional methods, such as plate counting and polymerase chain reaction-based approaches, tend to be time-consuming and reliant on specific instruments, severely limiting the effective identification of these pathogens. In this study, we employed the specificity of the cell wall-binding (CBD) domain of the Staphylococcus aureus bacteriophage 80 alpha (80α) endolysin towards the host bacteria for isolation. Amidase 3-CBD conjugated magnetic beads successfully isolated as few as 1 × 102 CFU/mL of S. aureus cells from milk, blood, and saliva. The cell wall hydrolyzing activity of 80α endolysin promoted the genomic DNA extraction efficiency by 12.7 folds on average, compared to the commercial bacterial genomic DNA extraction kit. Then, recombinase polymerase amplification (RPA) was exploited to amplify the nuc gene of S. aureus from the extracted DNA at 37 °C for 30 min. The RPA product activated Cas12a endonuclease activity to cleave fluorescently labeled ssDNA probes. We then converted the generated signal into a fluorescent readout, detectable by either the naked eye or a portable, self-assembled instrument with ultrasensitivity. The entire procedure, from isolation to identification, can be completed within 2 h. The simplicity and sensitivity of the method developed in this study make it of great application value in S. aureus detection, especially in areas with limited resource supply.


Asunto(s)
Técnicas Biosensibles , Endopeptidasas , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/virología , Técnicas Biosensibles/métodos , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Endopeptidasas/genética , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Humanos , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/química , Fagos de Staphylococcus/aislamiento & purificación , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones Estafilocócicas/microbiología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Nucleasa Microcócica/química , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética , Proteínas Virales/química , Proteínas Virales/metabolismo
17.
Cell Host Microbe ; 32(9): 1466-1468, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265534

RESUMEN

Two recent studies in Cell Host & Microbe (Cury et al. and van den Berg et al.) uncover cross-kingdom links between antiphage and antiviral immune defenses. Through reciprocal computational and wet lab approaches, they each discover and experimentally validate proteins used for host immunity.


Asunto(s)
Interacciones Huésped-Patógeno , Humanos , Interacciones Huésped-Patógeno/inmunología , Bacteriófagos/fisiología , Bacteriófagos/inmunología , Biología Computacional/métodos , Antivirales/inmunología
18.
Arch Virol ; 169(10): 196, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256248

RESUMEN

Vibrio parahaemolyticus is a major seafood-borne zoonotic pathogen that causes gastroenteritis in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. In this study, we isolated and characterized Vibrio phage vB_VpM-pA2SJ1, which infects clinical and AHPND-associated strains of V. parahaemolyticus. The phage genome is a linear dsDNA 51,054 bp in length with a G + C content of 43.7%, and it contains 89 open reading frames. Genome comparisons revealed basal similarity to other Vibrio phages, particularly Vibrio phage vB_VpP_1, with 84.2% identity and 46% coverage. Phylogenetic analysis based on the whole genome, the terminase large subunit, and the major capsid protein revealed that phage vB_VpM-pA2SJ1 did not cluster with other known phage families, thus indicating its uniqueness.


Asunto(s)
Bacteriófagos , Composición de Base , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virología , Vibrio parahaemolyticus/genética , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , Animales , Penaeidae/virología , Penaeidae/microbiología , Vibriosis/microbiología , Vibriosis/virología , Vibriosis/veterinaria , Hepatopáncreas/virología , Hepatopáncreas/microbiología , Hepatopáncreas/patología , ADN Viral/genética
19.
Arch Microbiol ; 206(9): 379, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143367

RESUMEN

Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant challenge in global healthcare, underscoring the urgency for innovative therapeutic approaches. Phage therapy emerges as a promising strategy amidst rising antibiotic resistance, emphasizing the crucial need to identify and characterize effective phage resources for clinical use. In this study, we introduce a novel lytic phage, RCIP0100, distinguished by its classification into the Chaoyangvirus genus and Fjlabviridae family based on International Committee on Taxonomy of Viruses (ICTV) criteria due to low genetic similarity to known phage families. Our findings demonstrate that RCIP0100 exhibits broad lytic activity against 15 out of 27 tested MDR-KP strains, including diverse profiles such as carbapenem-resistant K. pneumoniae (CR-KP). This positions phage RCIP0100 as a promising candidate for phage therapy. Strains resistant to RCIP0100 also showed increased susceptibility to various antibiotics, implying the potential for synergistic use of RCIP0100 and antibiotics as a strategic countermeasure against MDR-KP.


Asunto(s)
Antibacterianos , Bacteriófagos , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Terapia de Fagos , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Genoma Viral , Humanos , Pruebas de Sensibilidad Microbiana
20.
Virology ; 599: 110209, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39186863

RESUMEN

While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.


Asunto(s)
Bacterias , Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Bacteriófagos/fisiología , Bacteriófagos/genética , Bacterias/virología , Bacterias/genética , Infecciones Bacterianas/terapia , Infecciones Bacterianas/microbiología , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA