RESUMEN
Using complete mitochondrial genome sequences, we provide the first molecular analysis of the phylogenetic position of the yellow-tailed woolly monkey, Lagothrix flavicauda (a.k.a. Oreonax flavicauda), a critically endangered neotropical primate endemic to northern Perú. The taxonomic status and phylogenetic position of yellow-tailed woolly monkeys have been debated for many years, but in this study both Bayesian and maximum likelihood phylogenetic reconstructions unequivocally support a monophyletic woolly monkey clade that includes L. flavicauda as the basal taxon within the radiation. Bayesian dating analyses using several alternative calibrations suggest that the divergence of yellow-tailed woolly monkeys from other Lagothrix occurred in the Pleistocene, â¼2.1Ma, roughly 6.5 my after the divergence of woolly monkeys from their sister genus, Brachyteles. Additionally, comparative analysis of the cytochrome oxidase subunit 2 (COX2) gene shows that genetic distances between yellow-tailed woolly monkeys and other Lagothrix from across the genus' geographic distribution fall well within the range of between-species divergences seen in a large number of other platyrrhine primate genera at the same locus and outside the range of between-genus divergences. Our results thus confirm a position within Lagothrix for the yellow-tailed woolly monkey and strongly suggest that the name Oreonax be formally considered a synonym for this genus. This revision in taxonomic status does not change the dire conservation threats facing the yellow-tailed woolly monkey in Perú, where the remaining wild population is estimated at only â¼10,000 individuals living in a highly fragmented landscape.
Asunto(s)
Atelidae/clasificación , Evolución Biológica , Filogenia , Animales , Atelidae/genética , Teorema de Bayes , ADN Mitocondrial/genética , Funciones de Verosimilitud , Modelos Genéticos , Perú , Análisis de Secuencia de ADN , América del SurRESUMEN
During the last decades, New World monkey (NWM, Platyrrhini, Anthropoideae) comparative cytogenetics has shed light on many fundamental aspects of genome organisation and evolution in this fascinating, but also highly endangered group of neotropical primates. In this review, we first provide an overview about the evolutionary origin of the inferred ancestral NWM karyotype of 2n = 54 chromosomes and about the lineage-specific chromosome rearrangements resulting in the highly divergent karyotypes of extant NWM species, ranging from 2n = 16 in a titi monkey to 2n = 62 in a woolly monkey. Next, we discuss the available data on the chromosome phylogeny of NWM in the context of recent molecular phylogenetic analyses. In the last part, we highlight some recent research on the molecular mechanisms responsible for the large-scale evolutionary genomic changes in platyrrhine monkeys.
Asunto(s)
Cromosomas de los Mamíferos/genética , Evolución Molecular , Platirrinos/clasificación , Platirrinos/genética , Animales , Atelidae/clasificación , Atelidae/genética , Cebidae/clasificación , Cebidae/genética , Pintura Cromosómica , Análisis Citogenético , Cariotipo , Filogenia , Pitheciidae/clasificación , Pitheciidae/genética , Especificidad de la EspecieRESUMEN
In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group.