Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.698
Filtrar
1.
CNS Drugs ; 38(10): 791-805, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39115603

RESUMEN

The life shortening nature of Friedreich Ataxia (FRDA) demands the search for therapies that can delay, stop or reverse its relentless trajectory. This review provides a contemporary position of drug and gene therapies for FRDA currently in phase 1 clinical trials and beyond. Despite significant scientific advances in the specificity of both compounds and targets developed and investigated, challenges remain for the advancement of treatments in a limited recruitment population. Currently therapies focus on reducing oxidative stress and improving mitochondrial function, modulating frataxin controlled metabolic pathways and gene replacement and editing. Approval of omaveloxolone, the first treatment for individuals with FRDA aged 16 years and over, has created much excitement for both those living with FRDA and those that care for them. The process of approval of omaveloxolone by the US Food and Drug Administration highlighted the importance of sensitive outcome measures and the significant role of data from natural history studies.


Asunto(s)
Ataxia de Friedreich , Terapia Genética , Ataxia de Friedreich/terapia , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Humanos , Terapia Genética/métodos , Animales , Estrés Oxidativo/efectos de los fármacos
2.
Sci Rep ; 14(1): 19876, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191875

RESUMEN

Frataxin (FXN) is required for iron-sulfur cluster biogenesis, and its loss causes the early-onset neurodegenerative disease Friedreich ataxia (FRDA). Loss of FXN is a susceptibility factor in the development of diabetes, a common metabolic complication after myocardial hypertrophy in patients with FRDA. The underlying mechanism of FXN deficient-induced hyperglycemia in FRDA is, however, poorly understood. In this study, we confirmed that the FXN deficiency mouse model YG8R develops insulin resistance in elder individuals by disturbing lipid metabolic homeostasis in adipose tissues. Evaluation of lipolysis, lipogenesis, and fatty acid ß-oxidation showed that lipolysis is most severely affected in white adipose tissues. Consistently, FXN deficiency significantly decreased expression of lipolytic genes encoding adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) resulting in adipocyte enlargement and inflammation. Lipolysis induction by fasting or cold exposure remarkably upregulated FXN expression, though FXN deficiency lessened the competency of lipolysis compared with the control or wild type mice. Moreover, we found that the impairment of lipolysis was present at a young age, a few months earlier than hyperglycemia and insulin resistance. Forskolin, an activator of lipolysis, or pioglitazone, an agonist of PPARγ, improved insulin sensitivity in FXN-deficient adipocytes or mice. We uncovered the interplay between FXN expression and lipolysis and found that impairment of lipolysis, particularly the white adipocytes, is an early event, likely, as a primary cause for insulin resistance in FRDA patients at later age.


Asunto(s)
Adipocitos Blancos , Modelos Animales de Enfermedad , Frataxina , Ataxia de Friedreich , Resistencia a la Insulina , Proteínas de Unión a Hierro , Lipólisis , Animales , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ratones , Proteínas de Unión a Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Masculino , Lipasa/metabolismo , Lipasa/genética , Humanos
3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119809, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134123

RESUMEN

Friedreich's ataxia (FA) is one of the most frequent inherited recessive ataxias characterized by a progressive sensory and spinocerebellar ataxia. The main causative mutation is a GAA repeat expansion in the first intron of the frataxin (FXN) gene which leads to a transcriptional silencing of the gene resulting in a deficit in FXN protein. The nature of the mutation (an unstable GAA expansion), as well as the multi-systemic nature of the disease (with neural and non-neural sites affected) make the generation of models for Friedreich's ataxia quite challenging. Over the years, several cellular and animal models for FA have been developed. These models are all complementary and possess their own strengths to investigate different aspects of the disease, such as the epigenetics of the locus or the pathophysiology of the disease, as well as being used to developed novel therapeutic approaches. This review will explore the recent advancements in the different mammalian models developed for FA.


Asunto(s)
Modelos Animales de Enfermedad , Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Animales , Humanos , Expansión de Repetición de Trinucleótido/genética , Mutación
4.
JCI Insight ; 9(16)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39171530

RESUMEN

Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.


Asunto(s)
Modelos Animales de Enfermedad , Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , NAD , Animales , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Ratones , Humanos , NAD/metabolismo , Fenotipo , Masculino , Cardiomegalia/metabolismo , Cardiomegalia/patología , Mononucleótido de Nicotinamida/farmacología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Femenino , Técnicas de Silenciamiento del Gen , Compuestos de Piridinio , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
5.
Neurobiol Dis ; 200: 106631, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111701

RESUMEN

Friedreich ataxia is a hereditary neurodegenerative disorder resulting from reduced levels of the protein frataxin due to an expanded GAA repeat in the FXN gene. This deficiency causes progressive degeneration of specific neuronal populations in the cerebellum and the consequent loss of movement coordination and equilibrium, which are some of the main symptoms observed in affected individuals. Like in other neurodegenerative diseases, previous studies suggest that glial cells could be involved in the neurodegenerative process and disease progression in patients with Friedreich ataxia. In this work, we followed and characterized the progression of changes in the cerebellar cortex in the latest version of Friedreich ataxia humanized mouse model, YG8-800 (Fxnnull:YG8s(GAA)>800), which carries a human FXN transgene containing >800 GAA repeats. Comparative analyses of behavioral, histopathological, and biochemical parameters were conducted between the control strain Y47R and YG8-800 mice at different time points. Our findings revealed that YG8-800 mice exhibit an ataxic phenotype characterized by poor motor coordination, decreased body weight, cerebellar atrophy, neuronal loss, and changes in synaptic proteins. Additionally, early activation of glial cells, predominantly astrocytes and microglia, was observed preceding neuronal degeneration, as was increased expression of key proinflammatory cytokines and downregulation of neurotrophic factors. Together, our results show that the YG8-800 mouse model exhibits a stronger phenotype than previous experimental murine models, reliably recapitulating some of the features observed in humans. Accordingly, this humanized model could represent a valuable tool for studying Friedreich ataxia molecular disease mechanisms and for preclinical evaluation of possible therapies.


Asunto(s)
Corteza Cerebelosa , Modelos Animales de Enfermedad , Frataxina , Ataxia de Friedreich , Ratones Transgénicos , Neuroglía , Ataxia de Friedreich/patología , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/genética , Animales , Neuroglía/metabolismo , Neuroglía/patología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/patología , Ratones , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Humanos , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Masculino
6.
Ann Clin Transl Neurol ; 11(7): 1691-1702, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952134

RESUMEN

OBJECTIVE: The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others. This study aimed to investigate microstructural integrity along the DTT in FRDA using a profilometry diffusion MRI (dMRI) approach. METHODS: MRI data from 45 individuals with FRDA (mean age: 33.2 ± 13.2, Male/Female: 26/19) and 37 healthy controls (mean age: 36.5 ± 12.7, Male/Female:18/19) were included in this cross-sectional multicenter study. A profilometry analysis was performed on dMRI data by first using tractography to define the DTT as the white matter pathway connecting the dentate nucleus to the contralateral motor cortex. The tract was then divided into 100 segments, and dMRI metrics of microstructural integrity (fractional anisotropy, mean diffusivity and radial diffusivity) at each segment were compared between groups. The process was replicated on the arcuate fasciculus for comparison. RESULTS: Across all diffusion metrics, the region of the DTT connecting the dentate nucleus and thalamus was more impacted in FRDA than downstream cerebral sections from the thalamus to the cortex. The arcuate fasciculus was minimally impacted. INTERPRETATION: Our study further expands the current knowledge about brain involvement in FRDA, showing that microstructural abnormalities within the DTT are weighted to early segments of the tract (i.e., the superior cerebellar peduncle). These findings are consistent with the hypothesis of DTT undergoing anterograde degeneration arising from the dentate nuclei and progressing to the primary motor cortex.


Asunto(s)
Imagen de Difusión Tensora , Ataxia de Friedreich , Sustancia Blanca , Humanos , Masculino , Femenino , Adulto , Ataxia de Friedreich/patología , Ataxia de Friedreich/diagnóstico por imagen , Persona de Mediana Edad , Estudios Transversales , Adulto Joven , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Núcleos Cerebelosos/diagnóstico por imagen , Núcleos Cerebelosos/patología , Corteza Motora/patología , Corteza Motora/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Tálamo/patología , Vías Nerviosas/patología , Vías Nerviosas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética
7.
Expert Rev Neurother ; 24(9): 897-912, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980086

RESUMEN

INTRODUCTION: The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED: This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION: Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.


Asunto(s)
Ataxia Cerebelosa , Humanos , Ataxia Cerebelosa/tratamiento farmacológico , Ataxia Cerebelosa/genética , Terapia Genética/métodos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia
8.
Biomolecules ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062522

RESUMEN

Trinucleotide repeat (TNR) expansion is the cause of over 40 neurodegenerative diseases, including Huntington's disease and Friedreich's ataxia (FRDA). There are no effective treatments for these diseases due to the poor understanding of molecular mechanisms underlying somatic TNR expansion and contraction in neural systems. We and others have found that DNA base excision repair (BER) actively modulates TNR instability, shedding light on the development of effective treatments for the diseases by contracting expanded repeats through DNA repair. In this study, temozolomide (TMZ) was employed as a model DNA base damaging agent to reveal the mechanisms of the BER pathway in modulating GAA repeat instability at the frataxin (FXN) gene in FRDA neural cells and transgenic mouse mice. We found that TMZ induced large GAA repeat contraction in FRDA mouse brain tissue, neurons, and FRDA iPSC-differentiated neural cells, increasing frataxin protein levels in FRDA mouse brain and neural cells. Surprisingly, we found that TMZ could also inhibit H3K9 methyltransferases, leading to open chromatin and increasing ssDNA breaks and recruitment of the key BER enzyme, pol ß, on the repeats in FRDA neural cells. We further demonstrated that the H3K9 methyltransferase inhibitor BIX01294 also induced the contraction of the expanded repeats and increased frataxin protein in FRDA neural cells by opening the chromatin and increasing the endogenous ssDNA breaks and recruitment of pol ß on the repeats. Our study provides new mechanistic insight illustrating that inhibition of H3K9 methylation can crosstalk with BER to induce GAA repeat contraction in FRDA. Our results will open a new avenue for developing novel gene therapy by targeting histone methylation and the BER pathway for repeat expansion diseases.


Asunto(s)
Cromatina , Reparación del ADN , Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Ratones Transgénicos , Expansión de Repetición de Trinucleótido , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Animales , Ratones , Expansión de Repetición de Trinucleótido/genética , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Cromatina/metabolismo , Cromatina/genética , Humanos , Daño del ADN , Temozolomida/farmacología , Neuronas/metabolismo , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/genética
9.
Stem Cell Res ; 79: 103477, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936158

RESUMEN

Friedreich's ataxia (FRDA) is a rare neurodegenerative disease caused by an expansion of a GAA repeat sequence within the Frataxin (FXN) gene. Prominent regions of neurodegeneration include sensory neurons within the dorsal root ganglia. Here we present a set of genetically modified FRDA induced pluripotent stem cell (iPSC) lines that carry an inducible neurogenin-2 (NGN2) expression cassette. Exogenous expression of NGN2 in iPSC derived neural crest progenitors efficiently generates functionally mature sensory neurons. These cell lines will provide a streamlined source of FRDA iPSC sensory neurons for studying both disease mechanism and screening potential therapeutics.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ataxia de Friedreich , Células Madre Pluripotentes Inducidas , Proteínas del Tejido Nervioso , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ataxia de Friedreich/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Línea Celular , Diferenciación Celular , Frataxina
10.
Cells ; 13(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38920668

RESUMEN

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.


Asunto(s)
Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Animales , Humanos , Ataxia de Friedreich/genética , Regulación de la Expresión Génica , Proteínas de Unión a Hierro/genética
11.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891993

RESUMEN

Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.


Asunto(s)
Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Simulación de Dinámica Molecular , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Mutación Missense , Simulación por Computador , Variación Genética
14.
Biochimie ; 224: 71-79, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38750879

RESUMEN

The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Frataxina , Proteínas de Unión a Hierro , Longevidad , Neuroglía , Animales , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Neuroglía/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Modelos Animales de Enfermedad , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Estrés Oxidativo/efectos de los fármacos , Drosophila/genética , Animales Modificados Genéticamente
15.
PLoS One ; 19(5): e0303969, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814901

RESUMEN

BACKGROUND: The left ventricular (LV) changes which occur in Friedreich ataxia (FRDA) are incompletely understood. METHODS: Cardiac magnetic resonance (CMR) imaging was performed using a 1.5T scanner in subjects with FRDA who are homozygous for an expansion of an intron 1 GAA repeat in the FXN gene. Standard measurements were performed of LV mass (LVM), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). Native T1 relaxation time and the extracellular volume fraction (ECV) were utilised as markers of left ventricular (LV) diffuse myocardial fibrosis and late gadolinium enhancement (LGE) was utilised as a marker of LV replacement fibrosis. FRDA genetic severity was assessed using the shorter FXN GAA repeat length (GAA1). RESULTS: There were 93 subjects with FRDA (63 adults, 30 children, 54% males), 9 of whom had a reduced LVEF (<55%). A LVEDV below the normal range was present in 39%, a LVM above the normal range in 22%, and an increased LVM/LVEDV ratio in 89% subjects. In adults with a normal LVEF, there was an independent positive correlation of LVM with GAA1, and a negative correlation with age, but no similar relationships were seen in children. GAA1 was positively correlated with native T1 time in both adults and children, and with ECV in adults, all these associations independent of LVM and LVEDV. LGE was present in 21% of subjects, including both adults and children, and subjects with and without a reduced LVEF. None of GAA1, LVM or LVEDV were predictors of LGE. CONCLUSION: An association between diffuse interstitial LV myocardial fibrosis and genetic severity in FRDA was present independently of FRDA-related LV structural changes. Localised replacement fibrosis was found in a minority of subjects with FRDA and was not associated with LV structural change or FRDA genetic severity in subjects with a normal LVEF.


Asunto(s)
Ataxia de Friedreich , Gadolinio , Ventrículos Cardíacos , Imagen por Resonancia Magnética , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/diagnóstico por imagen , Ataxia de Friedreich/patología , Ataxia de Friedreich/complicaciones , Masculino , Femenino , Adulto , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/patología , Niño , Adolescente , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Medios de Contraste , Volumen Sistólico , Fibrosis , Frataxina
16.
Hum Genomics ; 18(1): 50, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778374

RESUMEN

Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.


Asunto(s)
Biomarcadores , Ataxia de Friedreich , MicroARNs , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ataxia de Friedreich/sangre , MicroARNs/genética , MicroARNs/sangre , Masculino , Biomarcadores/sangre , Pronóstico , Femenino , Adulto , RNA-Seq , Adolescente , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Niño , Adulto Joven , Persona de Mediana Edad , Preescolar , Curva ROC , Estudios de Casos y Controles
17.
J Neurol Sci ; 461: 123053, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759249

RESUMEN

Friedreich ataxia is a progressive autosomal recessive neurodegenerative disorder characterized by ataxia, dyscoordination, and cardiomyopathy. A subset of patients with Friedreich ataxia have elevated levels of serum cardiac troponin I, but associations with disease outcomes and features of cardiomyopathy remain unclear. In this study, we characterized clinically obtained serum cardiac biomarker levels including troponin I, troponin T, and B-type natriuretic peptide in subjects with Friedreich ataxia and evaluated their association with markers of disease. While unprovoked troponin I levels were elevated in 36% of the cohort, cTnI levels associated with a cardiac event (provoked) were higher than unprovoked levels. In multivariate linear regression models, younger age predicted increased troponin I values, and in logistic regression models younger age, female sex, and marginally longer GAA repeat length predicted abnormal troponin I levels. In subjects with multiple assessments, mean unprovoked troponin I levels decreased slightly over time. The presence of abnormal troponin I values and their levels were predicted by echocardiographic measures of hypertrophy. In addition, troponin I levels predicted long-term markers of clinical cardiac dysfunction over time to a modest degree. Consequently, troponin I values provide a marker of hypertrophy but only a minimally predictive biomarker for later cardiac manifestations of disease such as systolic dysfunction or arrhythmia.


Asunto(s)
Biomarcadores , Ataxia de Friedreich , Péptido Natriurético Encefálico , Troponina I , Humanos , Ataxia de Friedreich/sangre , Ataxia de Friedreich/diagnóstico , Femenino , Masculino , Biomarcadores/sangre , Adulto , Troponina I/sangre , Péptido Natriurético Encefálico/sangre , Persona de Mediana Edad , Adulto Joven , Troponina T/sangre , Adolescente , Cardiomiopatías/sangre , Cardiomiopatías/diagnóstico , Estudios de Cohortes
18.
Mov Disord ; 39(7): 1099-1108, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696306

RESUMEN

BACKGROUND: Calcitriol, the active form of vitamin D (also known as 1,25-dihydroxycholecalciferol), improves the phenotype and increases frataxin levels in cell models of Friedreich ataxia (FRDA). OBJECTIVES: Based on these results, we aimed measuring the effects of a calcitriol dose of 0.25 mcg/24h in the neurological function and frataxin levels when administered to FRDA patients for a year. METHODS: 20 FRDA patients where recluted and 15 patients completed the treatment for a year. Evaluations of neurological function changes (SARA scale, 9-HPT, 8-MWT, PATA test) and quality of life (Barthel Scale and Short Form (36) Health Survey [SF-36] quality of life questionnaire) were performed. Frataxin amounts were measured in isolated platelets obtained from these FRDA patients, from heterozygous FRDA carriers (relatives of the FA patients) and from non-heterozygous sex and age matched controls. RESULTS: Although the patients did not experience any observable neurological improvement, there was a statistically significant increase in frataxin levels from initial values, 5.5 to 7.0 pg/µg after 12 months. Differences in frataxin levels referred to total protein levels were observed among sex- and age-matched controls (18.1 pg/µg), relative controls (10.1 pg/µg), and FRDA patients (5.7 pg/µg). The treatment was well tolerated by most patients, and only some of them experienced minor adverse effects at the beginning of the trial. CONCLUSIONS: Calcitriol dosage used (0.25 mcg/24 h) is safe for FRDA patients, and it increases frataxin levels. We cannot rule out that higher doses administered longer could yield neurological benefits. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Calcitriol , Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Humanos , Ataxia de Friedreich/tratamiento farmacológico , Masculino , Femenino , Calcitriol/farmacología , Calcitriol/administración & dosificación , Adulto , Persona de Mediana Edad , Adulto Joven , Calidad de Vida , Adolescente , Resultado del Tratamiento
20.
Expert Opin Pharmacother ; 25(5): 529-539, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622054

RESUMEN

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED: The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION: The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.


Asunto(s)
Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Humanos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Terapia Genética/métodos , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Proteínas de Unión a Hierro/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Triterpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA