RESUMEN
In-mouth interaction of red wine compounds with salivary proteins is a primary event allegedly responsible for eliciting the mouth-feel sensation of astringency. Those interactions have been currently associated with precipitation of salivary protein/polyphenol complexes. However, such single physicochemical evidence for interaction does not account for the complexity of astringency. This study aimed to develop a paper chromatography method to assess interactions between red wine and the salivary protein fraction using stepwise series of red wine/saliva binary mixtures from 100% wine to 100% saliva ("Alpha and Omega series"). Aliquots of each one of the mixtures were spotted on a cellulose membrane to scrutinize independently the distribution areas of wine components (naturally pink-colored) and salivary protein (stained blue in Coomassie Brilliant R-250). This double target detection revealed interactions between saliva and red wine components along most of the quantitative Alpha and Omega series, a point of equivalence corresponding to maximum interactivity for both complex reactants and a non-diffusible sub-fraction of saliva displaying the highest interactivity. The results indicate a novel way to assess quantitatively physicochemical interactions between red wines and human saliva but also provide new lights to approach the identification of molecular salivary structures involved in triggering astringency.
Asunto(s)
Saliva , Vino , Humanos , Saliva/química , Vino/análisis , Polifenoles/análisis , Astringentes/análisis , Astringentes/química , Astringentes/metabolismo , Proteínas y Péptidos SalivalesRESUMEN
The interaction between wine tannins and saliva proteins is responsible for wine astringency perception, producing a depletion of salivary proteins and changes on oral friction. In sensorial terms, astringency is described as a dryness and puckering sensation in the mouth, which is related to the "structure" or "body" of red wines. However, these last descriptors, as structure or body, are perceived during wine tasting and commonly related to wine viscosity. To address these differences on sensory response, we hypothesize that tannin-protein interactions could be a key factor involved in the viscosity of red wines/saliva mixtures, just as they are for astringency. We used a rheological method to study the impact of tannin-protein interaction on the viscosity of model wine-saliva systems. Mixtures of model saliva based on mucin and typical astringent compounds, as commercial tannins and gallic acid, were evaluated for their rheological behavior. The viscometric flow of the fluid mixtures was determined, and subsequently, the viscosity was evaluated at a shear rate of 60 s-1 . It was observed that red wines/saliva mixtures exhibit non-Newtonian flow and ascending tannin doses led to an increase in the apparent viscosity. Nephelometric analysis demonstrate that tannin-mucin aggregates were formed, which suggests that these complexes were potentially responsible for the viscosity increases, modifying the rheological behavior of these mixtures. Results from this work propose that tannin-protein interactions are also involved in the underlying mechanism of thickness perception of red wines and rheology could be a complementary instrumental technique for wine mouthfeel characterization.