Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
Zool Res ; 45(5): 1073-1087, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39245651

RESUMEN

Infertility represents a significant health concern, with sperm quantity and quality being crucial determinants of male fertility. Oligoasthenoteratozoospermia (OAT) is characterized by reduced sperm motility, lower sperm concentration, and morphological abnormalities in sperm heads and flagella. Although variants in several genes have been implicated in OAT, its genetic etiologies and pathogenetic mechanisms remain inadequately understood. In this study, we identified a homozygous nonsense mutation (c.916C>T, p.Arg306*) in the coiled-coil domain containing 146 ( CCDC146) gene in an infertile male patient with OAT. This mutation resulted in the production of a truncated CCDC146 protein (amino acids 1-305), retaining only two out of five coiled-coil domains. To validate the pathogenicity of the CCDC146 mutation, we generated a mouse model ( Ccdc146 mut/mut ) with a similar mutation to that of the patient. Consistently, the Ccdc146 mut/mut mice exhibited infertility, characterized by significantly reduced sperm counts, diminished motility, and multiple defects in sperm heads and flagella. Furthermore, the levels of axonemal proteins, including DNAH17, DNAH1, and SPAG6, were significantly reduced in the sperm of Ccdc146 mut/mut mice. Additionally, both human and mouse CCDC146 interacted with intraflagellar transport protein 20 (IFT20), but this interaction was lost in the mutated versions, leading to the degradation of IFT20. This study identified a novel deleterious homozygous nonsense mutation in CCDC146 that causes male infertility, potentially by disrupting axonemal protein transportation. These findings offer valuable insights for genetic counseling and understanding the mechanisms underlying CCDC146 mutant-associated infertility in human males.


Asunto(s)
Astenozoospermia , Proteínas Asociadas a Microtúbulos , Animales , Humanos , Masculino , Ratones , Astenozoospermia/genética , Codón sin Sentido , Homocigoto , Infertilidad Masculina/genética , Mutación , Oligospermia/genética , Motilidad Espermática/genética , Espermatozoides , Proteínas Asociadas a Microtúbulos/genética
2.
Clin Genet ; 106(4): 437-447, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221575

RESUMEN

Male infertility due to asthenozoospermia is quite frequent, but its etiology is poorly understood. We recruited two infertile brothers, born to first-cousin parents from Pakistan, displaying idiopathic asthenozoospermia with mild stuttering disorder but no ciliary-related symptoms. Whole-exome sequencing identified a splicing variant (c.916+1G>A) in ARMC3, recessively co-segregating with asthenozoospermia in the family. The ARMC3 protein is evolutionarily highly conserved and is mostly expressed in the brain and testicular tissue of human. The ARMC3 splicing mutation leads to the exclusion of exon 8, resulting in a predicted truncated protein (p.Glu245_Asp305delfs*16). Quantitative real-time PCR revealed a significant decrease at mRNA level for ARMC3 and Western blot analysis did not detect ARMC3 protein in the patient's sperm. Individuals homozygous for the ARMC3 splicing variant displayed reduced sperm motility with frequent morphological abnormalities of sperm flagella. Transmission electron microscopy of the affected individual IV: 2 revealed vacuolation in sperm mitochondria at the midpiece and disrupted flagellar ultrastructure in the principal and end piece. Altogether, our results indicate that this novel homozygous ARMC3 splicing mutation destabilizes sperm flagella and leads to asthenozoospermia in our patients, providing a novel marker for genetic counseling and diagnosis of male infertility.


Asunto(s)
Astenozoospermia , Consanguinidad , Homocigoto , Linaje , Empalme del ARN , Cola del Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patología , Secuenciación del Exoma , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Mutación , Empalme del ARN/genética , Motilidad Espermática/genética , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Espermatozoides/ultraestructura , Espermatozoides/patología
3.
Hum Genomics ; 18(1): 97, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256880

RESUMEN

BACKGROUND: Bi-allelic variants in DNAH11 have been identified as causative factors in Primary Ciliary Dyskinesia, leading to abnormal respiratory cilia. Nonetheless, the specific impact of these variants on human sperm flagellar and their involvement in male infertility remain largely unknown. METHODS: A collaborative effort involving two Chinese reproductive centers conducted a study with 975 unrelated infertile men. Whole-exome sequencing was employed for variant screening, and Sanger sequencing confirmed the identified variants. Morphological and ultrastructural analyses of sperm were conducted using Scanning Electron Microscopy and Transmission Electron Microscopy. Western Blot Analysis and Immunofluorescence Analysis were utilized to assess protein levels and localization. ICSI was performed to evaluate its efficacy in achieving favorable pregnancy outcomes for individuals with DNAH11 variants. RESULTS: In this study, we identified seven novel variants in the DNAH11 gene in four asthenoteratozoospermia subjects. These variants led the absence of DNAH11 proteins and ultrastructure defects in sperm flagella, particularly affecting the outer dynein arms (ODAs) and adjacent structures. The levels of ODA protein DNAI2 and axoneme related proteins were down regulated, instead of inner dynein arms (IDA) proteins DNAH1 and DNAH6. Two out of four individuals with DNAH11 variants achieved clinical pregnancies through ICSI. The findings confirm the association between male infertility and bi-allelic deleterious variants in DNAH11, resulting in the aberrant assembly of sperm flagella and contributing to asthenoteratozoospermia. Importantly, ICSI emerges as an effective intervention for overcoming reproductive challenges caused by DNAH11 gene variants.


Asunto(s)
Astenozoospermia , Dineínas Axonemales , Secuenciación del Exoma , Infertilidad Masculina , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patología , Dineínas Axonemales/genética , Femenino , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Adulto , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Inyecciones de Esperma Intracitoplasmáticas , Embarazo , Espermatozoides/ultraestructura , Espermatozoides/patología , Dineínas/genética
4.
BMC Urol ; 24(1): 180, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192248

RESUMEN

BACKGROUND: Male infertility due to spermatogenesis defects affects millions of men worldwide. However, the genetic etiology of the vast majority remains unclear. The present study was undertaken to assess the association of DNAH6 and ATPase6 genes in asthenozoospermia patients in the northern region of India. METHODS: A total of 60 semen samples were collected for the study, of which 30 were from the case group and 30 were from the control group. The semen samples for the case group (asthenozoospermia) and control groups were collected from IVF and Reproductive Biology Centre, Maulana Azad Medical College, New Delhi. Sperm count and motility were classified as per World Health Organization (WHO 2021) protocol. A total genomic DNA was extracted as per the stranded TRIZOL method with little modification. RESULTS: In-vitro molecular characterizations of DNAH6 and ATPase6 genes in both groups were checked by Polymerase Chain Reaction (PCR). The 675 bp and 375 bp amplicons were amplified using PCR for ATPase6 and DNAH6 genes. Our study results showed a significant (P ≤ 0.05) null deletion of DNAH6 and ATPase6 genes in asthenozoospermia patients as compared to the control. We found the significant null deletion of DNAH6 in case 45.0%, and the control group was 11.7%. However, in the case of APTase6, it was 26.7% and 10.0%, respectively. CONCLUSIONS: Our study concluded that the presence of DHAH6 and ATPase6 genes had a significant impact on male infertility.


Asunto(s)
Astenozoospermia , Humanos , Masculino , Astenozoospermia/genética , India , Adulto , ATPasas de Translocación de Protón Mitocondriales/genética , ADN Mitocondrial/genética
5.
Zhonghua Nan Ke Xue ; 30(3): 199-208, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-39177385

RESUMEN

OBJECTIVE: To explore the potential impact of lipid metabolism-related single nucleotide polymorphisms (SNP) on semen quality in men. METHODS: We selected 284 semen samples from Xingtai Infertility Hospital and Hebei Human Sperm Bank collected between February and October 2023, 33 from oligozoospermia (OS), 97 from asthenozoospermia (AS) and 54 from oligoasthenozoospermia (OAS) patients and the other 100 from normal men. We performed computer-assisted semen analysis (CASA) of the samples, extracted blood DNA and, using the MassARRAY System, genotyped the target genes, determined the genotypes of 13 SNPs and compared their distribution, their correlation with BMI and semen quality in different groups. RESULTS: The mutant homozygous (TT) genotype of the FADS2 rs2727270 gene seemed to be a risk factor for AS (OR = 4.420, P= 0.047), while the APOA2 rs5082-A allele and MC4R rs17782313 heterozygous (TC) genotype important protective factors for OS (OR = 0.422 and 0.389; P= 0.045 and 0.043, respectively). A significantly higher sperm concentration was found associated with the MC4R rs17782313 heterozygous (TC) genotype than with the homozygous (CC) genotype. Stratification analysis showed that the protective effect of the TC genotype was decreased with increased BMI and remained with the interaction of the rs5082 and rs17782313 genotypes. CONCLUSION: FADS2 rs2727270, APOA2 rs5082 and MC4R rs17782313 were significantly correlated with the risk of abnormal semen parameters.


Asunto(s)
Genotipo , Metabolismo de los Lípidos , Polimorfismo de Nucleótido Simple , Análisis de Semen , Humanos , Masculino , Metabolismo de los Lípidos/genética , Astenozoospermia/genética , Ácido Graso Desaturasas/genética , Oligospermia/genética , Infertilidad Masculina/genética , Alelos , Adulto , Recuento de Espermatozoides , Factores de Riesgo , Espermatozoides/metabolismo
6.
Asian J Androl ; 26(5): 484-489, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39054792

RESUMEN

ABSTRACT: The cause of asthenozoospermia (AZS) is not well understood because of its complexity and heterogeneity. Although some gene mutations have been identified as contributing factors, they are only responsible for a small number of cases. Radial spokes (RSs) are critical for adenosine triphosphate-driven flagellar beating and axoneme stability, which is essential for flagellum motility. In this study, we found novel compound heterozygous mutations in leucine-rich repeat-containing protein 23 ( LRRC23 ; c.1018C>T: p.Q340X and c.881_897 Del: p.R295Gfs*32) in a proband from a nonconsanguineous family with AZS and male infertility. Diff-Quik staining and scanning electron microscopy revealed no abnormal sperm morphology. Western blotting and immunofluorescence staining showed that these mutations suppressed LRRC23 expression in sperm flagella. Additionally, transmission electron microscopy showed the absence of RS3 in sperm flagella, which disrupts stability of the radial spoke complex and impairs motility. Following in vitro fertilization and embryo transfer, the proband's spouse achieved successful pregnancy and delivered a healthy baby. In conclusion, our study indicates that two novel mutations in LRRC23 are associated with AZS, but successful fertility outcomes can be achieved by in vitro fertilization-embryo transfer techniques.


Asunto(s)
Astenozoospermia , Mutación , Humanos , Masculino , Astenozoospermia/genética , Adulto , Linaje , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Femenino , Motilidad Espermática/genética , Embarazo
7.
Cell Mol Life Sci ; 81(1): 317, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066891

RESUMEN

Inner dynein arms (IDAs) are formed from a protein complex that is essential for appropriate flagellar bending and beating. IDA defects have previously been linked to the incidence of asthenozoospermia (AZS) and male infertility. The testes-enriched ZMYND12 protein is homologous with an IDA component identified in Chlamydomonas. ZMYND12 deficiency has previously been tied to infertility in males, yet the underlying mechanism remains uncertain. Here, a CRISPR/Cas9 approach was employed to generate Zmynd12 knockout (Zmynd12-/-) mice. These Zmynd12-/- mice exhibited significant male subfertility, reduced sperm motile velocity, and impaired capacitation. Through a combination of co-immunoprecipitation and mass spectrometry, ZMYND12 was found to interact with TTC29 and PRKACA. Decreases in the levels of PRKACA were evident in the sperm of these Zmynd12-/- mice, suggesting that this change may account for the observed drop in male fertility. Moreover, in a cohort of patients with AZS, one patient carrying a ZMYND12 variant was identified, expanding the known AZS-related variant spectrum. Together, these findings demonstrate that ZMYND12 is essential for flagellar beating, capacitation, and male fertility.


Asunto(s)
Infertilidad Masculina , Ratones Noqueados , Motilidad Espermática , Animales , Humanos , Masculino , Ratones , Astenozoospermia/genética , Astenozoospermia/metabolismo , Astenozoospermia/patología , Sistemas CRISPR-Cas , Dineínas/metabolismo , Dineínas/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Ratones Endogámicos C57BL , Capacitación Espermática/genética , Motilidad Espermática/genética , Espermatozoides/metabolismo , Contactina 2/genética , Contactina 2/metabolismo
8.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992144

RESUMEN

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Asunto(s)
Homocigoto , Infertilidad Masculina , Mutación Missense , Cola del Espermatozoide , Humanos , Masculino , Mutación Missense/genética , Pakistán , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Adulto , Linaje , Astenozoospermia/genética , Astenozoospermia/patología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/patología , Secuenciación del Exoma , Oligospermia/genética , Oligospermia/patología , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología
9.
Zhonghua Nan Ke Xue ; 30(1): 18-25, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-39046409

RESUMEN

OBJECTIVE: To explore the expressions of zinc homeostasis-related proteins, G protein-coupled receptor 39 (GPR39) and ANO1 mRNA in the sperm of patients with asthenozoospermia (AS), and analyze their correlation with sperm motility. METHODS: We collected semen samples from 82 male subjects with PR+NP < 40%, PR < 32% and sperm concentration > 15×106/ml (the AS group, n = 40) or PR+NP ≥ 40%, PR ≥ 32% and sperm concentration > 15×106/ml (the normal control group, n = 42). We analyzed the routine semen parameters and measured the zinc content in the seminal plasma using the computer-assisted sperm analysis system, detected the expressions of zinc transporters (ZIP13, ZIP8 and ZNT10), metallothioneins (MT1G, MT1 and MTF), GPR39, and calcium-dependent chloride channel protein (ANO1) in the sperm by real-time quantitative PCR (RT qPCR), examined free zinc distribution in the sperm by laser confocal microscopy, and determined the expressions of GPR39 and MT1 proteins in the sperm by immunofluorescence staining, followed by Spearman rank correlation analysis of their correlation with semen parameters. RESULTS: There was no statistically significant difference in the zinc concentration in the seminal plasma between the AS and normal control groups (P>0.05). Compared with the controls, the AS patients showed a significantly reduced free zinc level (P<0.05), relative expressions of MT1G, MTF, ZIP13, GPR39 and ANO1 mRNA (P<0.05), and that of the GPR39 protein in the AS group (P<0.05). No statistically significant differences were observed in the relative expression levels of ZIP8, ZNT10 and MT1 mRNA between the two groups (P>0.05). The relative expression levels of GPR39, ANO1, MT1G and MTF mRNA were positively correlated with sperm motility and the percentage of progressively motile sperm (P<0.05). CONCLUSION: The expressions of zinc homeostasis proteins (MT1G, MTF and ZIP13), GPR39 and ANO1 mRNA are downregulated in the sperm of asthenozoospermia patients, and positively correlated with sperm motility.


Asunto(s)
Anoctamina-1 , Astenozoospermia , Proteínas de Transporte de Catión , ARN Mensajero , Receptores Acoplados a Proteínas G , Motilidad Espermática , Espermatozoides , Zinc , Humanos , Masculino , Astenozoospermia/metabolismo , Astenozoospermia/genética , Anoctamina-1/metabolismo , Anoctamina-1/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Zinc/metabolismo , Espermatozoides/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metalotioneína/metabolismo , Metalotioneína/genética , Homeostasis , Adulto , Análisis de Semen , Relevancia Clínica , Proteínas de Neoplasias
10.
Genet Test Mol Biomarkers ; 28(8): 337-341, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837151

RESUMEN

Aims: Asthenozoospermia is the most common factor of male infertility, mainly caused by multiple morphological abnormalities of the sperm flagella (MMAF) and primary ciliary dyskinesia (PCD). Previous studies have shown that genetic factors may contribute to MMAF and PCD. The study aimed to identify novel potentially pathogenic gene mutations in a Chinese infertile man with MMAF and PCD-like phenotypes. Methods: A Chinese infertile man with MMAF and PCD was enrolled in this study. Whole exome sequencing and Sanger sequencing were performed to identify potential causative genes and mutations. Results: A novel homozygous missense mutation (c.1450G>A; p.E484K) of CCDC40 was finally identified and Sanger sequencing confirmed that the patient carried the homozygous mutation, which was inherited from his parents. We reported the first homozygous missense CCDC40 mutation in infertile men with MMAF but had other milder PCD symptoms. Conclusion: Our findings not only broaden the disease-causing mutation spectrum of CCDC40 but also provide new insight into the correlation between CCDC40 mutations and MMAF.


Asunto(s)
Pueblo Asiatico , Homocigoto , Infertilidad Masculina , Mutación Missense , Fenotipo , Cola del Espermatozoide , Humanos , Masculino , Infertilidad Masculina/genética , Mutación Missense/genética , Adulto , China , Pueblo Asiatico/genética , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Trastornos de la Motilidad Ciliar/genética , Secuenciación del Exoma/métodos , Linaje , Mutación , Astenozoospermia/genética , Pueblos del Este de Asia
11.
Front Endocrinol (Lausanne) ; 15: 1373774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863929

RESUMEN

Background: Asthenozoospermia, a type of male infertility, is primarily caused by dysfunctional sperm mitochondria. Despite previous bioinformatics analysis identifying potential key lncRNAs, miRNAs, hub genes, and pathways associated with asthenospermia, there is still a need to explore additional molecular mechanisms and potential biomarkers for this condition. Methods: We integrated data from Gene Expression Omnibus (GEO) (GSE22331, GSE34514, and GSE160749) and performed bioinformatics analysis to identify differentially expressed genes (DEGs) between normozoospermia and asthenozoospermia. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to gain insights into biological processes and signaling pathways. Weighted Gene Co-expression Network Analysis (WGCNA) identified gene modules associated with asthenozoospermia. Expression levels of key genes were assessed using datasets and experimental data. Gene Set Enrichment Analysis (GSEA) and correlation analysis identified pathways associated with the hub gene and explore the relationship between the ZNF764 and COQ9 and mitochondrial autophagy-related genes. Competitive endogenous RNA (ceRNA) networks were constructed, and in vitro experiments using exosome samples were conducted to validate this finding. Results: COQ9 was identified as a marker gene in asthenozoospermia, involved in autophagy, ATP-dependent chromatin remodeling, endocytosis, and cell cycle, etc. The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) was constructed, and PCR demonstrated that LINC00893 and COQ9 were downregulated in asthenozoospermia, while miR-125a-5p and m6A methylation level of LINC00893 were upregulated in asthenozoospermia compared to normozoospermic individuals. Conclusion: The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) likely plays a crucial role in the mechanism of asthenozoospermia. However, further functional experiments are needed to fully understand its significance.


Asunto(s)
Astenozoospermia , Biomarcadores , Biología Computacional , Redes Reguladoras de Genes , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Biología Computacional/métodos , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Ontología de Genes , Transducción de Señal/genética , Espermatozoides/metabolismo
12.
BMC Genomics ; 25(1): 602, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886667

RESUMEN

BACKGROUND: Spermatogenesis is a highly regulated and complex process in which DNA methylation plays a crucial role. This study aimed to explore the differential methylation profiles in sperm DNA between patients with asthenospermia (AS) and healthy controls (HCs), those with oligoasthenospermia (OAS) and HCs, and patients with AS and those with OAS. RESULTS: Semen samples and clinical data were collected from five patients with AS, five patients with OAS, and six age-matched HCs. Reduced representation bisulfite sequencing (RRBS) was performed to identify differentially methylated regions (DMRs) in sperm cells among the different types of patients and HCs. A total of 6520, 28,019, and 16,432 DMRs were detected between AS and HC, OAS and HC, and AS and OAS groups, respectively. These DMRs were predominantly located within gene bodies and mapped to 2868, 9296, and 9090 genes in the respective groups. Of note, 12, 9, and 8 DMRs in each group were closely associated with spermatogenesis and male infertility. Furthermore, BDNF, SMARCB1, PIK3CA, and DDX27; RBMX and SPATA17; ASZ1, CDH1, and CHDH were identified as strong differentially methylated candidate genes in each group, respectively. Meanwhile, the GO analysis of DMR-associated genes in the AS vs. HC groups revealed that protein binding, cytoplasm, and transcription (DNA-templated) were the most enriched terms in the biological process (BP), cellular component (CC), and molecular function (MF), respectively. Likewise, in both the OAS vs. HC and AS vs. OAS groups, GO analysis revealed protein binding, nucleus, and transcription (DNA-templated) as the most enriched terms in BP, CC, and MF, respectively. Finally, the KEGG analysis of DMR-annotated genes and these genes at promoters suggested that metabolic pathways were the most significantly associated across all three groups. CONCLUSIONS: The current study results revealed distinctive sperm DNA methylation patterns in the AS vs. HC and OAS vs. HC groups, particularly between patients with AS and those with OAS. The identification of key genes associated with spermatogenesis and male infertility in addition to the differentially enriched metabolic pathways may contribute to uncovering the potential pathogenesis in different types of abnormal sperm parameters.


Asunto(s)
Astenozoospermia , Metilación de ADN , Oligospermia , Humanos , Masculino , Astenozoospermia/genética , Adulto , Oligospermia/genética , Espermatozoides/metabolismo , Espermatogénesis/genética , Estudios de Casos y Controles , Epigénesis Genética
13.
J Hum Genet ; 69(8): 401-409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769386

RESUMEN

Human infertility affects 10-15% of couples. Asthenozoospermia accounts for 18% of men with infertility and is a common male infertility phenotype. The nexin-dynein regulatory complex (N-DRC) is a large protein complex in the sperm flagellum that connects adjacent doublets of microtubules. Defects in the N-DRC can disrupt cilia/flagellum movement, resulting in primary ciliary dyskinesia and male infertility. Using whole-exome sequencing, we identified a pathological homozygous variant of the dynein regulatory complex subunit 3 (DRC3) gene, which expresses leucine-rich repeat-containing protein 48, a component of the N-DRC, in a patient with asthenozoospermia. The variant ENST00000313838.12: c.644dup (p. Glu216GlyfsTer36) causes premature translational arrest of DRC3, resulting in a dysfunctional DRC3 protein. The patient's semen count, color, and pH were normal according to the reference values of the World Health Organization guidelines; however, sperm motility and progressive motility were reduced. DRC3 protein was not detected in the patient's sperm and the ultrastructure of the patient's sperm flagella was destroyed. More importantly, the DRC3 variant reduced its interaction with other components of the N-DRC, including dynein regulatory complex subunits 1, 2, 4, 5, 7, and 8. Our data not only revealed the essential biological functions of DRC3 in sperm flagellum movement and structure but also provided a new basis for the clinical genetic diagnosis of male infertility.


Asunto(s)
Astenozoospermia , Homocigoto , Infertilidad Masculina , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Motilidad Espermática/genética , Adulto , Espermatozoides/metabolismo , Espermatozoides/patología , Secuenciación del Exoma , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Dineínas/genética , Dineínas/metabolismo , Mutación
14.
Front Endocrinol (Lausanne) ; 15: 1377780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745955

RESUMEN

Objective: Multiple morphological abnormalities of the sperm flagella (MMAF) is characterized by abnormal flagellar phenotypes, which is a particular kind of asthenoteratozoospermia. Previous studies have reported a comparable intracytoplasmic sperm injection (ICSI) outcome in terms of fertilization rate and clinical pregnancy rate in patients with MMAF compared with those with no MMAF; however, others have conflicting opinions. Assisted reproductive technology (ART) outcomes in individuals with MMAF are still controversial and open to debate. Methods: A total of 38 patients with MMAF treated at an academic reproductive center between January 2014 and July 2022 were evaluated in the current retrospective cohort study and followed up until January 2023. Propensity score matching was used to adjust for the baseline clinical characteristics of the patients and to create a comparable control group. The genetic pathogenesis of MMAF was confirmed by whole exome sequencing. The main outcomes were the embryo developmental potential, the cumulative pregnancy rate (CLPR), and the cumulative live birth rate (CLBR). Results: Pathogenic variants in known genes of DNAH1, DNAH11, CFAP43, FSIP2, and SPEF2 were identified in patients with MMAF. Laboratory outcomes, including the fertilization rate, 2PN cleavage rate, blastocyst formation rate, and available blastocyst rate, followed a trend of decline in the MMAF group (p < 0.05). Moreover, according to the embryo transfer times and complete cycles, the CLPR in the cohort of MMAF was lower compared with the oligoasthenospermia pool (p = 0.033 and p = 0.020, respectively), while no statistical differences were observed in the neonatal outcomes. Conclusion: The current study presented decreased embryo developmental potential and compromised clinical outcomes in the MMAF cohort. These findings may provide clinicians with evidence to support genetic counseling and clinical guidance in specific patients with MMAF.


Asunto(s)
Desarrollo Embrionario , Índice de Embarazo , Inyecciones de Esperma Intracitoplasmáticas , Cola del Espermatozoide , Humanos , Masculino , Femenino , Embarazo , Adulto , Estudios Retrospectivos , Cola del Espermatozoide/patología , Desarrollo Embrionario/fisiología , Astenozoospermia/genética , Astenozoospermia/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Espermatozoides/patología
15.
Genes (Basel) ; 15(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790229

RESUMEN

Several genes are implicated in spermatogenesis and fertility regulation, and these genes are presently being analysed in clinical practice due to their involvement in male factor infertility (MFI). However, there are still few genetic analyses that are currently recommended for use in clinical practice. In this manuscript, we reviewed the genetic causes of qualitative sperm defects. We distinguished between alterations causing reduced sperm motility (asthenozoospermia) and alterations causing changes in the typical morphology of sperm (teratozoospermia). In detail, the genetic causes of reduced sperm motility may be found in the alteration of genes associated with sperm mitochondrial DNA, mitochondrial proteins, ion transport and channels, and flagellar proteins. On the other hand, the genetic causes of changes in typical sperm morphology are related to conditions with a strong genetic basis, such as macrozoospermia, globozoospermia, and acephalic spermatozoa syndrome. We tried to distinguish alterations approved for routine clinical application from those still unsupported by adequate clinical studies. The most important aspect of the study was related to the correct identification of subjects to be tested and the correct application of genetic tests based on clear clinical data. The correct application of available genetic tests in a scenario where reduced sperm motility and changes in sperm morphology have been observed enables the delivery of a defined diagnosis and plays an important role in clinical decision-making. Finally, clarifying the genetic causes of MFI might, in future, contribute to reducing the proportion of so-called idiopathic MFI, which might indeed be defined as a subtype of MFI whose cause has not yet been revealed.


Asunto(s)
Motilidad Espermática , Espermatozoides , Humanos , Masculino , Espermatozoides/metabolismo , Espermatozoides/patología , Motilidad Espermática/genética , Astenozoospermia/genética , Astenozoospermia/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Teratozoospermia/genética , Teratozoospermia/patología , ADN Mitocondrial/genética , Pruebas Genéticas
16.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612930

RESUMEN

Infertility is a global health challenge that affects an estimated 72.4 million people worldwide. Between 30 and 50% of these cases involve male factors, showcasing the complex nature of male infertility, which can be attributed to both environmental and genetic determinants. Asthenozoospermia, a condition characterized by reduced sperm motility, stands out as a significant contributor to male infertility. This study explores the involvement of the mitochondrial oxidative phosphorylation (OXPHOS) system, crucial for ATP production and sperm motility, in asthenozoospermia. Through whole-genome sequencing and in silico analysis, our aim was to identify and characterize OXPHOS gene variants specific to individuals with asthenozoospermia. Our analysis identified 680,099 unique variants, with 309 located within OXPHOS genes. Nine of these variants were prioritized due to their significant implications, such as potential associations with diseases, effects on gene expression, protein function, etc. Interestingly, none of these variants had been previously associated with male infertility, opening up new avenues for research. Thus, through our comprehensive approach, we provide valuable insights into the genetic factors that influence sperm motility, laying the foundation for future research in the field of male infertility.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Masculino , Humanos , Astenozoospermia/genética , Fosforilación Oxidativa , Motilidad Espermática/genética , Infertilidad Masculina/genética , Secuenciación Completa del Genoma
17.
Reprod Biomed Online ; 48(5): 103765, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492416

RESUMEN

RESEARCH QUESTION: Is the novel homozygous nonsense variant of AK7 associated with multiple morphological abnormalities of the sperm flagella (MMAF), a specific type of oligoasthenoteratozoospermia leading to male infertility? DESIGN: Whole-exome sequencing and Sanger sequencing were performed to identify potential gene variants. Immunoblotting and immunofluorescence were applied to confirm the relationship between mutated genes and disease phenotypes. The concentration of reactive oxygen species and the rate of apoptosis were measured to evaluate the mitochondrial function of spermatozoa. Transmission electron microscopy and scanning electron microscopy were employed to observe sperm ultrastructure. RESULTS: A novel homozygous nonsense variant of AK7, c.1153A>T (p. Lys385*), was identified in two infertile siblings with asthenoteratozoospermia through whole-exome sequencing. Both immunoblotting and immunofluorescence assays showed practically complete absence of AK7 in the patient's spermatozoa. Additionally, the individual with the novel AK7 variant exhibited a phenotype characterized by severe oxidative stress and apoptosis caused by mitochondrial metabolic dysfunction of spermatozoa. Notably, remarkable flagellar defects with multiple axonemes in uniflagellate spermatozoa, accompanied by mitochondrial vacuolization, were observed; this has not been reported previously in patients with other AK7 variants. CONCLUSIONS: This study found that a novel identified homozygous nonsense variant of AK7 may be associated with MMAF-related asthenoteratozoospermia. The observed functional associations between mitochondria and sperm flagellar assembly provide evidence for potential mutual regulation between AK7 and flagella-associated proteins during spermatogenesis.


Asunto(s)
Adenilato Quinasa , Astenozoospermia , Cola del Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patología , Codón sin Sentido , Secuenciación del Exoma , Homocigoto , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Mitocondrias/ultraestructura , Mitocondrias/genética , Mitocondrias/patología , Linaje , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Espermatozoides/ultraestructura , Espermatozoides/anomalías , Adenilato Quinasa/genética
18.
J Assist Reprod Genet ; 41(5): 1297-1306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492154

RESUMEN

PURPOSE: To identify the genetic causes of multiple morphological abnormalities in sperm flagella (MMAF) and male infertility in patients from two unrelated Han Chinese families. METHODS: Whole-exome sequencing was conducted using blood samples from the two individuals with MMAF and male infertility. Hematoxylin and eosin staining and scanning electron microscopy were performed to evaluate sperm morphology. Ultrastructural and immunostaining analyses of the spermatozoa were performed. The HEK293T cells were used to confirm the pathogenicity of the variants. RESULTS: We identified two novel homozygous missense ARMC2 variants: c.314C > T: p.P105L and c.2227A > G: p.N743D. Both variants are absent or rare in the human population genome data and are predicted to be deleterious. In vitro experiments indicated that both ARMC2 variants caused a slightly increased protein expression. ARMC2-mutant spermatozoa showed multiple morphological abnormalities (bent, short, coiled, absent, and irregular) in the flagella. In addition, the spermatozoa of the patients revealed a frequent absence of the central pair complex and disrupted axonemal ultrastructure. CONCLUSION: We identified two novel ARMC2 variants that caused male infertility and MMAF in Han Chinese patients. These findings expand the mutational spectrum of ARMC2 and provide insights into the complex causes and pathogenesis of MMAF.


Asunto(s)
Astenozoospermia , Secuenciación del Exoma , Homocigoto , Infertilidad Masculina , Cola del Espermatozoide , Espermatozoides , Adulto , Humanos , Masculino , Pueblo Asiatico/genética , Astenozoospermia/genética , Astenozoospermia/patología , Células HEK293 , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Mutación/genética , Linaje , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Espermatozoides/patología , Espermatozoides/ultraestructura
19.
Reprod Sci ; 31(7): 2001-2008, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499948

RESUMEN

The methylation pattern of non-imprinting genes was little studied, although it is widely known that the abnormal methylation levels of imprinting genes are associated with different forms of male infertility. The purpose of this research was to assess the CREM gene's methylation status and seminal characteristics in infertile individuals who were potential intracytoplasmic sperm injection (ICSI) candidates. A total of 45 semen samples (15 normospermia, 15 asthenospermia, and 15 oligoasthenoteratospermia) were examined. Using aniline blue (AB) staining, we carried out conventional semen analysis, chromatin quality, and sperm maturity testing. DNA was taken from semen samples, and all isolated DNA was assessed using Nanodrop and gel electrophoresis. A quantitative methylation-specific polymerase chain reaction (Q-MSP) approach was used to quantify the methylation at the DMRs of the CREM gene. According to our findings, sperm count (P=0.012), concentration (P= 0.019), motility (P=0.006), progression (P=0.006), and normal morphology (P=0.004) were all inversely correlated with abnormal sperm chromatin condensation. Additionally, we noted that the methylation level of the CREM gene was considerably more significant in the oligoasthenoteratospermia group compared to the asthenospermia and normospermia groups (P<0.05). Additionally, sperm count (P=0.043), progression (P=0.026), and normal morphology (P=0.024) were all inversely linked with CREM methylation. Overall, the abnormal CREM methylation patterns have a negative impact on sperm parameters. Additionally, the CREM gene's DNA methylation status may serve as an epigenetic indicator of male infertility.


Asunto(s)
Modulador del Elemento de Respuesta al AMP Cíclico , Metilación de ADN , Infertilidad Masculina , Espermatozoides , Humanos , Masculino , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Espermatozoides/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Adulto , Motilidad Espermática/genética , Análisis de Semen , Recuento de Espermatozoides , Astenozoospermia/genética
20.
J Cell Mol Med ; 28(7): e18215, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509755

RESUMEN

Oligoasthenoteratospermia (OAT), characterized by abnormally low sperm count, poor sperm motility, and abnormally high number of deformed spermatozoa, is an important cause of male infertility. Its genetic basis in many affected individuals remains unknown. Here, we found that CCDC157 variants are associated with OAT. In two cohorts, a 21-bp (g.30768132_30768152del21) and/or 24-bp (g.30772543_30772566del24) deletion of CCDC157 were identified in five sporadic OAT patients, and 2 cases within one pedigree. In a mouse model, loss of Ccdc157 led to male sterility with OAT-like phenotypes. Electron microscopy revealed misstructured acrosome and abnormal head-tail coupling apparatus in the sperm of Ccdc157-null mice. Comparative transcriptome analysis showed that the Ccdc157 mutation alters the expressions of genes involved in cell migration/motility and Golgi components. Abnormal Golgi apparatus and decreased expressions of genes involved in acrosome formation and lipid metabolism were detected in Ccdc157-deprived mouse germ cells. Interestingly, we attempted to treat infertile patients and Ccdc157 mutant mice with a Chinese medicine, Huangjin Zanyu, which improved the fertility in one patient and most mice that carried the heterozygous mutation in CCDC157. Healthy offspring were produced. Our study reveals CCDC157 is essential for sperm maturation and may serve as a marker for diagnosis of OAT.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Proteínas de la Membrana , Oligospermia , Animales , Humanos , Masculino , Ratones , Astenozoospermia/genética , Astenozoospermia/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Ratones Noqueados , Mutación/genética , Oligospermia/genética , Oligospermia/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Espermatozoides/metabolismo , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA