Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.071
Filtrar
2.
Brain Behav ; 14(9): e70010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262160

RESUMEN

BACKGROUND: The hippocampus is susceptible to damage, leading to negative impacts on cognition. Conditioned medium (CM) obtained from adipose tissue-derived mesenchymal stem cells (MSCs) and acetylsalicylic acid (ASA) have shown neuroprotective effects independently. This study explored the synergistic potential of ASA and CM from adipose-derived MSCs against hippocampal injury. METHODS: Adult male Wistar rats received bilateral hippocampal ethidium bromide (EB) injections to induce hippocampal damage. Rats were treated with ASA and/or CM derived from adipose tissue MSCs every 48 h for 16 days. Behavioral tests (open field test, Morris water maze, novel object recognition, and passive avoidance), oxidative stress, Western blot analysis of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) expression, and hippocampal histological investigation were conducted. RESULTS: Administration of EB caused impairments in spatial, recognition, and passive avoidance memory, as well as heightened oxidative stress, reduced BDNF/CDNF expression, and pyramidal cell loss in the hippocampal CA1 region. Administration of ASA, CM, or a combination of both mitigated these hippocampal damages and cognitive deficits, elevated BDNF and CDNF levels, and alleviated the CA1 necrosis caused by EB. Moreover, co-administering ASA and CM resulted in greater improvements in spatial memory compared to administering ASA alone, suggesting possible synergistic interactions. CONCLUSIONS: The ability of ASA, CM obtained from adipose tissue-derived MSCs, and their combination therapy to alleviate hippocampal injuries highlights their promising therapeutic potential as a neuroprotection strategy against brain damage. Our findings provide preliminary evidence of the potential synergistic effects of ASA and CM, which warrants further investigations.


Asunto(s)
Aspirina , Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Células Madre Mesenquimatosas , Estrés Oxidativo , Ratas Wistar , Animales , Masculino , Aspirina/farmacología , Ratas , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Cognición/efectos de los fármacos , Antioxidantes/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo
3.
J Cell Mol Med ; 28(17): e18512, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39248454

RESUMEN

Acute pancreatitis (AP) is a common gastrointestinal disease with high morbidity and mortality rate. Unfortunately, neither the etiology nor the pathophysiology of AP are fully understood and causal treatment options are not available. Recently we demonstrated that heparanase (Hpa) is adversely involved in the pathogenesis of AP and inhibition of this enzyme ameliorates the manifestation of the disease. Moreover, a pioneer study demonstrated that Aspirin has partial inhibitory effect on Hpa. Another compound, which possesses a mild pancreato-protective effect against AP, is Trehalose, a common disaccharide. We hypothesized that combination of Aspirin, Trehalose, PG545 (Pixatimod) and SST0001 (Roneparstat), specific inhibitors of Hpa, may exert pancreato-protective effect better than each drug alone. Thus, the current study examines the pancreato-protective effects of Aspirin, Trehalose, PG545 and SST0001 in experimental model of AP induced by cerulein in wild-type (WT) and Hpa over-expressing (Hpa-Tg) mice. Cerulein-induced AP in WT mice was associated with significant rises in the serum levels of lipase (X4) and amylase (X3) with enhancement of pancreatic edema index, inflammatory response, and autophagy. Responses to cerulein were all more profound in Hpa-Tg mice versus WT mice, evident by X7 and X5 folds increase in lipase and amylase levels, respectively. Treatment with Aspirin or Trehalose alone and even more so in combination with PG545 or SST0001 were highly effective, restoring the serum level of lipase back to the basal level. Importantly, a novel newly synthesized compound termed Aspirlose effectively ameliorated the pathogenesis of AP as a single agent. Collectively, the results strongly indicate that targeting Hpa by using anti-Hpa drug combinations constitute a novel therapy for this common orphan disease.


Asunto(s)
Glucuronidasa , Pancreatitis , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Ratones , Glucuronidasa/metabolismo , Glucuronidasa/antagonistas & inhibidores , Trehalosa/farmacología , Trehalosa/uso terapéutico , Ceruletida , Aspirina/farmacología , Aspirina/uso terapéutico , Modelos Animales de Enfermedad , Enfermedad Aguda , Autofagia/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/enzimología , Masculino , Ratones Transgénicos , Lipasa/metabolismo , Lipasa/antagonistas & inhibidores , Amilasas/sangre , Ratones Endogámicos C57BL , Saponinas
4.
Physiol Rep ; 12(16): e70002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39164206

RESUMEN

Impedance aggregometry is an alternative to light transmission aggregometry that allows analysis of platelet function in whole blood samples. We hypothesized (1) impedance aggregometry would produce repeatable results, (2) inhibition of cyclooxygenase with aspirin would attenuate aggregation responses to collagen and abolish the aggregation response to arachidonic acid (AA), and (3) thromboxane receptor antagonism (terutroban) would attenuate the aggregation response to AA. Venous blood was obtained from 11 participants three times separated by at least 2 weeks. One sample followed 7-day-aspirin intervention (81 mg once daily; ASA), the others no intervention (control). Aggregation was induced using 1 µg/mL collagen ([col 1]), 5 µg/mL collagen ([col 5]), and 50 mM AA via impedance aggregometry to determine total aggregation (AUC) analyzed for intra-test repeatability, inter-test repeatability, intervention (ASA or control), and incubation (saline or terutroban). [col 1] showed high intra-test (p ≤ 0.03 visit 1 and 2) and inter-test repeatability (p < 0.01). [col 5] and AA showed intra- ([col 5] p < 0.01 visit 1 and 2; AA p < 0.001 visit 1 and 2) but not inter-test repeatability ([col 5] p = 0.48; AA p = 0.06). ASA attenuated AUC responses to [col 1] (p < 0.01), [col 5] (p = 0.03), and AA (p < 0.01). Terutroban attenuated AUC in response to AA (p < 0.01). [col 1] shows sufficient repeatability for longitudinal investigations of platelet function. [col 5] and AA may be used to investigate mechanisms of platelet function and metabolism at a single time point.


Asunto(s)
Aspirina , Inhibidores de la Ciclooxigenasa , Impedancia Eléctrica , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Propionatos , Receptores de Tromboxanos , Humanos , Agregación Plaquetaria/efectos de los fármacos , Masculino , Proyectos Piloto , Femenino , Inhibidores de la Ciclooxigenasa/farmacología , Aspirina/farmacología , Receptores de Tromboxanos/antagonistas & inhibidores , Receptores de Tromboxanos/metabolismo , Adulto , Pruebas de Función Plaquetaria/métodos , Propionatos/farmacología , Naftalenos/farmacología , Ácido Araquidónico/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Persona de Mediana Edad , Inhibidores de Agregación Plaquetaria/farmacología , Colágeno/farmacología
5.
Int J Med Sci ; 21(10): 1990-1999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113892

RESUMEN

The T cell immunoglobulin and ITAM domain (TIGIT) is a recently discovered synergistic co-suppressor molecule that plays an important role in immune response and tumor immune escape in the context of cancer. Importantly, CD155 acts as a receptor for TIGIT, and CD155 signaling to immune cells is mediated through interactions with the co-stimulatory immune receptor CD226 (DNAM-1) and the inhibitory checkpoint receptors TIGIT and CD96. Aspirin (ASA) has been shown to reduce the growth and survival of colorectal cancer (CRC) cells, but the immunological mechanisms involved have not been sufficiently elucidated. In the present study the effects of aspirin on CRC in mice and on Jurkat cells were investigated. Aspirin may suppress the expression of TIGIT on T cells and Regulatory T cells (Tregs) and inhibit T cell viability, and therefore induce tumor cell apoptosis. TIGIT is expressed at higher levels on infiltrating lymphocytes within CRC tumor tissue than adjacent. Further, aspirin could inhibit Jurkat cell proliferation and induce apoptosis via downregulation of TIGIT expression and the anti-apoptosis B cell lymphoma 2 (BCL2) protein and upregulation of BCL2-associated X protein (BAX) expression. The present study suggests that aspirin can inhibit specific aspects of T cell function by reducing interleukin-10 and transforming growth factor-ß1 secretion via the TIGIT-BCL2-BAX signaling pathway, resulting in improved effector T cell function that inhibits tumor progression.


Asunto(s)
Apoptosis , Aspirina , Neoplasias Colorrectales , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores Inmunológicos , Transducción de Señal , Receptores Inmunológicos/metabolismo , Humanos , Animales , Aspirina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/inmunología , Ratones , Células Jurkat , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proliferación Celular/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Receptores Virales/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
6.
Mol Med ; 30(1): 126, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152406

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMMSCs) are commonly used for cell transplantation to treat refractory diseases. However, the presence of inflammatory factors, such as tumour necrosis factor-alpha (TNF-α), at the transplantation site severely compromises the stemness of BMMSCs, thereby reducing the therapeutic effect of cell transplantation. Aspirin (AS) is a drug that has been in use for over a century and has a wide range of effects, including the regulation of cell proliferation, multidirectional differentiation, and immunomodulatory properties of stem cells. However, it is still unclear whether AS can delay the damaging effects of TNF-α on BMMSC stemness. METHODS: This study investigated the effects of AS and TNF-α on BMMSC stemness and the molecular mechanisms using colony formation assay, western blot, qRT-PCR, and overexpression or knockdown of YAP and SMAD7. RESULTS: The results demonstrated that TNF-α inhibited cell proliferation, the expression of stemness, osteogenic and chondrogenic differentiation markers of BMMSCs. Treatment with AS was shown to mitigate the TNF-α-induced damage to BMMSC stemness. Mechanistic studies revealed that AS may reverse the damage caused by TNF-α on BMMSC stemness by upregulating YAP and inhibiting the expression of SMAD7. CONCLUSION: AS can attenuate the damaging effects of TNF-α on BMMSC stemness by regulating the YAP-SMAD7 axis. These findings are expected to promote the application of AS to improve the efficacy of stem cell therapy.


Asunto(s)
Aspirina , Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas , Proteína smad7 , Factor de Necrosis Tumoral alfa , Proteínas Señalizadoras YAP , Factor de Necrosis Tumoral alfa/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Proteína smad7/metabolismo , Proteína smad7/genética , Aspirina/farmacología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proteínas Señalizadoras YAP/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Células Cultivadas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Osteogénesis/efectos de los fármacos , Ratones
7.
Artículo en Inglés | MEDLINE | ID: mdl-39094989

RESUMEN

Aspirin (Acetylsalicylic acid, ASA), one of the widely used non-steroid anti-inflammatory drugs can easily end up in sewage effluents and thus it becomes necessary to investigate the effects of aspirin on behaviour of aquatic organisms. Previous studies in mammals have shown ASA to alter fear and anxiety-like behaviours. In the great pond snail Lymnaea stagnalis, ASA has been shown to block a 'sickness state' induced by lipopolysaccharide injection which upregulates immune and stress-related genes thus altering behavioural responses. In Lymnaea, eliciting physiological stress may enhance memory formation or block its retrieval depending on the stimulus type and intensity. Here we examine whether ASA will alter two forms of associative-learning memory in crayfish predator-experienced Lymnaea when ASA exposure accompanies predator-cue-induced stress during the learning procedure. The two trainings procedures are: 1) operant conditioning of aerial respiration; and 2) a higher form of learning, called configural learning, which here is dependent on evoking a fear response. We show here that ASA alone does not alter homeostatic aerial respiration, feeding behaviour or long-term memory (LTM) formation of operantly conditioned aerial respiration. However, ASA blocked the enhancement of LTM formation normally elicited by training snails in predator cue. ASA also blocked configural learning, which makes use of the fear response elicited by the predator cue. Thus, ASA alters how Lymnaea responds cognitively to predator detection.


Asunto(s)
Aspirina , Conducta Animal , Miedo , Lymnaea , Animales , Aspirina/farmacología , Miedo/efectos de los fármacos , Lymnaea/fisiología , Lymnaea/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Astacoidea/efectos de los fármacos , Astacoidea/fisiología
8.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241265827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39089684

RESUMEN

Background: Aspirin is a representative non-steroidal anti-inflammatory drug (NSAIDs) and has been commonly used for the treatment of tendinopathy in clinical practice. In this study, we aimed to evaluate the biomechanical and histological healing effects of aspirin on the healing of the tendon-to-bone interface after rotator cuff tear repair. Methods: A total of 20 male Sprague-Dawley rats were randomly divided into two groups of 10 rats each. Group-C performed repaironly, and group-aspirin treated with aspirin after tendon repair. Group-aspirin rat were intraperitoneally injected with aspirin at 10 mg/kg every 24 h for 7 days. Eight weeks after surgery, the left shoulder of each rat was used for histological analysis and the right shoulder for biomechanical analysis. Results: In the biomechanical analysis, there was no significant difference in load-to-failure (group-C: 0.61 ± 0.32 N, group-aspirin: 0.74 ± 0.91 N; p = .697) and ultimate stress (group-C: 0.05 ± 0.01 MPa, group-aspirin: 0.29 ± 0.43 MPa; p = .095). For the elongation (group-C: 222.62 ± 57.98%, group-aspirin: 194.75 ± 75.16%; p = .028), group-aspirin confirmed a lower elongation level than group-C. In the histological evaluation, the Bonar score confirmed significant differences in collagen fiber density (group-C: 1.60 ± 0.52, group-aspirin: 2.60 ± 0.52, p = .001) and vascularity (group-C: 1.00 ± 0.47, group-aspirin: 2.20 ± 0.63, p = .001) between the groups. Conclusions: Aspirin injection after rotator cuff tear repair may enhance the healing effect during the early remodeling phase of tendon healing.


Asunto(s)
Antiinflamatorios no Esteroideos , Aspirina , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Lesiones del Manguito de los Rotadores , Animales , Aspirina/farmacología , Aspirina/administración & dosificación , Lesiones del Manguito de los Rotadores/tratamiento farmacológico , Lesiones del Manguito de los Rotadores/patología , Masculino , Ratas , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación , Fenómenos Biomecánicos , Cicatrización de Heridas/efectos de los fármacos
9.
PLoS One ; 19(8): e0305233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133675

RESUMEN

INTRODUCTION: Non-steroidal anti-inflammatory drugs (NSAIDs) are currently the most widely used anti-inflammatory medications, but their long-term use can cause damage to the gastrointestinal tract(GIT). One of the risk factors for GIT injury is exposure to a high-altitude hypoxic environment, which can lead to damage to the intestinal mucosal barrier. Taking NSAIDs in a high-altitude hypoxic environment can exacerbate GIT injury and impact gut microbiota. The aim of this study is to investigate the mechanisms by which resveratrol (RSV) intervention alleviates NSAID-induced intestinal injury in a high-altitude hypoxic environment, as well as its role in regulating gut microbiota. METHODS: Aspirin was administered orally to rats to construct a rat model of intestinal injury induced by NSAIDs. Following the induction of intestinal injury, rats were administered RSV by gavage, and the expression levels of TLR4, NF-κB,IκB as well as Zonula Occludens-1 (ZO-1) and Occludin proteins in the different treatment groups were assessed via Western blot. Furthermore, the expression of the inflammatory factors IL-10, IL-1ß, and TNF-α was evaluated using Elisa.16sRNA sequencing was employed to investigate alterations in the gut microbiota. RESULTS: The HCk group showed elevated expression of TLR4/NF-κB/IκB pathway proteins, increased expression of pro-inflammatory factors IL-1ß and TNF-α, decreased expression of the anti-inflammatory factor IL-10, and expression of intestinal mucosal barrier proteins ZO-1 and Occludin. The administration of NSAIDs drugs in the plateau hypoxic environment exacerbates intestinal inflammation and damage to the intestinal mucosal barrier. After treatment with RSV intervention, the expression of TLR4/NF-κB/IκB signaling pathway proteins would be reduced, thereby lowering the expression of inflammatory factors in the HAsp group. The results of HE staining directly show the damage to the intestines and the repair of intestinal mucosa after RSV intervention. 16sRNA sequencing results show significant differences (P<0.05) in Ruminococcus, Facklamia, Parasutterella, Jeotgalicoccus, Coprococcus, and Psychrobacter between the HCk group and the Ck group. Compared to the HCk group, the HAsp group shows significant differences (P<0.05) in Facklamia, Jeotgalicoccus, Roseburia, Psychrobacter, and Alloprevotella. After RSV intervention, Clostridium_sensu_stricto bacteria significantly increase compared to the HAsp group. CONCLUSION: Resveratrol can attenuate intestinal damage caused by the administration of NSAIDs at high altitude in hypoxic environments by modulating the TLR4/NF-κB/IκB signaling pathway and gut microbiota composition.


Asunto(s)
Altitud , Antiinflamatorios no Esteroideos , Microbioma Gastrointestinal , FN-kappa B , Ratas Sprague-Dawley , Resveratrol , Transducción de Señal , Receptor Toll-Like 4 , Animales , Resveratrol/farmacología , Receptor Toll-Like 4/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , FN-kappa B/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Ratas , Masculino , Transducción de Señal/efectos de los fármacos , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Proteínas I-kappa B/metabolismo , Aspirina/farmacología
10.
Drugs R D ; 24(2): 303-316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39012613

RESUMEN

BACKGROUND AND OBJECTIVE: Cancer is a deadly disease with high mortality rates in developing countries. A recent preclinical study found promising results in treating hepatocellular carcinoma (HCC) by combining acetylsalicylic acid (ASA) and ascorbate (AS), which might offer a safer alternative to expensive clinical chemotherapeutics; however, the impact of this combination on other tumors remains unexplored. Therefore, this study aims to investigate the effectiveness of combining ASA and AS in treating Ehrlich solid tumors. METHODS: Eighty female Swiss albino mice were divided into eight groups (10 mice/group): four healthy groups (healthy, AS, ASA, and AS+ASA) and four groups with carcinoma (Ehrlich ascites carcinoma [EAC], EAC+AS, EAC+ASA, and EAC+AS+ASA). AS was injected intraperitoneally (4 g/kg) daily for 10 days, whereas ASA was ingested orally at 60 mg/kg/day for 10 days. Carcinoma was induced by subcutaneous injection of 1×106 EAC cells/mouse once. Treatment of carcinoma started after 10 days of tumor inoculation. Blood, livers, and tumors were obtained, and tumor weights, volumes, and levels of hemoglobin, aminotransferases, albumin, bilirubin, urea, creatinine, lipid profile, malondialdehyde, nitric oxide, glutathione, catalase, total antioxidant capacity, lactate dehydrogenase, and creatine kinase were estimated. The percentage increase in lifespan was also assessed. RESULTS: Tumor treatment alleviated tumor burden. Tumor size was reduced, lifespan increased, organs (liver, kidney, and heart) functions adjusted, hemoglobin, lipid profile improved, and oxidative stress decreased. Combining ASA with AS showed more effective antitumor effects than only ASA or AS alone. CONCLUSION: After more validation research, combining ASA with AS may provide benefit in cancer treatment.


Asunto(s)
Ácido Ascórbico , Aspirina , Carcinoma de Ehrlich , Animales , Aspirina/uso terapéutico , Aspirina/farmacología , Aspirina/administración & dosificación , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Femenino , Ratones , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/administración & dosificación
11.
Biochem Pharmacol ; 227: 116423, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996930

RESUMEN

The placenta experiences a low-oxygen stage during early pregnancy. Aspirin is an effective preventative treatment for preeclampsia if applied early in pregnancy. Elevation of fibronectin (FN) level has been reported to be associated with preeclampsia; however, the role of FN in the physiological hypoxic phase and whether aspirin exerts its effect on FN at this hypoxic stage remain unknown. We determined pregnancy outcomes by injecting saline or recombinant FN protein into C57BL/6 pregnant mice and one group of FN-injected mice was fed aspirin. The effects of FN, the underlying pathways on trophoblast biology, and cilia formation under hypoxia were investigated in FN-pretreated or FN-knockdown HTR-8/SVneo cells in a hypoxic chamber (0.1 % O2). Preeclampsia-like phenotypes, including blood pressure elevation and proteinuria, developed in FN-injected pregnant mice. The fetal weight of FN-injected mice was significantly lower than that of non-FN-injected mice (p < 0.005). Trophoblast FN expression was upregulated under hypoxia, which could be suppressed by aspirin treatment. FN inhibited trophoblast invasion and migration under hypoxia, and this inhibitory effect occurred through downregulating ZEB1/2, MMP 9 and the Akt and MAPK signaling pathways. Ciliogenesis of trophoblasts was stimulated under hypoxia but was inhibited by FN treatment. Aspirin was shown to reverse the FN-mediated inhibitory effect on trophoblast invasion/migration and ciliogenesis. In conclusion, FN overexpression induces preeclampsia-like symptoms and impairs fetal growth in mice. Aspirin may exert its suppressive effect on FN upregulation and FN-mediated cell function in the hypoxic stage of pregnancy and therefore provides a preventative effect on preeclampsia development.


Asunto(s)
Aspirina , Fibronectinas , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Preeclampsia , Proteínas Proto-Oncogénicas c-akt , Trofoblastos , Animales , Preeclampsia/metabolismo , Preeclampsia/prevención & control , Preeclampsia/patología , Fibronectinas/metabolismo , Fibronectinas/genética , Femenino , Embarazo , Aspirina/farmacología , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Humanos , Modelos Animales de Enfermedad , Cilios/efectos de los fármacos , Cilios/metabolismo , Cilios/fisiología , Fenotipo , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Hipoxia/metabolismo , Línea Celular
12.
Prostaglandins Other Lipid Mediat ; 174: 106878, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084323

RESUMEN

BACKGROUND: 1.5 million new HIV infections occurred in 2021, suggesting new prevention methods are needed. Inflammation increases the risk for HIV acquisition by attracting HIV target cells to the female genital tract (FGT). In a pilot study, acetylsalicylic acid (ASA/Aspirin) decreased the proportion of FGT HIV target cells by 35 %. However, the mechanism remains unknown. METHODS: Women from Nairobi, Kenya took low-dose ASA (81 mg) daily for 6-weeks. Free oxylipins in the plasma were quantified by high-performance liquid chromatography-tandem mass spectroscopy. RESULTS: Oxylipins from 9 fatty acid substrates were detected, with more than one analyte from 4 substrates reduced post-ASA. Summary analysis found ASA downregulated cyclooxygenase and lipoxygenase but not cytochrome P450 activity with a lower n-6/n-3 oxylipin profile, reflecting reduced inflammation post-ASA. CONCLUSIONS: Inflammation is associated with increased lipoxygenase activity and HIV risk. Our data suggests ASA reduces inflammation through downregulation of oxylipins. Understanding how ASA reduces inflammation may lead to novel HIV prevention approaches.


Asunto(s)
Aspirina , Infecciones por VIH , Oxilipinas , Humanos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Aspirina/farmacología , Adulto , Oxilipinas/metabolismo , Oxilipinas/sangre , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología
13.
Brain Behav Immun ; 121: 142-154, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043348

RESUMEN

BACKGROUND: Sleep deficiencies, such as manifested in short sleep duration or insomnia symptoms, are known to increase the risk for multiple disease conditions involving immunopathology. Inflammation is hypothesized to be a mechanism through which deficient sleep acts as a risk factor for these conditions. Thus, one potential way to mitigate negative health consequences associated with deficient sleep is to target inflammation. Few interventional sleep studies investigated whether improving sleep affects inflammatory processes, but results suggest that complementary approaches may be necessary to target inflammation associated with sleep deficiencies. We investigated whether targeting inflammation through low-dose acetylsalicylic acid (ASA, i.e., aspirin) is able to blunt the inflammatory response to experimental sleep restriction. METHODS: 46 healthy participants (19F/27M, age range 19-63 years) were studied in a double-blind randomized placebo-controlled crossover trial with three protocols each consisting of a 14-day at-home monitoring phase followed by an 11-day (10-night) in-laboratory stay (sleep restriction/ASA, sleep restriction/placebo, control sleep/placebo). In the sleep restriction/ASA condition, participants took low-dose ASA (81 mg/day) daily in the evening (22:00) during the at-home phase and the subsequent in-laboratory stay. In the sleep restriction/placebo and control sleep/placebo conditions, participants took placebo daily. Each in-laboratory stay started with 2 nights with a sleep opportunity of 8 h/night (23:00-07:00) for adaptation and baseline measurements. Under the two sleep restriction conditions, participants were exposed to 5 nights of sleep restricted to a sleep opportunity of 4 h/night (03:00-07:00) followed by 3 nights of recovery sleep with a sleep opportunity of 8 h/night. Under the control sleep condition, participants had a sleep opportunity of 8 h/night throughout the in-laboratory stay. During each in-laboratory stay, participants had 3 days of intensive monitoring (at baseline, 5th day of sleep restriction/control sleep, and 2nd day of recovery sleep). Variables, including pro-inflammatory immune cell function, C-reactive protein (CRP), and actigraphy-estimated measures of sleep, were analyzed using generalized linear mixed models. RESULTS: Low-dose ASA administration reduced the interleukin (IL)-6 expression in LPS-stimulated monocytes (p<0.05 for condition*day) and reduced serum CRP levels (p<0.01 for condition) after 5 nights of sleep restriction compared to placebo administration in the sleep restriction condition. Low-dose ASA also reduced the amount of cyclooxygenase (COX)-1/COX-2 double positive cells among LPS-stimulated monocytes after 2 nights of recovery sleep following 5 nights of sleep restriction compared to placebo (p<0.05 for condition). Low-dose ASA further decreased wake after sleep onset (WASO) and increased sleep efficiency (SE) during the first 2 nights of recovery sleep (p<0.001 for condition and condition*day). Baseline comparisons revealed no differences between conditions for all of the investigated variables (p>0.05 for condition). CONCLUSION: This study shows that inflammatory responses to sleep restriction can be reduced by preemptive administration of low-dose ASA. This finding may open new therapeutic approaches to prevent or control inflammation and its consequences in those experiencing sleep deficiencies. TRIAL REGISTRATION: ClinicalTrials.gov NCT03377543.


Asunto(s)
Aspirina , Estudios Cruzados , Inflamación , Privación de Sueño , Humanos , Masculino , Aspirina/administración & dosificación , Aspirina/farmacología , Adulto , Femenino , Inflamación/metabolismo , Método Doble Ciego , Persona de Mediana Edad , Adulto Joven , Sueño/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis
14.
Environ Pollut ; 359: 124566, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39025292

RESUMEN

Pharmaceuticals are widespread in aquatic environments and might contribute to the prevalence of antibiotic resistance. However, the co-effect of antibiotics and non-antibiotic pharmaceuticals on the gut microbiome of fish is poorly understood. In this study, we characterized the variation of the zebrafish gut microbiome and resistome after exposure to sulfamethoxazole (SMX) and aspirin under different treatments. SMX contributed to the significant increase in the antibiotic resistance genes (ARGs) richness and abundance with 46 unique ARGs and five mobile genetic elements (MGEs) detected. Combined exposure to SMX and aspirin enriched total ARGs abundance and rearranged microbiota under short-term exposure. Exposure time was more responsible for resistome and the gut microbiome than exposure concentrations. Perturbation of the gut microbiome contributed to the functional variation related to RNA processing and modification, cell motility, signal transduction mechanisms, and defense mechanisms. A strong significant positive correlation (R = 0.8955, p < 0.001) was observed between total ARGs and MGEs regardless of different treatments revealing the key role of MGEs in ARGs transmission. Network analysis indicated most of the potential ARGs host bacteria belonged to Proteobacteria. Our study suggested that co-occurrence of non-antibiotics and antibiotics could accelerate the spread of ARGs in gut microbial communities and MGEs played a key role.


Asunto(s)
Antibacterianos , Aspirina , Farmacorresistencia Microbiana , Microbioma Gastrointestinal , Sulfonamidas , Pez Cebra , Pez Cebra/genética , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Sulfonamidas/farmacología , Aspirina/farmacología , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Sulfametoxazol/farmacología , Contaminantes Químicos del Agua , Bacterias/genética , Bacterias/efectos de los fármacos
15.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063181

RESUMEN

This study aimed to compare the biological properties of newly synthesized cements based on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium (Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells (hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model. CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.


Asunto(s)
Aspirina , Fosfatos de Calcio , Cobre , Estroncio , Zinc , Estroncio/química , Estroncio/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Humanos , Animales , Aspirina/farmacología , Aspirina/química , Cobre/química , Zinc/química , Zinc/farmacología , Cementos Dentales/química , Cementos Dentales/farmacología , Biopelículas/efectos de los fármacos , Ensayo de Materiales , Pez Cebra , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Células Madre/efectos de los fármacos , Difracción de Rayos X , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos
16.
Bull Exp Biol Med ; 177(1): 63-67, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38954300

RESUMEN

Compound L-36, a new derivative of 6H-1,3,4-thiadiazine, was studied in in vitro and in vivo experiments. This compound exhibits high antiplatelet and antithrombogenic activity. In in vitro experiments, compound L-36 by its antiplatelet activity (by IC50) was superior to acetylsalicylic acid by 9.4 times. In in vivo experiments, compound L-36 by its ED50 value was close to the comparison drug. On the model of pulmonary artery thrombosis, compound L-36 ensured better survival of experimental animals than acetylsalicylic acid. Morphological studies showed that compound L-36 effectively attenuated the thrombosis processes in the pulmonary tissue induced by intravenous injection of a thrombogenic mixture (epinephrine and collagen).


Asunto(s)
Aspirina , Fibrinolíticos , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Tiadiazinas , Animales , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Tiadiazinas/farmacología , Tiadiazinas/química , Fibrinolíticos/farmacología , Fibrinolíticos/química , Agregación Plaquetaria/efectos de los fármacos , Aspirina/farmacología , Masculino , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Ratas , Arteria Pulmonar/efectos de los fármacos , Colágeno , Epinefrina/farmacología , Ratones , Plaquetas/efectos de los fármacos
17.
Medicina (Kaunas) ; 60(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064554

RESUMEN

Background and Objectives: Malignant melanoma (MM) remains one of the most aggressive cancers worldwide, presenting a limited number of therapeutic options at present. Aspirin (ASA), a broadly used non-steroid anti-inflammatory medicine, has recently emerged as a candidate for repurposing in cancer management, due to its therapeutic potential in the treatment of several neoplasms which include MM. Fisetin (FIS) is a flavonoid phytoestrogen instilled with multispectral pharmacological activities, including a potent anti-melanoma property. The present study aimed to assess the potential improved anti-neoplastic effect resulting from the association of ASA and FIS for MM therapy. Materials and Methods: The study was conducted using the A375 cell line as an experimental model for MM. Cell viability was assessed via the MTT test. Cell morphology and confluence were evaluated using bright-field microscopy. The aspect of cell nuclei and tubulin fibers was observed through immunofluorescence staining. The irritant potential and the anti-angiogenic effect were determined on the chorioallantoic membrane of chicken fertilized eggs. Results: The main findings related herein demonstrated that the ASA 2.5 mM + FIS (5, 10, 15, and 20 µM) combination exerted a higher cytotoxicity in A375 MM cells compared to the individual compounds, which was outlined by the concentration-dependent and massive reduction in cell viability, loss of cell confluence, cell shrinkage and rounding, apoptotic-like nuclear features, constriction and disruption of tubulin filaments, increased apoptotic index, and suppressed migratory ability. ASA 2.5 mM + FIS 20 µM treatment lacked irritant potential on the chorioallantoic membrane and inhibited blood-vessel formation in ovo. Conclusion: These results stand as one of the first contributions presenting the anti-melanoma effect of the ASA + FIS combinatorial treatment.


Asunto(s)
Aspirina , Movimiento Celular , Flavonoides , Flavonoles , Melanoma , Humanos , Aspirina/uso terapéutico , Aspirina/farmacología , Melanoma/tratamiento farmacológico , Flavonoles/farmacología , Flavonoles/uso terapéutico , Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
18.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062933

RESUMEN

This study investigates the impact of acetylsalicylic acid (ASA), also known as aspirin, on adipose tissue-derived stem cells (ASCs), aiming to elucidate its dose-dependent effects on morphology, viability, proliferation, and osteogenic differentiation. Isolated and characterized human ASCs were exposed to 0 µM, 100 µM, 200 µM, 400 µM, 800 µM, 1000 µM, 10,000 µM, and 16,000 µM of ASA in vitro. Cell morphology, viability, and proliferation were evaluated with fluorescent live/dead staining, alamarBlue viability reagent, and CyQUANT® cell proliferation assay, respectively. Osteogenic differentiation under stimulation with 400 µM or 1000 µM of ASA was assessed with alizarin red staining and qPCR of selected osteogenic differentiation markers (RUNX2, SPP1, ALPL, BGLAP) over a 3- and 21-day-period. ASA doses ≤ 1000 µM showed no significant impact on cell viability and proliferation. Live/dead staining revealed a visible reduction in viable cell confluency for ASA concentrations ≥ 1000 µM. Doses of 10,000 µM and 16,000 µM of ASA exhibited a strong cytotoxic and anti-proliferative effect in ASCs. Alizarin red staining revealed enhanced calcium accretion under the influence of ASA, which was macro- and microscopically visible and significant for 1000 µM of ASA (p = 0.0092) in quantification if compared to osteogenic differentiation without ASA addition over a 21-day-period. This enhancement correlated with a more pronounced upregulation of osteogenic markers under ASA exposure (ns). Our results indicate a stimulatory effect of 1000 µM of ASA on the osteogenic differentiation of ASCs. Further research is needed to elucidate the precise molecular mechanisms underlying this effect; however, this discovery suggests promising opportunities for enhancing bone tissue engineering with ASCs as cell source.


Asunto(s)
Tejido Adiposo , Aspirina , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Osteogénesis , Células Madre , Humanos , Aspirina/farmacología , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteopontina/metabolismo , Osteopontina/genética , Osteocalcina/metabolismo , Osteocalcina/genética , Fosfatasa Alcalina/metabolismo , Femenino , Adulto
19.
Phytomedicine ; 132: 155791, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901284

RESUMEN

BACKGROUND: Gastric mucosal injury is a chronic and progressive stomach disease that can be caused by nonsteroidal anti-inflammatory drugs (NSAIDs). Therefore, there is an urgent need to find safe and effective drugs to prevent gastric mucosal injury due to NSAIDs. Cinnamaldehyde (CA) is a bioactive compound extracted from the rhizome of cinnamon and has various pharmacological functions, including anti-inflammatory, analgesic, antiapoptotic, and antioxidant activities. However, the potential pharmacological effect of CA on gastric mucosal injury remains unknown. PURPOSE: The aim of this study was to investigate the protective effects of CA on aspirin-induced gastric mucosal injury and to explore its mechanism of action METHODS: The effect of CA on gastric mucosal injury was investigated in vitro and in vivo, in vitro mouse model of gastric mucosal injury induced by aspirin, in vitro model of GES-1 cell injury by aspirin and Erastin. The mechanism of action of CA was determined using Transcriptomics and bioinformatics. RESULTS: CA exerted its protective effects against gastric mucosal injury by modulating the downstream targets, including mTOR, GSK3ß, and NRF2, via the PI3K/AKT signaling pathway to inhibit autophagy, apoptosis, and ferroptosis in the gastric epithelial cells. Further cellular experiments confirmed that the PI3K/AKT pathway was a key target for CA against gastric mucosal injury. CONCLUSION: This study provides the first evidence of CA, an active compound in cinnamon, possessing therapeutic potential in preventing and treating gastric mucosal injury, with its mechanism involving the regulation of apoptosis, autophagy, and ferroptosis in gastric epithelial cells mediated by the PI3K/AKT signaling pathway.


Asunto(s)
Acroleína , Apoptosis , Aspirina , Autofagia , Ferroptosis , Mucosa Gástrica , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Acroleína/análogos & derivados , Acroleína/farmacología , Animales , Mucosa Gástrica/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Aspirina/farmacología , Apoptosis/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Humanos , Línea Celular , Factor 2 Relacionado con NF-E2/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo
20.
Pregnancy Hypertens ; 37: 101131, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38851168

RESUMEN

OBJECTIVES: To evaluate the impact of aspirin resistance on the incidence of preeclampsia and maternal serum biomarker levels in pregnant individuals at high-risk of preeclampsia receiving low dose aspirin (LDA). STUDY DESIGN: We performed a secondary analysis of a randomized, placebo-controlled trial of LDA (60 mg daily) for preeclampsia prevention in high-risk individuals (N = 524) on pregnancy outcomes and concentrations of PLGF, IL-2, IL-6, thromboxane B2 (TXB2), sTNF-R1 and sTNF-R2 from maternal serum. MAIN OUTCOME MEASURES: LDA-resistant individuals were defined as those having a TXB2 concentration >10 ng/ml or <75 % reduction in concentration at 24-28 weeks after LDA administration. Comparisons of outcomes were performed using a Fisher's Exact Test. Mean concentrations of maternal serum biomarkers were compared using a Student's t-test. Pearson correlation was calculated for all pairwise biomarkers. Longitudinal analysis across gestation was performed using linear mixed-effects models accounting for repeated measures and including BMI and maternal age as covariates. RESULTS: We classified 60/271 (22.1 %) individuals as LDA-resistant, 179/271 (66.1 %) as LDA-sensitive, and 32/271 (11.8 %) as non-adherent. The prevalence of preeclampsia was not significantly different between the LDA and placebo groups (OR = 1.43 (0.99-2.28), p-value = 0.12) nor between LDA-sensitive and LDA-resistant individuals (OR = 1.27 (0.61-2.8), p-value = 0.60). Mean maternal serum IL-2 concentrations were significantly lower in LDA-resistant individuals relative to LDA-sensitive individuals (FDR < 0.05). CONCLUSIONS: These results suggest a potential role for IL-2 in the development of preeclampsia modulated by an individuals' response to aspirin, presenting an opportunity to optimize aspirin prophylaxis on an individual level to reduce the incidence of preeclampsia.


Asunto(s)
Aspirina , Biomarcadores , Resistencia a Medicamentos , Interleucina-2 , Preeclampsia , Humanos , Embarazo , Femenino , Preeclampsia/prevención & control , Preeclampsia/sangre , Aspirina/administración & dosificación , Aspirina/farmacología , Interleucina-2/sangre , Adulto , Biomarcadores/sangre , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA