Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.214
Filtrar
1.
Luminescence ; 39(9): e4893, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254155

RESUMEN

The study investigates the potential of Rhizoclonium hieroglyphicum as a novel source for synthesizing nickel oxide nanoparticles (RH-NiONPs) and evaluates its biological applications. Phytochemicals in the algal extract serve as capping, reducing and stabilizing agent for nickel oxide nanoparticles. The process variables were optimized using BBD based RSM to obtain maximum RH-NiONPs. Characterization of RH-NiONPs using UV-Vis and FT-IR spectroscopy reveals the plasmon resonance peak at 340 nm and the functional groups responsible for reduction and stabilization. XRD confirmed the crystalline nature while the stability and size of the RH-NiONPs were determined by DLS and zeta potential. Toxicity assessments demonstrated the effect of RH-NiONPs against Vigna radiata, Allium cepa and Artemia salina was low. RH-NiONPs revealed significant zone of inhibition against the selected bacteria and fungi. The results of larvicidal activity showed that RH-NiONPs are toxic to 4th instar larvae of Daphnis nerii. Also, RH-NiONPs efficiently decolorized Reactive Violet 13 (92%) under sunlight irradiation and the experimental data well fits to Langmuir isotherm along with pseudo second order kinetic model. The thermodynamic studies enunciate the exothermic and non-spontaneous photocatalytic decolorization of reactive violet 13. Thus, the current study assesses the eco-friendly and cost-effective nature of RH-NiONPs along with its biological applications.


Asunto(s)
Artemia , Nanopartículas del Metal , Níquel , Extractos Vegetales , Níquel/química , Níquel/farmacología , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Nanopartículas del Metal/química , Artemia/efectos de los fármacos , Cebollas/química , Cebollas/efectos de los fármacos , Daphnia/efectos de los fármacos , Vigna/química , Propiedades de Superficie , Larva/efectos de los fármacos , Tamaño de la Partícula , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
2.
Curr Microbiol ; 81(10): 347, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240321

RESUMEN

Management of urinary tract infections (UTI) is a highly challenging process due to the biofilm-forming ability of human-pathogenic bacteria. Here, we designed to fabricate an effective nanogel with a combination of chitosan bio-polymer and nalidixic acid to prevent biofilm-forming bacterial pathogens. Chitosan-coated nalidixic acid nanogel (NA@CS) exhibits outstanding inhibition potential against bacterial strains. In vitro, anti-bacterial analysis methods (well diffusion, colony-forming assay, and anti-biofilm assay) were performed to study the bacterial inhibition potential of prepared nanogel, which reveals that NA@CS nanogel have greater inhibition potential against selected pathogens. The combination of nalidixic acid with chitosan biopolymer decreases the virulence and pathogenicity of biofilm-forming pathogens due to their ability to membrane phospholipids penetration. Furthermore, the fabricated NA@CS nanogel showed reliable in vitro bio-compatibility on L929 fibroblast cells and in vivo compatibility with Artemia salina animal model. Overall, the results demonstrate that NA@CS nanogel could be an effective therapeutic for treating urinary tract infections and urine bladder wound healing.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Ácido Nalidíxico , Nanogeles , Infecciones Urinarias , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control , Infecciones Urinarias/tratamiento farmacológico , Quitosano/química , Quitosano/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Nanogeles/química , Ácido Nalidíxico/farmacología , Biopelículas/efectos de los fármacos , Ratones , Línea Celular , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Humanos , Artemia/efectos de los fármacos , Artemia/microbiología
3.
Narra J ; 4(2): e791, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280285

RESUMEN

Coal plays a crucial role in Indonesia's foreign exchange and East Kalimantan's revenue sharing, yet its environmental impacts, including soil acidification, raises concerns. Reclamation measures involve revegetation with pioneer plants such as Macaranga sp., known for their medicinal properties. However, the pharmacological properties of these plants are influenced by secondary metabolites, which depend on soil parameters such as pH and nutrient levels. The aim of this study was to evaluate the acute toxicity, secondary metabolites, and antioxidant activities of Macaranga tanarius leaf extracts from post-coal mining area (MTPCMA) and non-mining area (MTNMA) alongside soil parameters. Acute toxicity of M. tanarius leaf extracts and soils were assessed using the brine shrimp lethality test (BSLT). Phytochemical screening was done using thin-layer chromatography (TLC), determining total phenolic (TPC) and flavonoid content (TFC). The DPPH radical scavenging assay was used to assess the antioxidant activity. A comparative analysis between MTPCMA and MTNMA was conducted using Student t-test. The data showed no significant difference in toxicity between MTPCMA and MTNMA leaf extracts (LC50 of 100-1000 µg/mL) (p=0.062), and soils from both areas were non-toxic (LC50 of >1000 µg/mL). Although heavy metal concentrations were higher in PCMA than in NMA soil (p<0.001), secondary metabolite compounds and TFC in both extracts were not significantly different (p=0.076). Both extracts contained flavonoids and polyphenols with antioxidant activity and terpenoids without antioxidant activities. The DPPH radical scavenging test suggested insignificant antioxidant activity between MTPCMA and MTNMA extracts (p=0.237). In conclusion, non-toxic soils in post-mining land and insignificant differences between MTPCMA and MTNMA extracts suggest good soil nutrient availability, highlighting the success of land recovery after 10 years of revegetation with M. tanarius.


Asunto(s)
Antioxidantes , Artemia , Extractos Vegetales , Indonesia , Antioxidantes/metabolismo , Animales , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Extractos Vegetales/farmacología , Artemia/efectos de los fármacos , Hojas de la Planta/química , Minas de Carbón , Suelo/química , Pruebas de Toxicidad Aguda , Fitoquímicos/análisis , Fitoquímicos/toxicidad , Flavonoides/análisis , Flavonoides/metabolismo , Metabolismo Secundario
4.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39198017

RESUMEN

Biofilms are responsible for over 60% of nosocomial infections. The focus of this study was to investigate the antioxidant, antibacterial, antibiofilm, and anti-motility activities of Gardenia volkensii, Carissa bispinosa, Peltophorum africanum, and Senna petersiana. Antioxidant activity was evaluated using free radical (DPPH) scavenging and ferric reducing power assays. Antibacterial and antibiofilm activities were evaluated using the broth micro-dilution and the crystal violet assays, respectively. Anti-motility was evaluated using anti-swarming activities, and the brine shrimp lethality assay was used for cytotoxicity. Gardenia volkensii and C. bispinosa acetone extracts had low EC50 values of 9.59 and 9.99 µg ml-1on the free-radical scavenging activity, respectively. All the plant extracts demonstrated broad-spectrum antibacterial activity against Klebsiella pneumoniae, Pseudomonasa aeruginosa, Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus [minimum inhibitory concentration (MIC) < 0.63 mg ml-1]. The initial cell adherence stage of P. aeruginosa and E. coli was the most susceptible stage where sub-MICs resulted in inhibitions >50%. Peltophorum africanum had the least cytotoxic effects. All extracts had anti-motility activity against P. aeruginosa and E. coli. This study showed that not only do the plants have strong antibacterial activity but had noteworthy inhibition (>50%) of initial cell adherence and may be suitable candidates for the treatment of nosocomial pathogens.


Asunto(s)
Antibacterianos , Antioxidantes , Biopelículas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Infección Hospitalaria/microbiología , Artemia/efectos de los fármacos , Bacterias/efectos de los fármacos , Animales , Pseudomonas aeruginosa/efectos de los fármacos
5.
J Hazard Mater ; 478: 135596, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178784

RESUMEN

Although irregularly-shaped label-free microplastics (MPs) are predominantly distributed in the environment, non-destructive analysis of environmentally relevant MPs in organisms is still challenging. The purpose of the study is to suggest in vivo visual evidence of the uptake and effect of environmentally relevant MPs in organism. Transparent irregularly-shaped high-density polyethylene was selected as an environmentally relevant model MP and exposed to brine shrimp (Artemia franciscana). As a result, we suggest the application of SEM/EDX and coherent anti-Stokes Raman scattering (CARS) microspectroscopy as complementary tools to secure in vivo visual evidence of irregularly-shaped unlabeled MPs in living organisms without chemical digestion for biodistribution observations. Biological transmission electron microscopy also provides how ingested MPs physically affects the digestive tract in the brine shrimp which is rarely reported. In terms of environmental implications, this study would advance ecotoxicological research on microplastic pollution by providing a cutting-edge tool for investigating the bioavailability and ecotoxicity of environmentally relevant MPs in ecosystems.


Asunto(s)
Artemia , Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Artemia/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/farmacocinética , Polietileno/toxicidad , Polietileno/química , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Espectrometría Raman , Microscopía Electrónica de Transmisión
6.
Int J Biol Macromol ; 278(Pt 3): 134893, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168213

RESUMEN

Clinacanthus nutans (C. nutans) is a plant in tropical Asia with proven biological activities. The optimized extraction method of C. nutans crude polysaccharide (CNP) uses water in the presence of an ultrasound-assisted mechanical method (UL_CNP). However, the use of UL_CNP for the synthesis and optimization of silver nanoparticles (AgNP), particularly their anticancer and photocatalytic properties, remains unexplored. Hence, this research aimed to employ a green method using UL_CNP and silver nitrate to produce AgNP (UL_AgNP) with a small size and assess its potential toxicity, anticancer, and photocatalytic activities. The synthesis condition was optimized using the Box-Behnken design method. The synthesized UL_AgNP showed the surface plasmon resonance peak at 458 nm. The optimized synthesis condition produced spherically shaped UL_AgNP with a size of 5.21 ± 1.92 nm and a zeta potential of -26.33 ± 0.93 mV. An X-ray diffraction analysis exhibited intense Bragg's reflection peaks at (111), (200), (220), and (311), having a face-centered cubic structure of AgNP. Attenuated total reflectance-Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy further confirmed the presence of silver in the synthesized UL_AgNP. The brine shrimp lethality test of UL_AgNP reported a lethal concentration 50 value of <7.8 µg/mL after 24 h. The UL_AgNP exhibited antiproliferative activity against MCF-7 cells with a half-maximal inhibitory concentration value of 4.96 ± 0.31 µg/mL by inducing S-phase cell cycle arrest, apoptotic effect, and reduction of cell migration. Furthermore, UL_AgNP proved its efficient photocatalytic activity against methylene blue dye (50.22 % ± 0.06 %, after 10 min at a concentration of 50 µg/mL). Therefore, the UL_AgNP exhibited promising antiproliferative activity against MCF-7 cells, highlighting their potential as a therapeutic agent. Further investigations are needed to elucidate the precise mechanism of their action.


Asunto(s)
Acanthaceae , Tecnología Química Verde , Nanopartículas del Metal , Microondas , Extractos Vegetales , Polisacáridos , Plata , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Polisacáridos/química , Polisacáridos/farmacología , Humanos , Acanthaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Artemia/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-39087887

RESUMEN

Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.


Asunto(s)
Artemia , Ecotoxicología , Pruebas de Mutagenicidad , Artemia/efectos de los fármacos , Animales , Daño del ADN , Contaminantes Químicos del Agua/toxicidad , Mutágenos/toxicidad
8.
BMC Complement Med Ther ; 24(1): 301, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143605

RESUMEN

BACKGROUND: In recent years, antibiotic resistance has emerged as a global health concern in bacterial infections such as urinary tract infections (UTIs). Uropathogenic Escherichia coli is the most frequent organism responsible for both simple and complex UTIs. Staphylococcus aureus and Pseudomonas aeruginosa are frequently associated with complicated UTIs. Sri Lanka has significant resources of medicinal plants used to cure UTIs in Ayurvedic and traditional medicine. METHODS: Agar well diffusion and broth microdilution methods were used to determine the antibacterial activity of the methanolic extract of ten medicinal plants against P. aeruginosa ATCC27853, S.aureus ATCC25923, E.coli ATCC25922 and their UTI positive strains extracted from positive culture plates. As a preliminary toxicity assay, the Brine Shrimp Lethality Assay (BSLA) was used to determine its cytotoxicity. RESULTS: The methanolic fruits extract of P. emblica demonstrated the highest antibacterial activity against both E. coli ATCC25922 and E. coli UTI-positive strains. B. diffusa roots extract exhibited the highest activity against S. aureus ATCC25923, while T. chebula fruits extract showed the highest activity against the S. aureus UTI-positive strain. T. involucrata roots extract displayed the highest activity against P. aeruginosa ATCC27853, and Z. officinale rhizomes extract showed the highest activity against the P. aeruginosa UTI-positive strain. Moreover, the plant mixture showed the most substantial antibacterial effect against P. aeruginosa ATCC27853. However, the methanolic seed extract of C. melo did not exhibit any antimicrobial effects against the selected organisms. All plant material, including the plant mixture, showed cytotoxicity according to the BSLA. CONCLUSION: All the methanolic extracts including P. emblica fruits, O. tenuiflorum whole plant, T. chebula fruits, Z. officinale rhizome, T. terrestris roots, T. involucrata roots, A. lanata whole plant. B. diffusa roots and A. falcatus roots showed antimicrobial effects against selected strains except C. melo seed extract. The results of the present study evidently supports the traditional and ayurvedic use of these plants for the treatment of UTIs. This paves the way for another praise for new plant-based therapeutic product development for the treatment of UTIs. However, further toxicity studies are needed for medicinal dose determination.


Asunto(s)
Antibacterianos , Artemia , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plantas Medicinales , Pseudomonas aeruginosa , Animales , Artemia/efectos de los fármacos , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Staphylococcus aureus/efectos de los fármacos , Sri Lanka
9.
Ecotoxicol Environ Saf ; 282: 116760, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029223

RESUMEN

The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.


Asunto(s)
Artemia , Poliestirenos , Titanio , Contaminantes Químicos del Agua , Animales , Artemia/efectos de los fármacos , Titanio/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/toxicidad , Adsorción , Microplásticos/toxicidad
10.
J Tradit Chin Med ; 44(4): 804-712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066541

RESUMEN

OBJECTIVE: To evaluate phytochemicals and in vitro biological potential of flowers, leaves and stem extracts of Rosa arvensis. METHODS: Presence of twenty secondary metabolites was confirmed and then phenolic and flavonoid contents were quantified spectrophotometrically. Fourier Transform Infrared spectroscopy was conducted to ascertain functional groups and antioxidant potential was examined using 2,2-diphenyl-1-picrylhydrazyl scavenging activity, total antioxidant capacity and total reducing power assays. Human erythrocytes were used to assess anti-hemolytic activity and five bacterial strains were examined to determine antibacterial potential of plant extracts. Radish seeds were used to perform phytotoxic activity and cytotoxic potential was evaluated via brine shrimps and PC3 cell lines. RESULTS: Highest phenolic contents were detected in the methanolic extract of Rosa arvensis flower (RAFM) [(151.635 ± 0.005) gallic acid equivalent mg/g] and highest flavonoid contents in the chloroform leaf extract (RALC) [(108.228 ± 0.004) quercetin equivalent mg/g]. Fourier-transform infrared spectroscopy analysis showed the presence of wide range of functional groups. The antioxidant assays indicated highest DPPH scavenging activity [IC50 (23.5 ± 0.6) µg/mL] in the methanolic stem extract (RASM), highest total antioxidant capacity [(265.1 ± 0.9) µg/mL] in RAFM and highest reducing potential [(209.9 ± 0.6) µg/mL] in leaf extract (RALM). Highest anti-hemolytic activity [(90.0 ± 0.5) µg/mL] was recorded in RAFM and brine shrimp cytotoxicity potential [(52.3 ± 0.3) µg/mL] in RASM. The antimicrobial activity was detected highest [(21.1 ± 0.5) mm inhibition zones] in RALM against Streptococcus aureus. In the end, anti-inflammatory and anti-cancer activity results depicted less than 50 % inhibition in the methanolic extracts. CONCLUSIONS: Our findings will be helpful in designing pharmaceutical regimens and therefore, more studies can be recommended to isolate and characterize compounds associated with the biological activities of Rosa arvensis.


Asunto(s)
Antiinflamatorios , Antioxidantes , Flores , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Hojas de la Planta/química , Flores/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Tallos de la Planta/química , Hemólisis/efectos de los fármacos , Rosa/química , Artemia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química
11.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065009

RESUMEN

Volatile oils or essential oils (EOs) were extracted from three V. sebifera samples (labeled as A, B, and C) in September 2018 and February 2019; the extraction process involved hydrodistillation of the leaves. The chemical compositions of the EOs were analyzed using gas chromatography-mass spectrometry (GC/MS). The volatile components were identified by comparing their retention indices and mass spectra with standard substances documented in the literature (ADAMS). The antioxidant activity of the EOs was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), while their toxicity was assessed using Artemia salina Leach. Molecular docking was utilized to examine the interaction between the major constituents of V. sebifera EO and acetylcholinesterase (AChE), a molecular target linked to toxicity in A. salina models. The EO obtained from specimen A, collected in September 2018, was characterized by being primarily composed of (E,E)-α-farnesene (47.57%), (E)-caryophyllene (12.26%), and α-pinene (6.93%). Conversely, the EO from specimen A, collected in February 2019, was predominantly composed of (E,E)-α-farnesene (42.82%), (E)-caryophyllene (16.02%), and bicyclogermacrene (8.85%), the EO from specimen B, collected in September 2018, primarily contained (E,E)-α-farnesene (47.65%), (E)-caryophyllene (19.67%), and α-pinene (11.95%), and the EO from the leaves collected in February 2019 was characterized by (E,E)-α-farnesene (23.57%), (E)-caryophyllene (19.34%), and germacrene D (7.33%). The EO from the leaves collected in September 2018 contained (E,E)-α-farnesene (26.65%), (E)-caryophyllene (15.7%), and germacrene D (7.72%), while the EO from the leaves collected in February 2019 was primarily characterized by (E,E)-α-farnesene (37.43%), (E)-caryophyllene (21.4%), and α-pinene (16.91%). Among these EOs, sample B collected in February 2019 demonstrated the highest potential for inhibiting free radicals, with an inhibition rate of 34.74%. Conversely, the EOs from specimen A exhibited the highest toxic potentials, with an lethal concentration 50 (LC50) value of 57.62 ± 1.53 µg/mL, while specimen B had an LC50 value of 74.72 ± 2.86 µg/mL. Molecular docking results suggested that hydrophobic interactions significantly contributed to the binding of the major compounds in the EO from sample B to the binding pocket of AChE.


Asunto(s)
Antioxidantes , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Animales , Artemia/efectos de los fármacos , Simulación del Acoplamiento Molecular , Hojas de la Planta/química , Acetilcolinesterasa/metabolismo
12.
Sci Rep ; 14(1): 16590, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025896

RESUMEN

Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.


Asunto(s)
Antifúngicos , Artemia , Antifúngicos/farmacología , Antifúngicos/química , Animales , Humanos , Artemia/efectos de los fármacos , Células Hep G2 , Bacillus/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/toxicidad , Metabolismo Secundario , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Bacillus cereus/efectos de los fármacos , Bacillus cereus/metabolismo , Pruebas de Sensibilidad Microbiana
13.
Artículo en Inglés | MEDLINE | ID: mdl-38972623

RESUMEN

Polystyrene polymers cause severe toxicity to aquatic animals. However, the process and mechanisms of innate immunity of invertebrates living at the bottom of the food chain to these pollutants remain unclear. In this study, the blood system responses of zooplankton Artemia were assessed through in vivo and in vitro exposure to amino-modified polystyrene nanoplastics (PS-NH2 NPs). The results indicated that the LC50 values of PS-NH2 NPs were 1.09 µg·mL-1 over 48 h and 0.42 µg·mL-1 over 7 d. Based on the five hemocyte subpopulations identified in Artemia, in vitro exposure assays revealed that phagocytosis was performed by plasmocytes and granulocytes with phagocytic rate of 22.64 %. TEM analysis further showed that PS-NH2 NPs caused cytoplasm vacuolization, swollen mitochondria, and lipid processing disorder. Gene expression pattern results demonstrated that Spatzle, Tollip, Hsp70, Hsp90, Casp8, API5and Pxn were significantly upregulated upon acute and chronic exposure (p < 0.05), while chronic exposure could induce significantly upregulation of ProPO (p < 0.05). Moreover, PS-NH2 NPs exposure remarkably varied the hemolymph microbiota and hemogram, particularly by increasing the proportion of adipohemocytes and phagocytes (p < 0.05). Our findings suggest that PS-NH2 NPs induce different responses in Artemia hemocyte, as primarily reflected by phagocytic processes, expression of immune and apoptosis relating genes, cell fates, hemogram and hemolymph microbiota variations. These findings support the possibility of using Artemia hemocytes as bioindicator to estimate nanoplastics pollution, thus contributing to hematological toxicity research in response to nanoplastics.


Asunto(s)
Artemia , Hemocitos , Nanopartículas , Fagocitosis , Poliestirenos , Animales , Hemocitos/efectos de los fármacos , Hemocitos/inmunología , Poliestirenos/toxicidad , Artemia/efectos de los fármacos , Nanopartículas/toxicidad , Fagocitosis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Inmunidad Innata/efectos de los fármacos
14.
Sci Total Environ ; 948: 174758, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39025152

RESUMEN

Over the past decade, deep eutectic systems (DES) have become popular, yet their potential toxicity to living organisms is not well understood. This study fills this gap by examining the toxicity, antibacterial activity and biodegradability of p-toluenesulfonic acid monohydrate (PTSA)-based DESs prepared from ammonium or phosphonium salts. Brine shrimp assays revealed varying toxicity levels of PTSA and salts. Allyltriphenylphosphonium bromide showing the longest survival time among all tested salts while PTSA exhibited a significantly longer duration of cell survival compared to other hydrogen bond donors. PTSA and ammonium salts (N,N-diethylethanolammonium chloride and choline chloride) as individual components showed non-toxic behavior for Gram-negative and Gram-positive bacteria while different PTSA-based DESs showed significant inhibition zones. Fish acute ecotoxicity tests indicated moderately toxicity for individual components and DESs, though higher concentrations increased fish mortality, highlighting the need for careful handling and disposal of PTSA-based DESs to the environment. Biodegradability analyses found all tested DESs to be readily biodegradable and it was reported that, DES 3 prepapred form PTSA and choline chloride has the highest biodegradability level. Notably, all tested DESs showed over 60 % biodegradability after 28 days. This groundbreaking study explores PTSA-based DESs, highlighting their biodegradability and potential use as antibacterial agents. Results revealed that PTSA as individual component is much better from toxicity point of view in comparison with PTSA-based DESs for any further industrial applications.


Asunto(s)
Artemia , Biodegradación Ambiental , Disolventes Eutécticos Profundos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Animales , Artemia/efectos de los fármacos , Disolventes Eutécticos Profundos/toxicidad
15.
Environ Res ; 258: 119449, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901814

RESUMEN

In the current study, Coccinia grandis fruit extract was used to synthesize calcium oxide nanoparticles (CaO NPs) in an economical and environmentally friendly manner. UV-Vis spectroscopy and Fourier transform infrared spectroscopy revealed that the phytoconstituents found in Coccinia grandis fruit extract facilitated the production of CaO NPs by acting as better stabilizing, biodegradable, and reducing agents. The synthesized CG-CaO NPs were also tested for photocatalytic activity in the breakdown of selective dyes such as methyl red, methyl orange, and methylene blue in the presence of sunlight. The degradation percentage was determined by analyzing the color removal rates for all dye components. After 6 h of reaction, the IC50 values for methyl red, methyl orange, as well as methylene blue dyes were 73, 107, and 133, respectively. The CG-CaO NPs were further evaluated for their antimicrobial activity against specific bacteria and fungi using the agar-well diffusion method. 200 µg/mL CG-CaO NPs inhibited Aspergillus niger, Escherichia coli, Salmonella typhi, Streptococcus mutans, and Staphylococcus aureus at zones of 13, 14, 16, 14, and 15 mM, respectively. Further checkerboard assay confirmed the antagonism effect with gentamicin. Also, Artemia salina toxicity assay showed that the LD50 value of CaO NPs was 400 µg/mL of CaO NPs. The findings confirm that Coccinia grandis-mediated CG-CaO NPs can be used effectively in antimicrobial and environmental settings.


Asunto(s)
Compuestos de Calcio , Colorantes , Cucurbitaceae , Nanopartículas , Óxidos , Extractos Vegetales , Óxidos/química , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Nanopartículas/química , Cucurbitaceae/química , Colorantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Compuestos Azo/química , Animales , Artemia/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Catálisis , Frutas/química , Bacterias/efectos de los fármacos
16.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891841

RESUMEN

Ailanthus altissima, an invasive plant species, exhibits pharmacological properties, but also some allergic effects on humans. This study aimed to evaluate the potential toxicity of A. altissima leaves, using a complex approach towards different organisms. The ecotoxic impact of a crude extract was investigated on seeds germination and brine shrimp lethality. Cytotoxicity was studied in vitro using non-target (haemolysis, liposomal model, fibroblast), and target (cancer cells) assays. Leaf extract at 1000 µg/mL significantly inhibited wheat and tomato germination, while no significant effects were found on parsley germination. A slight stimulatory effect on wheat and tomato germination was found at 125 µg/mL. In a brine shrimp-test, the extract showed a low toxicity at 24 h post-exposure (LC50 = 951.04 ± 28.26 µg/mL), the toxic effects increasing with the exposure time and extract concentration. Leaf extract caused low hematotoxicity. The extract was biocompatible with human gingival fibroblasts. No anti-proliferative effect was found within the concentration range of 10-500 µg/mL on malignant melanoma (MeWo) and hepatocellular carcinoma (HepG2). In a liposomal model-test, the extract proved to possess low capability to alter the eukaryotic cell-mimicking membranes within the tested concentration range. Given the low to moderate toxicity on tested organisms/cells, the A. altissima autumn leaves may find useful applications.


Asunto(s)
Ailanthus , Artemia , Extractos Vegetales , Hojas de la Planta , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ailanthus/química , Animales , Hojas de la Planta/química , Humanos , Artemia/efectos de los fármacos , Germinación/efectos de los fármacos , Células Hep G2 , Semillas/química , Fibroblastos/efectos de los fármacos , Línea Celular Tumoral
17.
Chemosphere ; 362: 142718, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945219

RESUMEN

Plastic pollution in aquatic ecosystems is increasing and plastic particles may adsorb and transport a diverse array of contaminants, thereby increasing their bioavailability to biota. This investigation aimed to evaluate the effects of varying polyethylene microplastics (PE MPs) and naphthalene (NAPH) concentrations on the survival and feeding rates of the model organism, Artemia salina, as well as NAPH adsorption to microplastics at different salinity levels (17, 75, 35.5 and 52.75 g L-1) under selected climate change scenarios. Survival (48 h) and feeding rates (6 h) of A. salina were also monitored, revealing that the presence of higher PE and NAPH concentrations lead to decreased survival rates while also increasing the number and size of microplastic particles in the saline solutions. Higher PE concentrations negatively affected A. salina feeding rates and NAPH concentrations were positively correlated with particle number and size, as well as with NAPH and PE adsorption rates in solution. Our findings demonstrate that the co-occurrence of microplastics and NAPH in aquatic environments can result in detrimental zooplankton survival and feeding rate effects. Furthermore, this interaction may contribute to the accumulation of these contaminants in the environment, highlighting the need to simultaneously monitor and mitigate the presence of microplastics and organic pollutants, like NAPH, in aquatic environments.


Asunto(s)
Artemia , Microplásticos , Naftalenos , Polietileno , Salinidad , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Polietileno/toxicidad , Polietileno/química , Contaminantes Químicos del Agua/toxicidad , Artemia/efectos de los fármacos , Adsorción , Naftalenos/toxicidad , Naftalenos/química
18.
Dalton Trans ; 53(29): 12080-12089, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869456

RESUMEN

The new water-soluble di-anionic bi-sodium salt of tetracycline (TC), an antibiotic in clinical use, with the formula {[TC]2-[Na+(MeOH)(H2O)] [Na+]·(H2O)}n (TCNa) was synthesized. The compound was characterized by m.p., attenuated total reflectance-Fourier transform infra-red (ATR-FTIR) spectroscopy, and ultraviolet (UV) and proton nuclear magnetic resonance (1H NMR) spectroscopy in the solid state and in solution. The molecular weight (MW) was determined by cryoscopy. The crystal structure of TCNa was also determined by X-ray crystallography. The antibacterial activity of TCNa was evaluated against the bacterial species Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) by means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and inhibition zones (IZs). Moreover, the ability of the compound to eradicate biofilm formation was also evaluated. The results are compared with those obtained for the commercially available drug TCH2. The in vitro and in vivo toxicities of TCNa were tested against human corneal epithelial cells (HCECs) and Artemia salina.


Asunto(s)
Antibacterianos , Artemia , Pruebas de Sensibilidad Microbiana , Solubilidad , Tetraciclina , Agua , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Humanos , Artemia/efectos de los fármacos , Agua/química , Animales , Tetraciclina/farmacología , Tetraciclina/química , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Sales (Química)/química , Sales (Química)/farmacología , Staphylococcus epidermidis/efectos de los fármacos , Cristalografía por Rayos X , Aniones/química , Aniones/farmacología , Sodio/química , Estructura Molecular
19.
Microb Pathog ; 193: 106758, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906493

RESUMEN

The present study explores the bioinspired green synthesis of zinc oxide nanoparticles (ZnONPs) using marine Streptomyces plicatus and its potent antibacterial, antibiofilm activity against dental caries forming Streptococcus mutans MTCC and S. mutans clinical isolate (CI), cytotoxicity against oral KB cancer cells, hemolysis against blood erythrocytes and artemia toxicity. The bioinspired ZnONPs showed a distinctive absorption peak at 375 nm in UV-Vis spectra, the FT-IR spectra divulged the active functional groups, and XRD confirmed the crystalline nature of the nanoparticles with an average grain size of 41.76 nm. SEM analysis evidenced hexagonal morphology, and EDX spectra affirmed the presence of zinc. The ZnONPs exerted higher antagonistic activity against S. mutans MTCC (Inhibitory zone: 19 mm; MIC: 75 µg/ml) than S. mutans CI (Inhibitory zone: 17 mm; MIC: 100 µg/ml). Results of biofilm inhibitory activity showed a concentration-dependent reduction with S. mutans MTCC (15 %-95 %) more sensitive than S. mutans CI (13 %-89 %). The 50 % biofilm inhibitory concentration (BIC50) of ZnONPs against S. mutans MTCC was considerably lower (71.76 µg/ml) than S. mutans CI (78.13 µg/ml). Confocal Laser Scanning Microscopic visuals clearly implied that ZnONPs effectively distorted the biofilm architecture of both S. mutans MTCC and S. mutans CI. This was further bolstered by a remarkable rise in protein leakage (19 %-85 %; 15 %-77 %) and a fall in exopolysaccharide production (34 mg-7 mg; 49 mg-12 mg). MTT cytotoxicity of ZnONPs recorded an IC50 value of 22.06 µg/ml against KB cells. Acridine orange/ethidium bromide staining showed an increasing incidence of apoptosis in KB cells. Brine shrimp cytotoxicity using Artemia salina larvae recorded an LC50 value of 78.41 µg/ml. Hemolysis assay substantiated the biocompatibility of the ZnONPs. This study underscores the multifaceted application of bioinspired ZnONPs in dentistry.


Asunto(s)
Antibacterianos , Artemia , Biopelículas , Hemólisis , Pruebas de Sensibilidad Microbiana , Streptococcus mutans , Streptomyces , Óxido de Zinc , Streptomyces/química , Streptomyces/metabolismo , Óxido de Zinc/farmacología , Óxido de Zinc/química , Biopelículas/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Artemia/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Humanos , Hemólisis/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Nanopartículas/química , Tecnología Química Verde , Espectroscopía Infrarroja por Transformada de Fourier , Línea Celular Tumoral , Organismos Acuáticos/química , Difracción de Rayos X
20.
Ecotoxicol Environ Saf ; 281: 116586, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880006

RESUMEN

Sunscreens contain several substances that cause damage to species where they are disposed. New formulations have been created to prevent such marine environmental damages. One promising formulation is the microencapsulated sunscreen. The objective of this study was to evaluate the possible safety to marine environment of one microencapsulated sunscreen formulation. The animal model Artemia salina (cists and nauplii) was tested with two sunscreen formulations (microencapsulated and non-microencapsulated) and toxicological, behavioral, morphological parameters as well as biochemical assays (lipoperoxidation and carbonylation tests) were analyzed. Results showed that microencapsulated sunscreen impeded some toxic effects caused by the release of the substances within the microcapsule in the highest concentration, reestablishing the mortality and hatching rates to control levels, while removing the sunscreen microcapsule by adding 1 % DMSO reduced the cyst hatching rate, increasing the nauplii mortality rate and decreased locomotor activity in higher concentrations. Finally, nauplii with 24 hours of life and exposed to sunscreen without the microcapsule showed an increase in mitochondrial activity (assessed at 48 hours after exposure) and presented malformations when exposed to the highest concentration non-microencapsulated concentration (assessed by SEM at 72 hours after exposure), when compared to the control group. These results together allow us to conclude that the microencapsulation process of a sunscreen helps protecting A. salina from the harmful effects of higher concentrations of said sunscreens. However, long-term studies must be carried out as it is not known how long a microencapsulated sunscreen can remain in the environment without causing harmful effects to the marine ecosystem and becoming an ecologically relevant pollutant.


Asunto(s)
Artemia , Composición de Medicamentos , Protectores Solares , Contaminantes Químicos del Agua , Protectores Solares/toxicidad , Protectores Solares/química , Animales , Artemia/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Conducta Animal/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA