Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
PLoS One ; 19(10): e0303004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39365803

RESUMEN

Methanogenic communities of hypersaline microbial mats of Guerrero Negro, Baja California Sur, Mexico, have been recognized to be dominated by methylotrophic methanogens. However, recent studies of environmental samples have evidenced the presence of hydrogenotrophic and methyl-reducing methanogenic members, although at low relative abundances. Physical and geochemical conditions that stimulate the development of these groups in hypersaline environments, remains elusive. Thus, in this study the taxonomic diversity of methanogenic archaea of two sites of Exportadora de Sal S.A was assessed by mcrA gene high throughput sequencing from microcosm experiments with different substrates (both competitive and non-competitive). Results confirmed the dominance of the order Methanosarcinales in all treatments, but an increase in the abundance of Methanomassiliiccocales was also observed, mainly in the treatment without substrate addition. Moreover, incubations supplemented with hydrogen and carbon dioxide, as well as the mixture of hydrogen, carbon dioxide and trimethylamine, managed to stimulate the richness and abundance of other than Methanosarcinales methanogenic archaea. Several OTUs that were not assigned to known methanogens resulted phylogenetically distributed into at least nine orders. Environmental samples revealed a wide diversity of methanogenic archaea of low relative abundance that had not been previously reported for this environment, suggesting that the importance and diversity of methanogens in hypersaline ecosystems may have been overlooked. This work also provided insights into how different taxonomic groups responded to the evaluated incubation conditions.


Asunto(s)
Metano , Metano/metabolismo , México , Salinidad , Filogenia , Biodiversidad , Hidrógeno/metabolismo , Dióxido de Carbono/metabolismo , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Microbiota , Metilaminas/metabolismo
2.
Microbiome ; 12(1): 176, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39300577

RESUMEN

BACKGROUND: The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile. RESULTS: The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO42--S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota. CONCLUSIONS: The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.


Asunto(s)
Archaea , Bacterias , Variación Genética , Sedimentos Geológicos , Lagos , Lagos/microbiología , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Sedimentos Geológicos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Chile , Filogenia , Microbiota , Extremófilos/metabolismo , Extremófilos/genética , Extremófilos/clasificación , ARN Ribosómico 16S/genética
3.
Genes (Basel) ; 15(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39336786

RESUMEN

From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.


Asunto(s)
Archaea , Evolución Molecular , ARN , Archaea/genética , Bacterias/genética , Código Genético , Conformación de Ácido Nucleico , ARN/genética , ARN Bacteriano/genética
4.
Environ Sci Pollut Res Int ; 31(42): 54713-54728, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39210225

RESUMEN

This study aimed to evaluate the impact of long-term liquid dairy manure (LDM) application on the activity and structure of soil bacterial and archaea communities in two cropping seasons over 1 year of a no-till crop rotation system. The experiment was run in a sandy clay loam texture Oxisol, in Brazil, including LDM doses of 60, 120, and 180 m3 ha-1 year-1, installed in 2005. Soil sampling was conducted during spring 2018 and autumn 2019 at 0-10-cm depth. Microbial biomass carbon and nitrogen, 16S rRNA gene sequencing, microbial respiration and quotient were performed. Over the 14-year period, LDM application increased soil microbial community activity. Analysis of 16S rRNA gene sequencing revealed dominance by Proteobacteria, Acidobacteria, and Actinobacteria phyla (67% in spring and 70% in autumn). Genera Pirulla and Nitrososphaera showed enrichment at LDM doses of 120 and 180 m3 ha-1 year-1 doses, respectively. During spring, following black oat cropping, shifts in the relative abundance of Bacteroidetes, Proteobacteria, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Chloroflexi, Actinobacteria, and AD3 phyla were observed due to LDM application, correlating with soil chemical indicators such as pH, K, Ca, Mn, and Zn. Our findings indicate that plant development strongly influences microbial community composition, potentially outweighing the impact of LDM. Our findings indicate that the application of liquid dairy manure alters the soil bacterial activity and community; however, this effect depends on the developing plant.


Asunto(s)
Archaea , Bacterias , Estiércol , Microbiología del Suelo , Suelo , Estiércol/microbiología , Suelo/química , ARN Ribosómico 16S , Brasil , Agricultura/métodos , Industria Lechera
5.
Nature ; 633(8029): 365-370, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39169192

RESUMEN

The nitrogen isotopic composition of sedimentary rocks (δ15N) can trace redox-dependent biological pathways and early Earth oxygenation1,2. However, there is no substantial change in the sedimentary δ15N record across the Great Oxidation Event about 2.45 billion years ago (Ga)3, a prominent redox change. This argues for a temporal decoupling between the emergence of the first oxygen-based oxidative pathways of the nitrogen cycle and the accumulation of atmospheric oxygen after 2.45 Ga (ref. 3). The transition between both states shows strongly positive δ15N values (10-50‰) in rocks deposited between 2.8 Ga and 2.6 Ga, but their origin and spatial extent remain uncertain4,5. Here we report strongly positive δ15N values (>30‰) in the 2.68-Gyr-old shallow to deep marine sedimentary deposit of the Serra Sul Formation6, Amazonian Craton, Brazil. Our findings are best explained by regionally variable extents of ammonium oxidation to N2 or N2O tied to a cryptic oxygen cycle, implying that oxygenic photosynthesis was operating at 2.7 Ga. Molecular oxygen production probably shifted the redox potential so that an intermediate N cycle based on ammonium oxidation developed before nitrate accumulation in surface waters. We propose to name this period, when strongly positive nitrogen isotopic compositions are superimposed on the usual range of Precambrian δ15N values, the Nitrogen Isotope Event. We suggest that it marks the earliest steps of the biogeochemical reorganizations that led to the Great Oxidation Event.


Asunto(s)
Archaea , Sedimentos Geológicos , Ciclo del Nitrógeno , Nitrógeno , Oxígeno , Compuestos de Amonio/metabolismo , Compuestos de Amonio/análisis , Atmósfera/química , Brasil , Sedimentos Geológicos/química , Historia Antigua , Nitrógeno/metabolismo , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Oxígeno/análisis , Fotosíntesis , Archaea/metabolismo , Nitratos/análisis , Nitratos/metabolismo , Biología Marina
6.
Microb Biotechnol ; 17(8): e70000, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39160605

RESUMEN

Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.


Asunto(s)
Metano , Oxidorreductasas , Oxigenasas , Proteínas Recombinantes , Metano/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxidación-Reducción , Anaerobiosis , Aerobiosis , Archaea/enzimología , Archaea/genética , Archaea/metabolismo
7.
Environ Microbiol Rep ; 16(4): e70000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39189551

RESUMEN

Despite recent advances in understanding the role of microorganisms in plant holobiont metabolism, physiology, and fitness, several relevant questions are yet to be answered, with implications for ecology, evolution, and sustainable agriculture. This article explores some of these questions and discusses emerging research areas in plant microbiomes. Firstly, it emphasizes the need to move beyond taxonomic characterization towards understanding microbial functions within plant ecosystems. Secondly, controlling methodological biases and enhancing OMICS technologies' standardization is imperative for a deeper comprehension of plant-microbiota interactions. Furthermore, while plant microbiota research has primarily centred on bacteria and fungi, other microbial players such as archaea, viruses, and microeukaryotes have been largely overlooked. Emerging evidence highlights their presence and potential roles, underscoring the need for thorough assessments. Future research should aim to elucidate the ecological microbial interactions, their impact on plant performance, and how the plant context shapes microbial community dynamics. Finally, a discussion is provided on how the multiple layers of abiotic and biotic factors influencing the spatiotemporal dynamics of plant-microbiome systems require in-depth attention. Examples illustrate how synthetic communities and computational methods such as machine learning and artificial intelligence provide alternatives to tackle these challenges and analyse the plant holobiont as a complex system.


Asunto(s)
Bacterias , Microbiota , Plantas , Plantas/microbiología , Bacterias/genética , Bacterias/clasificación , Hongos/genética , Hongos/clasificación , Hongos/fisiología , Archaea/clasificación , Archaea/genética , Ecosistema
8.
PeerJ ; 12: e17900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157765

RESUMEN

The activities of microbiomes in river sediments play an important role in sustaining ecosystem functions by driving many biogeochemical cycles. However, river ecosystems are frequently affected by anthropogenic activities, which may lead to microbial biodiversity loss and/or changes in ecosystem functions and related services. While parts of the Atlantic Forest biome stretching along much of the eastern coast of South America are protected by governmental conservation efforts, an estimated 89% of these areas in Brazil are under threat. This adds urgency to the characterization of prokaryotic communities in this vast and highly diverse biome. Here, we present prokaryotic sediment communities in the tropical Juliana River system at three sites, an upstream site near the river source in the mountains (Source) to a site in the middle reaches (Valley) and an estuarine site near the urban center of Ituberá (Mangrove). The diversity and composition of the communities were compared at these sites, along with environmental conditions, the former by using qualitative and quantitative analyses of 16S rRNA gene amplicons. While the communities included distinct populations at each site, a suite of core taxa accounted for the majority of the populations at all sites. Prokaryote diversity was highest in the sediments of the Mangrove site and lowest at the Valley site. The highest number of genera exclusive to a given site was found at the Source site, followed by the Mangrove site, which contained some archaeal genera not present at the freshwater sites. Copper (Cu) concentrations were related to differences in communities among sites, but none of the other environmental factors we determined was found to have a significant influence. This may be partly due to an urban imprint on the Mangrove site by providing organic carbon and nutrients via domestic effluents.


Asunto(s)
Sedimentos Geológicos , ARN Ribosómico 16S , Ríos , Brasil , Ríos/microbiología , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bosques , Estuarios , Biodiversidad , Archaea/genética , Archaea/clasificación , Archaea/aislamiento & purificación , Microbiota
9.
Braz J Microbiol ; 55(3): 2321-2334, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38874746

RESUMEN

Puga geothermal geyser and surrounding area, located in the Himalayan Geothermal Belt of the Trans-Himalayan Plateau in Ladakh, India, are very geographically isolated and considered pristine and free of anthropogenic activities. In this study, we have conducted the first metagenomic investigation of the microbes in and around the geyser. The whole genome sequencing analysis showed the presence of a total of 44.8%, 39.7% and 41.4% bacterial phyla in the PugW, PugS, and PugSo samples respectively, 8.6% of archaeal phyla (in all the samples), unclassified (derived from other sequences, PugW: 27.6%, PugS: 27.6%, and PugSo: 15.5%) and unclassified (derived from bacteria, PugW: 12%, PugS: 13.8%, and PugSo: 13.8%). The majority of archaeal sequences were linked to Euryarchaeota (2.84%) while the majority of the bacterial communities that predominated in most geothermal locations were linked to Pseudomonadota (67.14%) and Bacteroidota (12.52%). The abundant bacterial strains at the species level included Dechloromonas aromatica, Acinetobacter baumannii, and Arcobacter butzleri, in all the samples while the most abundant archaeal species were Methanosaeta thermophile, Methanoregula boonei, and Methanosarcina berkeri. Further, this geothermal geyser metagenome has a large number of unique sequences linked to unidentified and unclassified lineages, suggesting a potential source for novel species of microbes and their products. The present study which only examined one of the many geothermal geysers and springs in the Puga geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the geothermal springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Puga geothermal area, which serve as a repository for unidentified microbial lineages.


Asunto(s)
Archaea , Bacterias , Manantiales de Aguas Termales , Metagenómica , India , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Archaea/genética , Archaea/clasificación , Archaea/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Filogenia , Microbiota , Metagenoma
10.
PeerJ ; 12: e17412, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827283

RESUMEN

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.


Asunto(s)
Metagenómica , Archaea/genética , Archaea/clasificación , México , Bacterias/genética , Bacterias/clasificación , Ecosistema , Microbiota/genética , Metagenoma , Sedimentos Geológicos/microbiología
11.
Braz J Microbiol ; 55(3): 2437-2452, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38758507

RESUMEN

The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.


Asunto(s)
Altitud , Bacterias , Microbiota , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , India , Hielos Perennes/microbiología , Suelo/química , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Simulación por Computador , Filogenia , Ecosistema , Biodiversidad
12.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38821514

RESUMEN

Complex cross-talk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and real-time quantitative PCR (qPCR). The rumen content was collected from six Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and ß-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle, and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's postinfection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.


Asunto(s)
Microbioma Gastrointestinal , Metano , Rumen , Enfermedades de las Ovejas , Animales , Rumen/microbiología , Rumen/parasitología , Ovinos/microbiología , Metano/metabolismo , Enfermedades de las Ovejas/microbiología , Enfermedades de las Ovejas/parasitología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Archaea/genética , Archaea/clasificación , Haemonchus/genética , Trichostrongylus , Microbiota , Infecciones por Nematodos/microbiología , Infecciones por Nematodos/veterinaria
13.
Braz J Microbiol ; 55(2): 1465-1476, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662153

RESUMEN

Due to their distinctive physicochemical characteristics, hot springs are extremely important. The whole genome metagenomic sequencing technology can be utilized to analyze the diverse microbial community that thrives in this habitat due to the particular selection pressure that prevails there. The current investigation emphasizes on culture-independent metagenomic study of the Panamik hot spring and its nearby areas from Ladakh, India. Based on different diversity indices, sequence analysis of the soil reservoir showed higher species richness and diversity in comparison to water and sediment samples. The mineral content and various physicochemical pameters like temperature, pH had an impact on the composition of the microbial community of the geothermal springs. The phyla Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacter, Firmicutes, and Verrucomicrobia in bacterial domain dominate the thermos-alkaline spring at Panamik in different concentrations. Economically significant microbes from the genera Actinobacter, Thermosynechoccus, Candidatus Solibacter, Chthoniobacter, Synechoccus, Pseudomonas and Sphingomonas, were prevalent in hot spring. In the archaeal domain, the most dominant phylum and genera were Euryarchaeota and Thermococcus in all the samples. Further, the most abundant species were Methanosarcina barkeri, Nitrospumilus maritimus and Methanosarcina acetivorans. The present study which only examined one of the several thermal springs present in the Himalayan geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the hot springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Panamik hot spring, which serve as a repository for unidentified microbial lineages.


Asunto(s)
Archaea , Bacterias , Secuenciación de Nucleótidos de Alto Rendimiento , Manantiales de Aguas Termales , Metagenómica , Microbiota , Manantiales de Aguas Termales/microbiología , India , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Archaea/genética , Archaea/clasificación , Archaea/aislamiento & purificación , Filogenia , Biodiversidad
14.
Sci Rep ; 14(1): 6371, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493232

RESUMEN

Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.


Asunto(s)
Microbiota , Poríferos , Animales , Poríferos/microbiología , Regiones Antárticas , Amoníaco , Archaea/genética , Bacterias/genética , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética
15.
Adv Biol (Weinh) ; 8(6): e2400069, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38548661

RESUMEN

Engagement in physical activity, across various sports, promotes a diverse microbiota in active individuals. This study examines the gut microbiota of Colombian athletes, specifically weightlifters (n = 16) and road cyclists (n = 13), compared to non-athletes (n = 15). Using Kruskal-Wallis tests, the physical activity level of a group of non-athletic individuals and the sports experience of a group of professional athletes is analyzed. The median age of participants is 24 years, comprising 25 men and 19 women. The microbiota is collected using fecal samples. Participants provided these samples during their pre-competitive stage, specifically during the concentration phase occurring two weeks prior to national competitions. This timing is chosen to capture the microbial composition during a period of heightened physical preparation. Questionnaire responses and microbial composition assessments identify disparities among groups. Microbial composition analysis explores core microbiome, abundance, and taxonomy using Pavian, MicrobiomeAnalyst 2.0, and GraPhlAn. ANCOM-BC2 reveals differentially abundant species. Road cyclists exhibit decreased Bacteria and increased Archaea abundance. Phylum-level variations included Planctomycetes, Acidobacteria, and Proteobacteria, while Bacteroidetes prevailed. Key families influencing gut microbiota are Bacteroidaceae, Muribaculaceae, and Selenomonadaceae. Weightlifters exhibit unique viral and archaeal community connections, while cyclists showed specialized microbial interplay influenced by endurance exercise. Correlation network analysis emphasizes distinctive microbial interactions within athlete groups, shedding light on the impact of physical activities on gut microbiota and athlete health.


Asunto(s)
Archaea , Atletas , Bacterias , Ciclismo , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Masculino , Femenino , Colombia , Adulto , Atletas/estadística & datos numéricos , Archaea/aislamiento & purificación , Adulto Joven , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Levantamiento de Peso/fisiología , Heces/microbiología
16.
Arch Oral Biol ; 161: 105936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422909

RESUMEN

OBJECTIVE: The complete picture of how the human microbiome interacts with its host is still largely unknown, particularly concerning microorganisms beyond bacteria. Although existing in very low abundance and not directly linked to causing diseases, archaea have been detected in various sites of the human body, including the gastrointestinal tract, oral cavity, skin, eyes, respiratory and urinary systems. But what exactly are these microorganisms? In the early 1990 s, archaea were classified as a distinct domain of life, sharing a more recent common ancestor with eukaryotes than with bacteria. While archaea's presence and potential significance in Dentistry remain under-recognized, there are concerns that they may contribute to oral dysbiosis. However, detecting archaea in oral samples presents challenges, including difficulties in culturing, the selection of DNA extraction methods, primer design, bioinformatic analysis, and databases. DESIGN: This is a comprehensive review on the oral archaeome, presenting an in-depth in silico analysis of various primers commonly used for detecting archaea in human body sites. RESULTS: Among several primer pairs used for detecting archaea in human samples across the literature, only one specifically designed for detecting methanogenic archaea in stool samples, exhibited exceptional coverage levels for the domain and various archaea phyla. CONCLUSIONS: Our in silico analysis underscores the need for designing new primers targeting not only methanogenic archaea but also nanoarchaeal and thaumarchaeota groups to gain a comprehensive understanding of the archaeal oral community. By doing so, researchers can pave the way for further advancements in the field of oral archaeome research.


Asunto(s)
Archaea , Microbiota , Humanos , Archaea/genética , Bacterias , Boca , Odontología , Filogenia
17.
Braz J Microbiol ; 55(2): 1545-1555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421596

RESUMEN

In light of their unique and challenging environment, the high-altitude Chumathang geothermal springs in Ladakh, India, are undeniably intriguing for microbiological study. The purpose of this study was to employ a culture-independent sequencing approach to give a comprehensive characterization of the unknown bacterial and archaeal community structure, composition and networks in water and soil from the Chumathang geothermal spring. A total of 50%, and 42.86% bacterial phyla were found in the water, and soil samples respectively and this analysis also showed a total of 9.62% and 7.94% of archaeal phyla in both the samples, respectively. Further, the presence of unclassified (derived from other sequences, water: 17.31%, and soil: 19.05%) and unclassified (derived from bacteria, water: 13.46%, and soil: 12.70%) were also observed in the current metagenomics investigation. Firmicutes and Proteobacteria were the most abundant bacterial phyla in water, whereas Proteobacteria and Bacteroidetes were the most abundant bacterial phyla in geothermal soil. Crenarchaeota and Euryarchaeota dominated archeal communities in soil and water, respectively. This metagenomic study gave a detailed insight into the microbial diversity found in Chumathang geothermal spring and surrounding area, located in Ladakh, India. Surprisingly, this finding indicated the existence of geographically distinct microbial communities that were suited to various geothermal water habitats along the Himalayan Geothermal Belt. Future studies must take into account the metabolic pathways of these microbial communities that exist in these extreme environments. This will allow us to obtain a better knowledge of the microbial metabolisms that are common at these geothermal locations, which have a lot of potential for biotechnological applications. They will also enable us to establish links between the microbial community composition and the physicochemical environment of geothermal water and area.


Asunto(s)
Archaea , Bacterias , Biodiversidad , Manantiales de Aguas Termales , Metagenómica , Filogenia , Microbiología del Suelo , Manantiales de Aguas Termales/microbiología , India , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , ARN Ribosómico 16S/genética , Microbiota , Microbiología del Agua
18.
Proteins ; 92(6): 720-734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38192262

RESUMEN

Our globin census update allows us to refine our vision of globin origin, evolution, and structure to function relationship in the context of the currently accepted tree of life. The modern globin domain originates as a single domain, three-over-three α-helical folded structure before the diversification of the kingdoms of life (Bacteria, Archaea, Eukarya). Together with the diversification of prokaryotes, three monophyletic globin families (M, S, and T) emerged, most likely in Proteobacteria and Actinobacteria, displaying specific sequence and structural features, and spread by vertical and horizontal gene transfer, most probably already present in the last universal common ancestor (LUCA). Non-globin domains were added, and eventually lost again, creating multi-domain structures in key branches of M- (FHb and Adgb) and the vast majority of S globins, which with their coevolved multi-domain architectures, have predominantly "sensor" functions. Single domain T-family globins diverged into four major groups and most likely display functions related to reactive nitrogen and oxygen species (RNOS) chemistry, as well as oxygen storage/transport which drives the evolution of its major branches with their characteristic key distal residues (B10, E11, E7, and G8). M-family evolution also lead to distinctive major types (FHb and Fgb, Ngb, Adgb, GbX vertebrate Gbs), and shows the shift from high oxygen affinity controlled by TyrB10-Gln/AsnE11 likely related to RNOS chemistry in microorganisms, to a moderate oxygen affinity storage/transport function controlled by hydrophobic B10/E11-HisE7 in multicellular animals.


Asunto(s)
Evolución Molecular , Globinas , Filogenia , Globinas/genética , Globinas/química , Globinas/metabolismo , Humanos , Bacterias/genética , Bacterias/metabolismo , Animales , Archaea/genética , Archaea/metabolismo , Dominios Proteicos , Transferencia de Gen Horizontal
19.
World J Microbiol Biotechnol ; 40(2): 60, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172371

RESUMEN

The majority of research in the field of human microbiota has predominantly focused on bacterial and fungal communities. Conversely, the human archaeome has received scant attention and remains poorly studied, despite its potential role in human diseases. Archaea have the capability to colonize various human body sites, including the gastrointestinal tract, skin, vagina, breast milk, colostrum, urinary tract, lungs, nasal and oral cavities. This colonization can occur through vertical transmission, facilitated by the transfer of breast milk or colostrum from mother to child, as well as through the consumption of dairy products, organic produce, salty foods, and fermented items. The involvement of these microorganisms in diseases, such as periodontitis, might be attributed to their production of toxic compounds and the detoxification of growth inhibitors for pathogens. However, the precise mechanisms through which these contributions occur remain incompletely understood, necessitating further studies to assess their impact on human health.


Asunto(s)
Archaea , Microbiota , Animales , Femenino , Humanos , Embarazo , Calostro/microbiología , Transmisión Vertical de Enfermedad Infecciosa , Leche , Lactante , Recién Nacido
20.
An Acad Bras Cienc ; 95(suppl 3): e20211442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37820122

RESUMEN

Microorganisms in Antarctica are recognized for having crucial roles in ecosystems functioning and biogeochemical cycles. To explore the diversity and composition of microbial communities through different terrestrial and marine Antarctic habitats, we analyze 16S rRNA sequence datasets from fumarole and marine sediments, soil, snow and seawater environments. We obtained measures of alpha- and beta-diversities, as well as we have identified the core microbiome and the indicator microbial taxa of a particular habitat. Our results showed a unique microbial community structure according to each habitat, including specific taxa composing each microbiome. Marine sediments harbored the highest microbial diversity among the analyzed habitats. In the fumarole sediments, the core microbiome was composed mainly of thermophiles and hyperthermophilic Archaea, while in the majority of soil samples Archaea was absent. In the seawater samples, the core microbiome was mainly composed by cultured and uncultured orders usually identified on Antarctic pelagic ecosystems. Snow samples exhibited common taxa previously described for habitats of the Antarctic Peninsula, which suggests long-distance dispersal processes occurring from the Peninsula to the Continent. This study contributes as a baseline for further efforts on evaluating the microbial responses to environmental conditions and future changes.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , Regiones Antárticas , ARN Ribosómico 16S/genética , Archaea/genética , Microbiota/genética , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA