Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.835
Filtrar
1.
J Nanobiotechnology ; 22(1): 565, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272089

RESUMEN

Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⁻¹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.


Asunto(s)
Arachis , Germinación , Grafito , Tolerancia a la Sal , Plantones , Semillas , Arachis/metabolismo , Arachis/efectos de los fármacos , Arachis/fisiología , Arachis/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Germinación/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Fotosíntesis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Transcriptoma/efectos de los fármacos , Antioxidantes/metabolismo
2.
BMJ Open ; 14(9): e086232, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39242158

RESUMEN

INTRODUCTION: Ageing is associated with physical and cognitive declines, which may be further exacerbated by poor nutrition. Nuts are energy and nutrient dense, and their consumption is associated with better physical and cognitive functions in older adults, but data from interventional studies are limited. This 6-month randomised controlled trial is designed to investigate the effects of consuming 43 g/day of peanut butter (equivalent to 1.5 servings of nuts) on physical function, including walking speed (primary outcome), standing and dynamic balance, upper and lower body strength, lower body power and endurance, and associated factors including muscle mass, cognitive function and DNA telomere length in community-dwelling older adults. METHOD AND ANALYSIS: A total of 120 participants aged ≥65 years will be recruited and randomly allocated (1:1 ratio) to either the intervention group (n=60) that will receive individually packaged sealed containers containing 43 g of peanut butter to be consumed once daily for 6 months alongside habitual diet, or the control group (n=60) that will maintain their habitual diet. Primary and secondary outcomes will be assessed at baseline and at 6 months. The primary outcome is walking speed assessed using the 4 m usual gait speed test. Secondary outcomes include other physical function assessments: standing balance, chair stand time, timed-up-and-go test and four-square step test; and hand grip and knee extensor muscle strength; cognitive function assessed using the Montreal Cognitive Assessment and trail making tests; body composition; nutritional status; and DNA telomere length from participants' buccal cell samples. Linear mixed models will be used to compare changes in outcomes between intervention and control groups. ETHICS AND DISSEMINATION: The study protocol is approved by the Deakin University Human Research Ethics Committee. The trial is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12622001291774. The results will be disseminated through peer-reviewed journals, conference presentations and media. TRIAL REGISTRATION NUMBER: ANZCTR12622001291774.


Asunto(s)
Arachis , Cognición , Vida Independiente , Humanos , Anciano , Masculino , Femenino , Ensayos Clínicos Controlados Aleatorios como Asunto , Suplementos Dietéticos , Fuerza Muscular , Equilibrio Postural , Velocidad al Caminar
3.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125982

RESUMEN

Seed vigor significantly affects peanut breeding and agricultural yield by influencing seed germination and seedling growth and development. Traditional vigor testing methods are inadequate for modern high-throughput assays. Although hyperspectral technology shows potential for monitoring various crop traits, its application in predicting peanut seed vigor is still limited. This study developed and validated a method that combines hyperspectral technology with genome-wide association studies (GWAS) to achieve high-throughput detection of seed vigor and identify related functional genes. Hyperspectral phenotyping data and physiological indices from different peanut seed populations were used as input data to construct models using machine learning regression algorithms to accurately monitor changes in vigor. Model-predicted phenotypic data from 191 peanut varieties were used in GWAS, gene-based association studies, and haplotype analyses to screen for functional genes. Real-time fluorescence quantitative PCR (qPCR) was used to analyze the expression of functional genes in three high-vigor and three low-vigor germplasms. The results indicated that the random forest and support vector machine models provided effective phenotypic data. We identified Arahy.VMLN7L and Arahy.7XWF6F, with Arahy.VMLN7L negatively regulating seed vigor and Arahy.7XWF6F positively regulating it, suggesting distinct regulatory mechanisms. This study confirms that GWAS based on hyperspectral phenotyping reveals genetic relationships in seed vigor levels, offering novel insights and directions for future peanut breeding, accelerating genetic improvements, and boosting agricultural yields. This approach can be extended to monitor and explore germplasms and other key variables in various crops.


Asunto(s)
Arachis , Estudio de Asociación del Genoma Completo , Fenotipo , Semillas , Arachis/genética , Arachis/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo/métodos , Semillas/genética , Semillas/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento/métodos , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Imágenes Hiperespectrales/métodos , Haplotipos
4.
BMC Plant Biol ; 24(1): 760, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118060

RESUMEN

BACKGROUND: Soil-borne plant diseases represent a severe problem that negatively impacts the production of food crops. Actinobacteria play a vital role in biocontrolling soil-borne fungi. AIM AND OBJECTIVES: The target of the present study is to test the antagonistic activity of chitinase-producing Streptomyces cellulosae Actino 48 (accession number, MT573878) against Rhizoctonia solani. Subsequently, maximization of Actino 48 production using different fermentation processes in a stirred tank bioreactor. Finally, preparation of bio-friendly formulations prepared from the culture broth of Actino 48 using talc powder (TP) and bentonite in a natural as well as nano forms as carriers. Meanwhile, investigating their activities in reducing the damping-off and root rot diseases of peanut plants, infected by R. solani under greenhouse conditions. RESULTS: Actino 48 was found to be the most significant antagonistic isolate strain at p ≤ 0.05 and showed the highest inhibition percentage of fungal mycelium growth, which reached 97%. The results of scanning electron microscope (SEM) images analysis showed a large reduction in R. solani mycelia mass. Additionally, many aberrations changes and fungal hypha damages were found. Batch fermentation No. 2, which was performed using agitation speed of 200 rpm, achieved high chitinase activity of 0.1163 U mL- 1 min- 1 with a yield coefficient of 0.004 U mL- 1 min- 1 chitinase activity/g chitin. Nano-talc formulation of Actino 48 had more a significant effect compared to the other formulations in reducing percentages of damping-off and root rot diseases that equal to 19.05% and 4.76% with reduction percentages of 60% and 80%, respectively. The healthy survival percentage of peanut plants recorded 76.19%. Furthermore, the nano-talc formulation of Actino 48 was sufficient in increasing the dry weight of the peanut plants shoot, root systems, and the total number of peanut pods with increasing percentages of 47.62%, 55.62%, and 38.07%, respectively. CONCLUSION: The bio-friendly formulations of actinobacteria resulting from this investigation may play an active role in managing soil-borne diseases.


Asunto(s)
Arachis , Quitinasas , Fermentación , Enfermedades de las Plantas , Rhizoctonia , Streptomyces , Streptomyces/enzimología , Rhizoctonia/fisiología , Quitinasas/metabolismo , Arachis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología
5.
Food Chem ; 460(Pt 3): 140777, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128370

RESUMEN

Peanut allergy has garnered worldwide attention due to its high incidence rate and severe symptoms, stimulating the demand for the ultrasensitive detection method of peanut allergen. Herein, we successfully developed a novel electrochemical aptasensor for ultrasensitive detection Ara h1, a major allergenic protein present in peanuts. A conductive nickel atoms Anchored Hydrogen-Bonded Organic Frameworks (PFC-73-Ni) were utilized as excellent electrocatalysts toward hydroquinone (HQ) oxidation to generate a readable current signal. The developed electrochemical aptasensor offers wide linear range (1-120 nM) and low detection limit (0.26 nM) for Ara h1. This method demonstrated a recovery rate ranging from 95.00% to 107.42% in standard addition detection of non-peanut food samples. Additionally, the developed electrochemical method was validated with actual samples and demonstrated good consistency with the results obtained from a commercial ELISA kit. This indicates that the established Ara h1 detection method is a promising tool for peanut allergy prevention.


Asunto(s)
Antígenos de Plantas , Arachis , Técnicas Electroquímicas , Antígenos de Plantas/análisis , Antígenos de Plantas/inmunología , Antígenos de Plantas/química , Arachis/química , Arachis/inmunología , Enlace de Hidrógeno , Glicoproteínas/química , Glicoproteínas/análisis , Límite de Detección , Estructuras Metalorgánicas/química , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/análisis , Técnicas Biosensibles/instrumentación , Alérgenos/análisis , Alérgenos/química , Alérgenos/inmunología , Porosidad , Aptámeros de Nucleótidos/química , Proteínas de la Membrana
6.
Environ Sci Pollut Res Int ; 31(40): 53369-53380, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39187679

RESUMEN

Microplastics (MPs) are emerging persistent pollutants, and heavy metals are typical environmental pollutants, with their coexistence potentially compounding pollution and ecological risks. However, the interactive impacts and the relevant mechanisms of heavy metal and different types of MPs in plant-soil systems are still unclear. This study investigated the differential impacts of polyethylene MPs (PE MPs) and biodegradable polybutylene adipate MPs (PBAT MPs) on chromium (Cr) uptake in peanuts, focusing on plant performance and rhizosphere soil microenvironment. Compared with nondegradable PE-MPs, biodegradable PBAT MPs produced less significant influences on plant phytotoxicity, soil Cr bioavailability, and soil properties such as pH, CEC, DOC, and MBC, with the exception of MBN in Cr-contaminated soils. Compared to the control, soil pH and cation exchange capacity (CEC) decreased by MPs, while soil-soluble carbon (DOC), microbial biomass carbon, and nitrogen (MBC and MBN) increased by MPs. Compared to the control, soil-bioavailable Cr increased by 11.8-177.8% under PE MPs treatments, while increased by 5.1-156.9% under PBAT MPs treatments. The highest Cr content in shoots and roots was observed at 500.0 mg·kg-1 Cr level, which increased by 53.1% and 79.2% under 5% PE MPs treatments, respectively, as well as increased by 38.3% and 60.4% under 5% PBAT MPs treatments, respectively, compared with the control. The regression path analysis indicated that pH, MBC, MBN, and soil-bioavailable Cr played a vital role in the changes of soil properties and Cr uptake by peanuts induced by MPs. Soil bacterial community analysis revealed that Nocardioides, Proteobacteria, and Sphingomonas were reduced by the inhibition of MPs, which affected Cr uptake by peanuts. These results indicated that the peanut soil microenvironment was affected by PBAT and PE MPs, altering the Cr bioavailability and plant Cr uptake in Cr-contaminated soil.


Asunto(s)
Arachis , Cromo , Microplásticos , Polietileno , Contaminantes del Suelo , Suelo , Suelo/química , Microbiología del Suelo , Biodegradación Ambiental
7.
J Biotechnol ; 394: 34-47, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128505

RESUMEN

Salinity stress is a major concern in regions where irrigation relies on saline water. This study aimed to investigate the relative water content (RWC), electrolytic leakage (EL), total chlorophyll content, free amino acid content, and total soluble sugar content were analyzed in different groundnut species subjected to various salinity treatments. The results showed that salinity stress significantly reduced the RWC in groundnut leaves, with A. duranensis (wild type) exhibiting higher RWC values compared to the Arachis hypogaea species. RNA sequencing was performed to identify differentially expressed genes (DEGs) during salt stress. A total of 9079 DEGs were identified, with 1372 genes upregulated and 2509 genes downregulated. Genes belonging to transcription factor families, such as WRKY, MYB, bHLH, E2F, and Auxin efflux carrier proteins, were induced under salt stress in the tolerant genotype. Conversely, genes encoding NADH dehydrogenase, glutathione S-transferase, protein kinases, UDP-glycosyltransferase, and peroxidase were downregulated. Gene ontology and pathway analyses revealed several enriched categories and metabolic pathways associated with salt stress response, including catalytic activity, response to salt stress, ATP-dependent activity, and oxidative phosphorylation. The findings of this study provide insights into the physiological and molecular responses of groundnut to salinity stress. A. duranensis exhibited better salinity tolerance than Arachis hypogaea, as indicated by higher RWC values, lower electrolytic leakage, and differential gene expression patterns. These results contribute to our understanding of the mechanisms underlying salt stress tolerance in groundnut and may guide future efforts to develop salinity-tolerant groundnut species, ultimately improving crop yield in saline-affected regions.


Asunto(s)
Arachis , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Transcriptoma , Arachis/genética , Arachis/metabolismo , Estrés Salino/genética , Salinidad , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Estrés Fisiológico/genética , Tolerancia a la Sal/genética
8.
Nat Genet ; 56(9): 1975-1984, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39138385

RESUMEN

Cultivated peanut (Arachis hypogaea L.) is a widely grown oilseed crop worldwide; however, the events leading to its origin and diversification are not fully understood. Here by combining chloroplast and whole-genome sequence data from a large germplasm collection, we show that the two subspecies of A. hypogaea (hypogaea and fastigiata) likely arose from distinct allopolyploidization and domestication events. Peanut genetic clusters were then differentiated in relation to dissemination routes and breeding efforts. A combination of linkage mapping and genome-wide association studies allowed us to characterize genes and genomic regions related to main peanut morpho-agronomic traits, namely flowering pattern, inner tegument color, growth habit, pod/seed weight and oil content. Together, our findings shed light on the evolutionary history and phenotypic diversification of peanuts and might be of broad interest to plant breeders.


Asunto(s)
Arachis , Cloroplastos , Evolución Molecular , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fenotipo , Secuenciación Completa del Genoma , Arachis/genética , Cloroplastos/genética , Mapeo Cromosómico , Filogenia , Domesticación , Fitomejoramiento/métodos
9.
Food Chem ; 461: 140839, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154463

RESUMEN

This study explores the potential of Curcuma longa byproducts, called Curcuminoid removed turmeric oleoresin (CRTO), to extend the shelf life of peanut butter. CRTO, rich in curcuminoids, was added to peanut butter formulations to assess its preservative effects, flavour impact, and nutritional benefits. Results demonstrated that CRTO oil and curcuminoids effectively prolonged peanut butter shelf life by delaying rancidity. The study also compared results using oxygen scavenger film (OSF) packaging. Over time, water activity and oil separation increased, but CRTO oil and OSF helped to mitigate these effects. Sensory evaluations favored CRTO oil and curcuminoids, while microbial analysis confirmed safety of both the control and OSF samples for six months at 27 °C and 65% RH, and for four months at 37 °C and 95% RH. This study proposes a natural and sustainable method for extending peanut butter shelf life while enriching it with curcuminoids, with significant implications for the food industry.


Asunto(s)
Arachis , Curcuma , Almacenamiento de Alimentos , Extractos Vegetales , Gusto , Curcuma/química , Arachis/química , Extractos Vegetales/química , Humanos , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/análisis , Conservantes de Alimentos/química , Conservación de Alimentos/métodos , Embalaje de Alimentos/instrumentación
10.
Food Chem ; 461: 140805, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181056

RESUMEN

Aflatoxins are a group of high toxic mycotoxins in food chain. Recent studies showed that aflatoxins might contaminate post-fermented tea, but the result remains controversial. Here, Aspgergillus flavus growth and aflatoxin production were characterized in Puerh tea, peanut and polished rice at different initial water activity (aw) values for long-term storage. As a result, food initial aw value was the critical factor for A. flavus growth and aflatoxin production, and A. flavus almost not grew on foods at aw value lower than 0.8. A. flavus grew best in peanut, followed by rice, but growth on Puerh tea was limited. A. flavus growth was inhibited significantly by adding tea to Potato Dextrose Agar (PDA). Accordingly, aflatoxins produced dramatically in peanut, followed by rice at the first 90 days storage. However, aflatoxin neither produced in Puerh tea nor on tea modified PDA, indicating tea components inhibited A. flavus growth and aflatoxins synthesis.


Asunto(s)
Aflatoxinas , Arachis , Aspergillus flavus , Contaminación de Alimentos , Almacenamiento de Alimentos , Oryza , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aflatoxinas/análisis , Aflatoxinas/metabolismo , Oryza/química , Oryza/microbiología , Oryza/metabolismo , Arachis/química , Arachis/microbiología , Arachis/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Té/química , Camellia sinensis/química , Camellia sinensis/microbiología , Camellia sinensis/metabolismo , Camellia sinensis/crecimiento & desarrollo
11.
J Agric Food Chem ; 72(36): 20211-20223, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39197047

RESUMEN

Drought dramatically affects plant growth and yield. A previous study indicated that endophytic fungus Phomopsis liquidambaris can improve the drought resistance of peanuts, which is related with the root arbuscular mycorrhizal fungi (AMF) community; however, how root endophytes mediate AMF assembly to affect plant drought resistance remains unclear. Here, we explored the mechanism by which endophytic fungus recruits AMF symbiotic partners via rhizodeposits to improve host drought resistance. The results showed that Ph. liquidambaris enhanced peanut drought resistance by enriching the AMF genus Claroideoglomus of the rhizosphere. Furthermore, metabolomic analysis indicated that Ph. liquidambaris significantly promoted isoformononetin and salicylic acid (SA) synthesis in rhizodeposits, which were correlated with the increase in Claroideoglomus abundance following Ph. liquidambaris inoculation. Coinoculation experiments confirmed that isoformononetin and SA could enrich Claroideoglomus etunicatum in the rhizosphere, thereby improving the drought resistance. This study highlights the crucial role of fungal consortia in plant stress resistance.


Asunto(s)
Arachis , Sequías , Endófitos , Micorrizas , Raíces de Plantas , Rizosfera , Simbiosis , Arachis/microbiología , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Endófitos/fisiología , Endófitos/metabolismo , Micorrizas/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Ascomicetos/fisiología , Glomeromycota/fisiología , Microbiología del Suelo , Resistencia a la Sequía
12.
Environ Sci Pollut Res Int ; 31(38): 50929-50941, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107637

RESUMEN

Peanut is an economically important crop, but it is susceptible to Cr contamination. In this study, we used peanut as experimental material to investigate the effects of exogenous P, Se interacting with Cr on the nutrient growth and antioxidant system of peanut seedlings by simulating Cr (0 µM, 50 µM, and 100 µM) stress environment. The results showed that exogenous P, Se supply could mitigate irreversible damage to peanut seedlings by altering the distribution of Cr in roots and aboveground, changing root conformation, and repairing damaged cells to promote growth. When the Cr concentration is 100 µM, it exhibits the highest toxicity. Compared to the control group P and Se (0 MM), the treatment with simultaneous addition of P + Se (0.5 + 6.0) resulted in a significant increase in root length and root tip number by 248.7% and 127.4%, respectively. Additionally, there was a 46.9% increase in chlorophyll content, a 190.2% increase in total surface area of the seedlings, and a respective increase of 149.1% and 180.3% in soluble protein content in the shoot and roots. In addition, by restricting the absorption of Cr and reducing the synthesis of superoxide dismutase SOD (Superoxide dismutase), CAT (Catalase), POD (Peroxidase), and MDA (Malonaldehyde), it effectively alleviates the oxidative stress on the antioxidant system. Therefore, the exogenous addition of P (0.5 MM) and Se (6.0 MM) prevented the optimal concentration of chromium toxicity to peanuts. Our research provides strong evidence that the exogenous combination of P and Se reduces the risk of peanut poisoning by Cr, while also exploring the optimal concentration of exogenous P and Se under laboratory conditions, providing a basis for further field experiments.


Asunto(s)
Antioxidantes , Arachis , Fósforo , Plantones , Selenio , Arachis/efectos de los fármacos , Plantones/efectos de los fármacos , Selenio/farmacología , Homeostasis , Cromo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo
13.
Environ Sci Pollut Res Int ; 31(39): 52049-52059, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138728

RESUMEN

This study presents a novel approach for the eco-friendly green synthesis of copper nanoparticles (Cu NPs) using enzymatic mediation which is an environmentally benign alternative to conventional methods, offering control over particle size and shape. Anoxybacillus rupiensis BS1 thermophilic bacterium was isolated from Erzurum's Pasinler hot spring and lignin peroxidase enzyme production conditions (incubation time 96 h, 40 g/L shell amount, pH 8.5, 150 rpm, and 60 °C temperature) were used in the production of peroxidase enzyme using peanut waste which has been optimized. The characterization of the synthesized Cu NPs was performed using various analytical techniques, including UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), confirming the successful production of stable and well-defined nanoparticles. Furthermore, the biological activities of the synthesized Cu NPs were explored, revealing their potential for antimicrobial applications. The antibacterial efficacy of the Cu NPs against some pathogens such as Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Bacillus cereus was examined. It was determined that Cu NPs were effective on all pathogens and had the highest effectiveness against the S. pyogenes pathogen (19.0 mm). This study not only presents an innovative and sustainable approach for the synthesis of Cu NPs but also highlights the multifaceted biological activities of these nanoparticles, opening avenues for diverse applications in the fields of medicine, agriculture, and environmental remediation. The utilization of peanut shell wastes as a substrate for enzyme production adds value to agricultural by-products, contributing to the development of a circular and sustainable economy.


Asunto(s)
Anoxybacillus , Arachis , Cobre , Nanopartículas del Metal , Cobre/química , Nanopartículas del Metal/química , Peroxidasas/metabolismo , Tecnología Química Verde , Alimento Perdido y Desperdiciado
14.
Curr Microbiol ; 81(10): 322, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179697

RESUMEN

The spore-forming, anaerobic bacterium, Clostridium botulinum, can cause intestinal toxemia (colonization) botulism in adults and infants by colonizing the gut and producing botulinum neurotoxin in situ. In 2006, peanut butter was identified as a lab-confirmed source of C. botulinum spores for an adult colonization botulism case in Canada. It is recommended for infants to be exposed to peanut butter at an early age to help prevent the development of a peanut allergy, yet the prevalence of C. botulinum in retail peanut butters is currently unknown. This report details a survey that was conducted in 2007 for the presence of viable C. botulinum spores in 92 peanut butters and 12 other nut butter spreads obtained from retail grocery stores in Ottawa, Canada. Samples were tested for viable C. botulinum spores by detecting botulinum neurotoxin in enrichment cultures by mouse bioassay. Three of the peanut butters from the entire survey of nut butter spreads (3/104, 3%) produced cultures containing botulinum neurotoxin. Whole genome sequencing performed on one isolate from this survey, as well as a clinical isolate and peanut butter isolates associated with the 2006 adult colonization case revealed that all C. botulinum isolates contained a full-length chromosomal bont/A1 gene within an ha-orf + cassette. This study identifies retail peanut butters as a potential source of viable C. botulinum spores at the time of sampling. Whether peanut butter represents a food category that may be contributing to the incidence of infant botulism has yet to be determined.


Asunto(s)
Arachis , Clostridium botulinum , Clostridium botulinum/genética , Clostridium botulinum/aislamiento & purificación , Clostridium botulinum/clasificación , Arachis/microbiología , Canadá , Prevalencia , Humanos , Animales , Botulismo/epidemiología , Botulismo/microbiología , Ratones , Esporas Bacterianas , Toxinas Botulínicas/genética , Adulto , Microbiología de Alimentos
15.
Physiol Plant ; 176(4): e14489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165150

RESUMEN

Photosynthesis, understood as the photosynthetic carbon assimilation rate, is one of the key processes affected by drought stress. The effects can be via decreased CO2 diffusion and biochemical constraints. However, there is still no unified consensus about the contribution of each mechanism to the drought response. This research assessed the underlying limitations to photosynthesis in nine peanut genotypes (Arachis hypogaea L.) with different water strategies (water savers vs water spenders) under progressive drought. Water saver cultivars close the stomata earlier during drought, resulting in decreased transpiration and photosynthesis, which results in less water depletion in the soil, while water spenders maintain the stomata open during drought. In order to test the performance of these genotypes, growth, transpiration per plant, gas exchange measurements, chlorophyll fluorescence and A/Ci response curves were analyzed under drought and well-watered conditions. In general, drought first affected photosynthesis (at the leaf and canopy level) via stomatal closure and then by impacts on chlorophyll fluorescence in all genotypes, but at different intensity levels. The maximum rate of carboxylation and the maximum rate of electron transport, physiological characteristics related to biochemical constraints, were not affected during the onset of drought, but they were decreased at the end of the drought period, with the exception of the PI 493329 genotype that showed higher stomatal conductance due to a bigger root system. The findings presented here highlight the importance of genetic variation in the photosynthetic response of peanut to drought, which should be considered when breeding for future climates.


Asunto(s)
Arachis , Clorofila , Sequías , Genotipo , Fotosíntesis , Estomas de Plantas , Agua , Fotosíntesis/fisiología , Arachis/genética , Arachis/fisiología , Arachis/metabolismo , Clorofila/metabolismo , Agua/metabolismo , Agua/fisiología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fluorescencia
16.
Food Res Int ; 192: 114811, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147508

RESUMEN

Advanced glycation end products (AGEs), a heterogeneous compound existed in processed foods, are related to chronic diseases when they are accumulated excessively in human organs. Protein-bound Nε-(carboxymethyl) lysine (CML) as a typical AGE, is widely determined to evaluate AGEs level in foods and in vivo. This study investigated the intestinal absorption of three protein-bound CML originated from main food raw materials (soybean, wheat and peanut). After in vitro gastrointestinal digestion, the three protein-bound CML digests were ultrafiltered and divided into four fractions: less than 1 kDa, between 1 and 3 kDa, between 3 and 5 kDa, greater than 5 kDa. Caco-2 cell monolayer model was further used to evaluate the intestinal absorption of these components. Results showed that the absorption rates of soybean protein isolate (SPI)-, glutenin (Glu)-, peanut protein isolate (PPI)-bound CML were 30.18%, 31.57% and 29.5%, respectively. The absorption rates of components with MW less than 5 kDa accounted for 19.91% (SPI-bound CML), 22.59% (Glu-bound CML), 23.64% (PPI-bound CML), respectively, and these samples were absorbed by paracellular route, transcytosis route and active route via PepT-1. Taken together, these findings demonstrated that all three protein-bound CML digests with different MW can be absorbed in diverse absorption pathways by Caco-2 cell monolayer model. This research provided a theoretical basis for scientific evaluation of digestion and absorption of AGEs in food.


Asunto(s)
Arachis , Digestión , Glútenes , Absorción Intestinal , Lisina , Proteínas de Soja , Humanos , Células CACO-2 , Lisina/análogos & derivados , Lisina/metabolismo , Arachis/química , Absorción Intestinal/fisiología , Proteínas de Soja/metabolismo , Proteínas de Soja/química , Glútenes/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Proteínas de Plantas/metabolismo , Triticum/química
17.
Food Res Int ; 192: 114722, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147546

RESUMEN

Peanut protein isolate (PPI) has high nutritional value, but its poor function limits its application in the food industry. In this study, peanut protein isolate was modified by enzymatic hydrolysis combined with glycation. The structure, emulsification and interface properties of peanut protein isolate hydrolysate (HPPI) and dextran (Dex) conjugate (HPPI-Dex) were studied. In addition, the physicochemical properties, rheological properties, and stability of the emulsion were also investigated. The results showed that the graft degree increased with the increase of Dex ratio. Fourier transform infrared spectroscopy (FTIR) confirmed that the glycation of HPPI and Dex occurred. The microstructure showed that the structure of HPPI-Dex was expanded, and the molecular flexibility was enhanced. When the ratio of HPPI to Dex was 1:3, the emulsifying activity and the interface pressure of glycated HPPI reached the highest value, and the emulsifying activity (61.08 m2/g) of HPPI-Dex was 5.28 times that of PPI. The HPPI-Dex stabilized emulsions had good physicochemical properties and rheological properties. In addition, HPPI-Dex stabilized emulsions had high stability under heat treatment, salt ion treatment and freeze-thaw cycle. According to confocal laser scanning microscopy (CLSM), the dispersion of HPPI-Dex stabilized emulsions was better after 28 days of storage. This study provides a theoretical basis for developing peanut protein emulsifier and further expanding the application of peanut protein in food industry.


Asunto(s)
Arachis , Dextranos , Emulsiones , Proteínas de Plantas , Reología , Emulsiones/química , Arachis/química , Hidrólisis , Dextranos/química , Proteínas de Plantas/química , Glicosilación , Espectroscopía Infrarroja por Transformada de Fourier , Emulsionantes/química , Hidrolisados de Proteína/química
18.
BMC Plant Biol ; 24(1): 774, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143533

RESUMEN

BACKGROUND: Nitrogen (N) is a crucial element for increasing photosynthesis and crop yields. The study aims to evaluate the photosynthetic regulation and yield formation mechanisms of different nodulating peanut varieties with N fertilizer application. METHOD: The present work explored the effect of N fertilizer application rates (N0, N45, N105, and N165) on the photosynthetic characteristics, chlorophyll fluorescence characteristics, dry matter, N accumulation, and yield of four peanut varieties. RESULTS: The results showed that N application increased the photosynthetic capacity, dry matter, N accumulation, and yield of peanuts. The measurement of chlorophyll a fluorescence revealed that the K-phase, J-phase, and I-phase from the OJIP curve decreased under N105 treatment compared with N0, and WOI, ET0/CSM, RE0/CSM, ET0/RC, RE0/RC, φPo, φEo, φRo, and Ψ0 increased, whereas VJ, VI, WK, ABS/RC, TR0/RC, DI0/RC, and φDo decreased. Meanwhile, the photosystem activity and electron transfer efficiency of nodulating peanut varieties decreased with an increase in N (N165). However, the photosynthetic capacity and yield of the non-nodulating peanut variety, which highly depended on N fertilizer, increased with an increase in N. CONCLUSION: Optimized N application (N105) increased the activity of the photosystem II (PSII) reaction center, improved the electron and energy transfer performance in the photosynthetic electron transport chain, and reduced the energy dissipation of leaves in nodulating peanut varieties, which is conducive to improving the yield. Nevertheless, high N (N165) had a positive effect on the photosystem and yield of non-nodulating peanut. The results provide highly valuable guidance for optimizing peanut N management and cultivation measures.


Asunto(s)
Arachis , Clorofila , Fertilizantes , Nitrógeno , Fotosíntesis , Arachis/metabolismo , Arachis/fisiología , Arachis/crecimiento & desarrollo , Nitrógeno/metabolismo , Clorofila/metabolismo , Fluorescencia , Cinética
19.
Food Chem ; 460(Pt 1): 140568, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053275

RESUMEN

This work deals with the study on the protein extractability of biscuits incurring different percentages of roasted peanut flour. The presence of two different flours influenced the rate of protein aggregation and protein extractability, according to the percentage of roasted peanut flour added to the formulation and assessing these features by testing the use of two buffers. Results showed that gluten network arrangement of biscuits was influenced by the flours mixture besides the baking, with possible different protein organizations. Protein extractability was affected, underlining a higher content of protein aggregates at high molecular weight especially with the addition of 20% of peanut flour, characterized by hydrophobic and reducible covalent bonds, as suggested by the higher extractability obtained with the buffer with chaotropic and reducing agents. These results suggested a possible induced supramolecular protein organization in these products, which could affect the immunoreactivity of the main allergens occurred in the formulation.


Asunto(s)
Arachis , Harina , Agregado de Proteínas , Arachis/química , Arachis/inmunología , Harina/análisis , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Pan/análisis , Alérgenos/inmunología , Alérgenos/química , Alérgenos/análisis , Glútenes/química , Glútenes/análisis
20.
Environ Res ; 259: 119525, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964586

RESUMEN

This study involves synthesizing peanut hull hydrochar (PHH) and a PHH/ß-CD/Fe3O4 magnetic composite through hydrothermal and chemical precipitation methods, respectively, to use as effective adsorbents for Pb2+ removal. Vibrating-sample magnetometry (VSM) and Brunauer-Emmett-Teller (BET) analyses revealed that the magnetic saturation value and specific active surface area of PHH/ß-CD/Fe3O4 are 31.543 emu/g and 32.123 m2/g, respectively. The impact of key variables on adsorption efficiency was evaluated using the response surface method - central composite design. ANOVA results (F-value: 166.22 and p-value: <0.05) demonstrated that the model effectively assesses the interaction of variables in the adsorption process. Additionally, R2, Adjusted R2, and Predicted R2 values were 0.999, 0.986, and 0.975, respectively, indicating the model's high adequacy in describing response changes. The maximum efficiency for Pb2+ adsorption was found to be 95.35% using PHH and 99.73% with the PHH/ß-CD/Fe3O4 magnetic composite. These measurements were taken at a temperature of 25 °C, an adsorbent dose of 1 g/L, a pH of 6, and a Pb2+ concentration of 5 mg/L, with respective contact times of 130 min and 50 min. Thermodynamic analysis revealed negative enthalpy and Gibbs free energy values, indicating that the adsorption process is exothermic and spontaneous. The negative entropy parameter suggests a reduction in random interactions during the process. The Pb2+ adsorption data for both PHH (R2: 0.982) and PHH/ß-CD/Fe3O4 (R2: 0.985) were best described by the Pseudo 2nd order kinetic model. Equilibrium data followed the Freundlich model, with R2 values of 0.981 for PHH and 0.990 for PHH/ß-CD/Fe3O4, highlighting the importance of heterogeneous surfaces in the removal process. The maximum adsorption capacities for Pb2+ were 26.72 mg/g for PHH and 33.88 mg/g for PHH/ß-CD/Fe3O4. Reuse and stability tests confirmed the structural stability and reusability of the adsorbents. Therefore, the PHH/ß-CD/Fe3O4 magnetic composite is a promising option for removing Pb2+ from aqueous solutions.


Asunto(s)
Arachis , Plomo , Contaminantes Químicos del Agua , beta-Ciclodextrinas , Plomo/química , Plomo/aislamiento & purificación , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Arachis/química , beta-Ciclodextrinas/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA